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On well-balanced implicit-explicit Lagrange-projection
schemes for two-layer shallow water equations

A. Del Grosso∗, M. Castro Díaz†, C. Chalons‡ and T. Morales de Luna§

Abstract

This works concerns the study of well-balanced Lagrange-projection schemes applied to the two-layer
shallow water system. In particular, a formulation of the mathematical model in Lagrangian coordinates is
proposed. TheHLLmethod is then applied to a simplified version of the resulting Lagrangian system. Further-
more, based on the acoustic-transport splitting interpretation, another approximate Riemann solver for the
acoustic-Lagrangian step is described. Both an explicit and an implicit-explicit method are proposed, where
the latter can allow very fast simulations in sub-critical regimes. Finally, we show numerical simulations in
which the outputs are compared with the IFCP method’s results.

1 Introduction and mathematical model

In this work we are interested in the numerical approximation of the 1D two-layer shallow water system,
which models a fluid composed of two superimposed layers of immiscible liquids where the upper one has a
smaller density ρ1. Thus, using the subscript j = 1, 2 to indicate the jth layer, we state ρ1 < ρ2. This kind
of situations can occur when there are two liquids of different densities or even with a single fluid present at
two different temperatures, as in oceanic flows. Referring for instance to [1, 3, 4, 5, 7, 18, 19] and also to figure
1 for the notations, the two-layer shallow water system is given by
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Figure 1: Sketch of the two-layer shallow water: h1, h2 water heights, z topography andH free surface.
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∂th1 + ∂x(h1u1) = 0

∂t(h1u1) + ∂x

(
h1u

2
1 +

gh21
2

)
+ gh1∂xh2 = −gh1∂xz

∂th2 + ∂x(h2u2) = 0

∂t(h2u2) + ∂x

(
h2u

2
2 +

gh22
2

)
+ g

ρ1
ρ2

h2∂xh1 = −gh2∂xz

(1)

where t > 0 represents the time and x the axial coordinate. Then, hj(x, t) > 0 is the water depth of the
corresponding layer, uj(x, t) the averaged horizontal velocity and finally z(x) the bed elevation. Regarding
the parameters, we define the gravitational acceleration g and we shall denote r =

ρ1
ρ2

the ratio of densities.
These equations (1) can also be reformulated in a more compact way, namely

∂tQ+ ∂xF(Q) + B(Q)∂xQ = S(Q)

where Q = (h1, h1u1, h2, h2u2)
T is the vector of unknowns,

F(Q) =


h1u1

h1u
2
1 +

gh21
2

h2u2

h2u
2
2 +

gh22
2

 , B(Q) =


0 0 0 0
0 0 gh1 0
0 0 0 0

rgh2 0 0 0

 and S(Q) =


0

−gh1∂xz
0

−gh2∂xz

 .

Then, few computations show that the characteristic equation of the non-conservativematrixA(Q) =∂F(Q)
∂Q

+

B(Q) is given by
(λ2 + u21 − c21 − 2λu1)(λ

2 + u22 − c22 − 2λu2) = rg2h1h2

where by cj =
√
ghj corresponds to the sound speed of each layer. In particular, it is easy to see that we

have null eigenvalue when
G2 = F 2

1 + F 2
2 − (1− r)F 2

2F
2
1 = 1

where Fj such that F 2
j =

u2j
(1− r)c2j

are the internal Froude numbers andG is the composite Froude number,

see also [18]. It is worth to specify that ifG2 < 1, we say to be in a sub-critical regime whileG2 > 1 indicates
a supercritical flow. Depending on the value of r wemay be able to explicitly define the eigenvalues of system
(1) or not. Indeed, if r = 0, it is clear that the eigenvalues correspond to the shallow water system eigenvalues
for each layer separately. Thus, if r ≈ 0, the two layers of fluids behave almost independently. However, we
are interested in situations in which r ≈ 1, which often happen in geophysical flows. In this case, thanks to
[21], the following first-order approximation of the eigenvalues are available

λ±
Ext =

h1u1 + h2u2
h1 + h2

±
√
g(h1 + h2)

λ±
Int =

h1u1 + h2u2
h1 + h2

±

√
g1

h1h2
h1 + h2

(
1− (u1 − u2)2

g1(h1 + h2)

)
where g1 = g(1 − r) is the reduced gravity. It is a well-known fact that the two-layer system may lose its
hyperbolic character and complex eigenvalues may arise. Indeed, in view of the first-order approximation of
the eigenvalues, it is clear that the fulfillment of the following condition

(u1 − u2)
2

g1(h1 + h2)
> 1
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would lead to complex internal eigenvalues and thus we would lose the hyperbolicity of system (1). Physi-
cally speaking, this corresponds to situations where the mixing of the two layers would occur, leading to the
appearance of shear instabilities. In practice, this mixture would partially dissipates the energy. To simulate
such an effect, we could include friction in the mathematical model, otherwise in the numerical simulations
the interface disturbances may grow and lead to a wrong solution [5]. Hence, it is clear that model (1) is not
well-adapted to those situations and a more complex one would be needed. When we consider numerical
tests, the lost of hyperbolicity could be accepted only in occasional situations to make sure we do not depart
from the correct solution. For further informations about the two-layer shallow water model and its loss of
hyperbolicity, see for instance [5, 4, 7].

Concerning the numerical strategy, here we aim to design and implement well-balanced implicit-explicit
Lagrange-projection schemes. So far Lagrange-Projection (LP) methods have been studied for different math-
ematical models as the shallow water system [15] and related models [10, 11], the gas dynamic equations
[13, 12] and the blood flow system [17]. However, up to our knowledge, they have never been employed to
numerically approximate the two-layer shallow water equations. Indeed, due the presence of two velocities
u1, u2, it is not straightforward to understand how to apply the Lagrange-projection strategy to this system.
Indeed, a first idea could be to implement the LP approach for each layer and then to couple them. However, it
is known that a method that applies an arbitrary scheme to each layer usually leads to the presence of oscilla-
tions in the numerical results [7]. In [9] the authors described a first attempt to apply the Lagrange-projection
strategy to a two-phase system, in particular the two-fluid two-pressure (or seven-equation) model. There, the
coupling terms of the system have not been considered directly inside the Lagrange-projection decomposition
but in a third step. In this work, we propose a different approach from the ones mentioned above.

Moreover, we also consider a different interpretation of the Lagrange-projection approach, namely the
acoustic-transport splitting, refer again to the previous references. Indeed, by decomposing the different phe-
nomena of the mathematical model, we obtain two different systems, the acoustic and transport one. For
the former, we design an approximate Riemann solver based on a relaxation approach and then the associ-
ated Godunov-type scheme is used. We also explain how the resulting approximation can be exploited for
the Lagrangian system. Furthermore, let us recall that the acoustic-transport splitting (or equivalently the
Lagrange-projection decomposition) can be particularly interesting in subsonic regimes, where the acoustic
waves are much faster than the transport ones. This means that an implicit approximation applied to the
acoustic system could lead to the construction of very fast numerical schemes as we would neglect the acous-
tic time step condition. For this reason, we propose both an explicit and an implicit strategy for the acoustic
equations, while keeping an explicit approximation for the transport step. For implicit-explicit Lagrange-
projection methods refer for instance to [14, 15].

Last but not least, we are interested in the well-balanced property of the numerical schemes, meaning that
the numerical methods are able to preserve the stationary solutions of the mathematical model, at least for the
so-called lake-at-rest solutions. Indeed, it is well-known that otherwise we could observe spurious oscillations
in the numerical simulations when near to a steady state, refer for instance to [8, 10, 11, 15, 17, 20] and to [2]
for well-balanced schemes with and without the Lagrange-projection decomposition respectively. Therefore,
let us see which are the stationary solutions of the model. They are generally given by the following relations



hjuj = q0j = constant, with j = 1, 2

q01
h21

+ g(h1 + h2 + z) = constant

q02
h22

+ g(rh1 + h2 + z) = constant.

(2)

Here we are particularly interested in preserving only the ones with zero velocity, usually known as lake-at-
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rest solutions, namely 
uj = 0, with j = 1, 2

h1 = constant
h2 + z = constant.

(3)

For fully well-balanced Lagrange-projection methods, refer to [8, 20].

Outline of the paper. To conclude this section, we give a brief outline of the manuscript. In Section 2 we
formulate the mathematical model (1) in Lagrangian coordinates and we analyze a simplified version of it.
In Section 3, the acoustic-transport decomposition is presented, leading to the description of an approximate
Riemann solver for the acoustic system. Section 4 is devoted to the presentation of both the explicit and
implicit-explicit numerical strategies. In particular, the well-balanced property is proved in both cases. Finally
in Section 5 and 6 we respectively show numerical simulations and draw the conclusions.

2 Lagrangian coordinates

This section is devoted to the description of the mathematical model (1) in Lagrangian coordinates. After
the introduction of an arbitrary fluid particle located at ξ, the usual procedure consists in describing the
corresponding characteristic curves. Hence, due to the presence of two different velocities, one for each layer,
it is convenient to define two different trajectories xj such that

∂xj
∂t

(ξ, t) = uj(xj(ξ, t), t)

xj(ξ, 0) = ξ.
(4)

As a consequence, we define the volume ratio Lj(ξ, t) for each layer, as in the following

Lj(ξ, t) =
∂xj
∂ξ

(ξ, t) such that


∂Lj

∂t
(ξ, t) = ∂ξuj(xj(ξ, t), t)

Lj(ξ, 0) = 1.
(5)

Then, any function : (xj , t) → φ(xj , t) (associated to the jth trajectory) in Eulerian coordinates can be
expressed in Lagrangian coordinates,

φ(j)(ξ, t) = φ(xj(ξ, t), t).

This means that we have to introduce new additional variables. Indeed, we generally need to distinguish be-
tween φ(1)(ξ, t) = φ(x1(ξ, t), t) and φ(2)(ξ, t) = φ(x2(ξ, t), t). Defining then the space and time derivatives,

∂ξφ
(j)(ξ, t) = Lj(ξ, t)∂xφ(x, t) and ∂tφ

(j)(ξ, t) = ∂tφ(x, t) + uj(x, t)∂xφ(x, t),

we are able to reformulate system (1) in Lagrangian coordinates as in the following,
∂t(L1h

(1)
1 ) = 0

∂t(L1h
(1)
1 u

(1)
1 ) + ∂ξp

(1)
1 + gh

(1)
1 L1∂xh

(1)
2 = −gh

(1)
1 ∂ξz

(1)

∂t(L2h
(2)
2 ) = 0

∂t(L2h
(2)
2 u

(2)
2 ) + ∂ξp

(2)
2 + grh

(2)
2 L2∂xh

(2)
1 = −gh

(2)
2 ∂ξz

(2).

(6)

Observe that here we wrote the evolution equations for the variables h(1)1 , h
(1)
1 u

(1)
1 , h

(2)
2 and h

(2)
2 u

(2)
2 but

four additional equations would be needed for the unknowns h
(2)
1 , h

(2)
1 u

(2)
1 , h

(1)
2 and h

(1)
2 u

(1)
2 . However,
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in the following we do an approximation in order to be able to neglect such variables. Indeed, after few
manipulations and neglecting the superscript when it is equal to the subscript, we obtain

∂t(L1h1) = 0

∂t(L1h1u1) + ∂ξp1 + gh1

(L1

L2
∂ξh2 + L1∂x(h

(1)
2 − h2)

)
= −gh1∂ξz

(1)

∂t(L2h2) = 0

∂t(L2h2u2) + ∂ξp2 + grh2

(L2

L1
∂ξh1 + L2∂x(h

(2)
1 − h1)

)
= −gh2∂ξz

(2)

At this stage, we do an approximation and assume the terms ∂x(h
(1)
2 − h2) and ∂x(h

(2)
1 − h1) to be null as

at initial time we have h1
∣∣
t=0

= h
(2)
1

∣∣
t=0

= h1(x, t = 0) and h2
∣∣
t=0

= h
(1)
2

∣∣
t=0

= h2(x, t = 0). From a
numerical point of view, this implies that we are approximating these terms explicitly and at first-order of
accuracy. Furthermore, we generally expect these two terms to be rather small when the velocities u1 and u2
are close. Hence, from now on we consider the following Lagrangian system

∂t(L1h1) = 0

∂t(L1h1u1) + ∂ξp1 + gh1
L1

L2
∂ξh2 = −gh1∂ξz

(1)

∂t(L2h2) = 0

∂t(L2h2u2) + ∂ξp2 + grh2
L2

L1
∂ξh1 = −gh2∂ξz

(2)

(7)

with pressures pj = g
hj

2

2
. It is clear that further studies are required in order to include the unknowns h(2)1 ,

h
(2)
1 u

(2)
1 , h

(1)
2 and h

(1)
2 u

(1)
2 in the system. More details about the Lagrange-projection decomposition applied

to the shallow water system can be found for instance in [20].
Neglecting the bars over the unknowns, we reformulate equations (7) together with system (5) in a more

compact way,
∂tLQ+ A(LQ)∂ξLQ = S(LQ, z)

where

LQ =



L1

L1h1
L1h1u1

L2

L2h2
L2h2u2

 , A(LQ) =



0 u1
L1h1

− 1
L1h1

0 0 0

0 0 0 0 0 0

−g
h2
1

L1
g h1
L1

0 −gL1h1h2

L2
2

gL1h1

L2
2

0

0 0 0 0 u2
L2h2

− 1
L2h2

0 0 0 0 0 0

−grL2h2h1

L2
1

grL2h2

L2
1

0 −g
h2
2

L2
g h2
L2

0


and

S(LQ, z) =



0
0

−gh1∂ξz
(1)

0
0

−gh2∂ξz
(2)

 .

Moreover, observing that Ljhj does not depend on time, we find

Ljhj(ξ, t) = Ljhj(ξ, 0) = hj(ξ, 0) = h0j and consequently Lj =
h0j

hj
,

5



and as such
L1

L2
=

h01
h02

h2

h1
.

Thus, defining the variables τj =
1

hj
, we propose another formulation for system (7),



∂th
0
1 = 0

∂t(h
0
1τ1)− ∂ξu1 = 0

∂t(h
0
1u1) + ∂ξp1 +

h01
h02

∂ξp2 = − g

τ1
∂ξz

(1)

∂th
0
2 = 0

∂t(h
0
2τ2)− ∂ξu2 = 0

∂t(h
0
2u2) + ∂ξp2 + r

h02
h01

∂ξp1 = − g

τ2
∂ξz

(2)

or equivalently, 

∂tτ1 −
1

h01
∂ξu1 = 0

∂tu1 +
1

h01
∂ξp1 +

1

h02
∂ξp2 = − g

h01τ1
∂ξz

(1)

∂tτ2 −
1

h02
∂ξu2 = 0

∂tu2 +
1

h02
∂ξp2 +

r

h01
∂ξp1 = − g

h02τ2
∂ξz

(2).

(8)

The non-conservative matrix of the latter system reads
0 − 1

h0
1

0 0
1
h0
1
∂τ1p1 0 1

h0
2
∂τ2p2 0

0 0 0 − 1
h0
2

r
h0
1
∂τ1p1 0 1

h0
2
∂τ2p2 0

 ,

whose characteristic polynomial is given by

(λ2 +
∂τ1p1
h20,1

)(λ2 +
∂τ2p2
h20,2

)− r
∂τ1p1
h20,1

∂τ2p2
h20,2

=

= λ4 + (
∂τ1p1
h20,1

+
∂τ2p2
h20,2

)λ2 + (1− r)
∂τ1p1∂τ2p2
h20,1h

2
0,2

= λ4 + (α1 + α2)λ
2 + (1− r)α1α2

withα1 =
∂τ1p1
h20,1

= −g
h31
h20,1

, α2 =
∂τ2p2
h20,2

= −g
h32
h20,2

and thusα1, α2 ≤ 0. It is easy to see that the eigenvalues

are then given by

λ±
ext = ±

√
−(α1 + α2) +

√
(α1 + α2)2 − 4(1− r)α1α2

2
,

λ±
int = ±

√
−(α1 + α2)−

√
(α1 + α2)2 − 4(1− r)α1α2

2

which can be proved to be always real. Indeed, we first observe that

(α1 + α2)
2 − 4(1− r)α1α2 = (α1 − α2)

2 + 4rα1α2 ≥ 0,

6



from which it follows that λ±
ext are real. Regarding λ±

int, it is enough to note that

−(α1 + α2)−
√
(α1 + α2)2 − 4(1− r)α1α2 ≥ 0

which holds true as α1α2 ≥ 0. Thus it is interesting to remark that this simplified version of the Lagrangian
system has always real eigenvalues.

Finally, let us underline that, in systems (7) and (8), we still have z(1) and z(2), which are generally dif-
ferent. However, since in section 4 we treat these topography source terms explicitly, once again we do an
approximation and simply assume z(1) = z(2) = z.

3 Acoustic transport splitting

As it is already known, the Lagrange-projection splitting and the acoustic-transport one can be interpreted
as two different ways of describing the same kind of decomposition. Indeed, it has already been illustrated the
relation between the acoustic and Lagrangian numerical approximation, see for instance the following papers
applied to the shallow water system [15], the gas dynamics equations [13] and the blood flow system [17].
Therefore, following the lines of these works, we present the acoustic-transport splitting for the two-layer
shallow water model as it will be useful for the development of the numerical strategy. Hence, we decouple
the different terms of the model obtaining the acoustic and transport system, respectively given by

∂th1 + h1∂xu1 = 0

∂t(h1u1) + h1u1∂xu1 + ∂x
gh21
2

+ gh1∂xh2 = −gh1∂xz

∂th2 + h2∂xu2 = 0

∂t(h2u2) + h2u2∂xu2 + ∂x
gh22
2

+ grh2∂xh1 = −gh2∂xz

(9)

and 
∂th1 + u1∂xh1 = 0

∂t(h1u1) + u1∂xh1u1 = 0

∂th2 + u2∂xh2 = 0

∂t(h2u2) + u2∂xh2u2 = 0.

(10)

We also observe that the latter simply reads as ∂tXj + uj∂xXj = 0 with X = h, hu and j = 1, 2. On the
other hand, after few computations, system (9) can be reformulated as

∂th1 + h1∂xu1 = 0

∂tu1 +
1

h1
∂x

gh21
2

+ g∂xh2 = −g∂xz

∂th2 + h2∂xu2 = 0

∂tu2 +
1

h2
∂x

gh22
2

+ gr∂xh1 = −g∂xz

and again 

∂tτ1 − τ1∂xu1 = 0

∂tu1 + τ1∂x
g

2τ21
+ τ2∂x

g

2τ22
= −g∂xz

∂tτ2 − τ2∂xu2 = 0

∂tu2 + rτ1∂x
g

2τ21
+ τ2∂x

g

2τ22
= −g∂xz.

(11)

7



where we have introduced the variables τj =
1

hj
, j = 1, 2. It is then evident the similarity between the

Lagrangian system (8) and the acoustic equations (11).
A first difficulty is related to the fact that usually the mass variablem is introduced for the acoustic system

at this stage, see for instance the previous references [15, 13, 17]. For example, in the shallow water system,
this new variablem is defined such that ∂m =

1

h
∂x with h the water height. Subsequently, it allows to obtain

a conservation form of the equations (at least when there is no source term), making easier the definition of
the numerical strategy. However, having in this case two different water heights h1 and h2, it is not clear how
to include such a device and thus, here we do not consider it.

Since we do not know the general exact solution of a Riemann Problem (RP) associated to the acoustic
system (11), we look for an approximate Riemann solver. In order to be able to define it, it is convenient to
start applying a linearization of the non-linear terms present in the equations. Therefore, considering the
following form for the acoustic system

∂tτ1 − τ1∂xu1 = 0

∂tu1 + ∂x
g

τ1
+ ∂x

g

τ2
= −g∂xz

∂tτ2 − τ2∂xu2 = 0

∂tu2 + r∂x
g

τ1
+ ∂x

g

τ2
= −g∂xz,

(12)

we introduce the relaxation parameter λ and two new variables C1, C2 such that they satisfy

lim
λ→∞

C1 = g
1

τ1
= gh1 and lim

λ→∞
C2 = g

1

τ2
= gh2 (13)

at least formally. Hence, we are able to define the following relaxation system

∂tτ1 − τ1∂xu1 = 0

∂tu1 + ∂xC1 + ∂xC2 = −g∂xz

∂tτ2 − τ2∂xu2 = 0

∂tu2 + r∂xC1 + ∂xC2 = −g∂xz.

∂tC1 + a21∂xu1 =
1

λ

(
g
1

τ1
− C1

)
∂tC2 + a22∂xu2 =

1

λ

(
g
1

τ2
− C2

)
.

(14)

where a1, a2 are constant parameters.

Proposition 1. The relaxation system (14) is stable under the sub-characteristic condition a2j ≥ cj
2 = ghj .

Proof. To prove it, we start writing the following first-order correction for Cj ,

Cj = g
1

τj
+ λC(1)

j +O(λ2), (15)

which we insert into the evolution equations for Cj , obtaining

−C(1)
j +O(λ) = g∂t

1

τj
+ a2j∂xuj = −g

1

τ2j
∂tτ + a2j∂xuj = (−g

1

τj
+ a2j )∂xuj . (16)

Afterwards, neglecting the source term, we consider relations (16) together with equations (14) which lead to
the following system

∂tW+ E(W)∂xW = λ∂x
(
D(W)∂xW

)
+O(λ2)

8



withW = (τ1, u1, τ2, u2)
T and

D(W) =


0 0 0 0
0 −g 1

τ1
+ a21 0 −g 1

τ2
+ a22

0 0 0 0
0 r(−g 1

τ1
+ a21) 0 −g 1

τ2
+ a22

 .

Finally, we need to impose that D(W) is a diffusion matrix, namely that its eigenvalues are non-negative.
From this condition, we obtain the following sub-characteristic conditions a2j ≥ ghj .

Moreover, since we assume Cj to be well-prepared in the sense that Cj(x, t = 0) = ghj(x, t = 0), we
neglect the source terms 1

λ
(g

1

τj
− Cj) in the evolution equations for Cj . Then, we rewrite system (14) in a

more compact form as
∂tU+ A(U)∂xU = S̃(U, z)

where U = (τ1, u1, τ2, u2, C1, C2)T ,

A(U) =



0 −τ1 0 0 0 0
0 0 0 0 1 1
0 0 0 −τ2 0 0
0 0 0 0 r 1
0 a21 0 0 0 0
0 0 0 a22 0 0

 and S̃(U, z) =


0

−g∂xz
0
0

−g∂xz

 .

and then we find its characteristic polynomial

λ4(λ4 − (a21 + a22)λ
2 + (1− r)a21a

2
2).

Its roots are given by λ0 = 0,

λ±
ext = ±

√
a21 + a22 +

√
(a21 + a22)

2 − 4(1− r)a21a
2
2

2
(17)

and

λ±
int = ±

√
a21 + a22 −

√
(a21 + a22)

2 − 4(1− r)a21a
2
2

2
,

where once again it can be easily proved that the eigenvalues are always real since we assume the water
heights to be positive. Moreover, it is also clear that the eigenvalues are ordered a priori, namely

λ−
ext < λ−

int < λ0 = 0 < λ+
int < λ+

ext.

Subsequently, we look for the right eigenvectors of form

R = (r1, r2, r3, r4, r5, r6)
t.

Then, associated to the zero eigenvalue λ0 we easily obtain

Rλ0
1 =



1
0
0
0
0
0

 , Rλ0
2 =



0
0
1
0
0
0

 ,

9



Figure 2: Sketch of the approximate solution for the Riemann problem.

otherwise we have

Rλ =



1

− λ

τ1
β

− λ

τ2
β

−a21
τ1

−a22
τ2

β


where β =

τ2
τ1

a21
a22

(
λ2

a21
− 1

)
. Finally, few computations give us the Riemann invariants. Across the zero-

discontinuity we get
RIλ0

uj
= uj , RIλ0

Cj = Cj ,

while for the other waves with speed λ ̸= 0,

RIλ1,j = Cj −
a2j
λ
uj , RIλ2,j = Cj + a2j ln τj , RIλ3 = C2 +

(
1− λ2

a21

)
C1.

3.1 Approximate Riemann solver for the acoustic system

Here we look for the approximate solution of the Riemann problem associated to system (14) with the
following initial conditions

U(x, t = 0) =

{
UL if x < 0

UR if x > 0
(18)

where

UL =



τ1,L
u1,L
τ2,L
u2,L
C1,L
C2,L

 and UR =



τ1,R
u1,R
τ2,R
u2,R
C1,R
C2,R

 .

10



Sincewe have five discontinuities, the solution of the Riemann problem consists of six separated states, namely

U(
x

t
;UL,UR) =



UL if x
t < λ−

ext

U∗
L if λ−

ext <
x
t < λ−

int

U∗
L if λ−

int <
x
t < λ0

U∗
R if λ0 <

x
t < λ+

int

U∗
R if λ+

int <
x
t < λ+

ext

UR if x
t > λ+

ext

(19)

where in particular

U∗
L =



τ∗1,L
u∗1,L
τ∗2,L
u∗2,L
C∗
1,L

C∗
2,L


U∗

L =



τ∗1,L
u∗1,L
τ∗2,L
u∗2,L
C∗
1,L

C∗
2,L


U∗

R =



τ∗1,R
u∗1,R
τ∗2,R
u∗2,R
C∗
1,R

C∗
2,R


U∗

R =



τ∗1,R
u∗1,R
τ∗2,R
u∗2,R
C∗
1,R

C∗
2,R


, (20)

refer also to Figure (2). Due to the fact that aj are constant, it is clear that characteristic fields associated to
the eigenvalues are linearly degenerate and thus that all the the waves are contact discontinuities. Therefore,
in order to find the Riemann solution, we can exploit the Riemann invariants or equivalently the Rankine-
Hugoniot jump conditions.

We underline that the star values for uj and Cj can be found without exploiting the ones for τj . Therefore,
for the sake of conciseness and since in the numerical strategies we only need the star values for uj and Cj ,
here we do not include the definitions for the star values for τj but they can be found in an analogous way.

Startingwith the jump conditions across the zero-discontinuity and including the topography in the solver,
we impose 

u∗j,L = u∗j,R = u∗j with j = 1, 2

C∗
1,R − C∗

1,L + C∗
2,R − C∗

2,L +M = 0

r(C∗
1,R − C∗

1,L) + C∗
2,R − C∗

2,L +M = 0

where M = ∆x{g∂xz} is a function that has to be defined but it should be zero when zL = zR. Thus, we
simply ask for

M = g(zR − zL).

As far as the other waves are concerned, from the Riemann invariants presented in the previous section, we
get the following conditions associated to λ−

ext
Cj,L −

a2j

λ−
ext

uj,L = C∗
j,L −

a2j

λ−
ext

u∗j,L with j = 1, 2

C∗
2,L + (1− (λ−

ext)
2

a21
)C∗

1,L = C2,L + (1− (λ−
ext)

2

a21
)C1,L,

associated to λ−
int 

C∗
j,L −

a2j

λ−
int

u∗j,L = C∗
j,L −

a2j

λ−
int

u∗j with j = 1, 2

C∗
2,L + (1−

(λ−
int)

2

a21
)C∗

1,L = C∗
2,L + (1−

(λ−
int)

2

a21
)C∗

1,

11



associated to λ+
int 

C∗
j,R −

a2j

λ+
int

u∗j,R = C∗
j,R −

a2j

λ+
int

u∗j with j = 1, 2

C∗
2,R + (1−

(λ+
int)

2

a21
)C∗

1,R = C∗
2,R + (1−

(λ+
int)

2

a21
)C∗

1,

and finally associated to λ+
ext
C∗
j,R −

a2j

λ+
ext

u∗j,R = Cj,R −
a2j

λ+
ext

uj,R with j = 1, 2

C∗
2,R + (1− (λ+

ext)
2

a21
)C∗

1,R = C2,R + (1− (λ+
ext)

2

a21
)C1,R.

Since we had 16 unknowns and we found 16 relations, we are able to solve the resulting system. Thus, after
some computations, we can explicitly write the star states as in the following,

C∗
1,R = C1,R−

a21 − (λ+
int)

2

2((λ+
ext)

2 − (λ+
int)

2)

(
C1,R − C1,L

)
− a21

2((λ+
ext)

2 − (λ+
int)

2)

(
C2,R − C2,L +M+ U

)
C∗
1,L = C1,L+

a21 − (λ+
int)

2

2((λ+
ext)

2 − (λ+
int)

2)

(
C1,R − C1,L

)
+

a21
2((λ+

ext)
2 − (λ+

int)
2)

(
C2,R − C2,L +M−U

)
C∗
1 =

C1,R + C1,L
2

− a21
2λ+

int

(u1,R − u1,L) +
a21

2λ+
int

U
λ+
ext + λ+

int

C∗
2,R = C2,R+

a21 − (λ+
ext)

2

2a21((λ
+
ext)

2 − (λ+
int)

2)

(
(a21 − (λ+

int)
2)(C1,R − C1,L) + a21(C2,R − C2,L +M+ U)

)
C∗
2,L = C2,L−

a21 − (λ+
ext)

2

2a21((λ
+
ext)

2 − (λ+
int)

2)

(
(a21 − (λ+

int)
2)(C1,R − C1,L) + a21(C2,R − C2,L +M−U)

)
C∗
2 =

C2,R + C2,L
2

− a22
2λ+

int

(u2,R − u2,L)−
1

2λ+
int

(a21 − (λ+
ext)

2)U
λ+
ext + λ+

int

C∗
2,R = C∗

2 −
M
2

C∗
2,L = C∗

2 +
M
2

u∗1,R = u1,R − λ+
ext

2((λ+
ext)

2 − (λ+
int)

2)
(K+

2 +M+ (1−
(λ+

int)
2

a21
)K+

1 )

u∗1,L = u1,L − λ+
ext

2((λ+
ext)

2 − (λ+
int)

2)
(K−

2 +M+ (1−
(λ+

int)
2

a21
)K−

1 )

u∗1 =
u1,R + u1,L

2
−

λ+
int

2a21
(C1,R − C1,L)−

P +M
2(λ+

ext + λ+
int)

u∗2,R = u2,R +
λ+
ext

2((λ+
ext)

2 − (λ+
int)

2)

a21 − (λ+
ext)

2

a22
(K+

2 +M+ (1−
(λ+

int)
2

a21
)K+

1 )

u∗2,L = u2,L +
λ+
ext

2((λ+
ext)

2 − (λ+
int)

2)

a21 − (λ+
ext)

2

a22
(K−

2 +M+ (1−
(λ+

int)
2

a21
)K−

1 )

u∗2 =
u2,R + u2,L

2
−

λ+
int

2a22
(C2,R − C2,L +M) +

a21
a22

(1− (λ+
ext)

2

a21
)

P +M
2(λ+

ext + λ+
int)

(21)
where the following quantities were introduced to lighten the formulas

U =
a22
λ+
ext

(u2,R − u2,L) +
a21 − (λ+

int)
2

λ+
ext

(u1,R − u1,L), P = C2,R − C2,L + (1−
(λ+

int)
2

a21
)(C1,R − C1,L),

and

K±
j = Cj,R − Cj,L ±

a2j

λ+
ext

(uj,R − uj,L).
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4 Numerical approximation

Before describing the numerical scheme, it is necessary to give some details about the space and time
discretizations. We start defining the constant space step∆x and the time step∆t. Then, the mesh interfaces
are given by xi+1/2 = i∆x for i ∈ Z and the intermediate times by tn = n∆t for n ∈ N. As far as the
variable ξ is concerned, we use the same space discretization of x, hence ∆ξ = ∆x, ξi+1/2 = xi+1/2 and
ξi = xi ∀i.

Concerning the numerical strategy, since we have two different steps (Lagrangian and projection) or
systems (acoustic and transport), the numerical method is composed of two stages as well:

1. Update Qn to Qn+1− by solving the acoustic or Lagrangian system;

2. Exploit Qn+1− to solve either the transport system or the projection step and find Qn+1.

Finally, we underline that we present both an explicit and implicit approximation of the first step. Clearly,
depending on which formulation we use, also the Courant–Friedrichs–Lewy (CFL) condition [22] on the time
step changes. Indeed, in general for the acoustic step we ask for the following

∆t ≤ ∆x

2

1

max
i

{λ+
ext,i+1/2}

(22)

with λ+
ext given by (17), while in the case of the transport stage we impose

∆t ≤ ∆x

2

1

max
i

{(u∗j,i−1/2)
+ − (u∗j,i+1/2)

−}
for j = 1, 2 (23)

with (u∗j,i−1/2)
+ = max(u∗j,i−1/2, 0) and (u∗j,i+1/2)

− = min(u∗j,i+1/2, 0). Then, the final time step should be
taken as the minimum between the two. However, if we use an implicit approximation for the Lagrangian
step we could neglect condition (22) and exploit only the transport one (23).

4.1 Explicit approximation of the acoustic-Lagrangian system

Considering the Godunov method associated to the approximate Riemann solver of the previous section
3.1, the updating formula is given by

Un+1−
i =Un

i − ∆t

∆x

(
λ+,n
ext,i−1/2(U

n
i − U∗

R,i−1/2) + λ+,n
int,i−1/2(U

∗
R,i−1/2 − U∗

R,i−1/2)+

+ λ+,n
ext,i+1/2(U

n
i − U∗

L,i+1/2) + λ+,n
int,i+1/2(U

∗
L,i+1/2 − U∗

L,i+1/2)
) (24)

which is simply given by a juxtaposition of the approximate solutions of the Riemann problems defined locally
at each interface, refer for instance to [22].

As far as the acoustic system is concerned, to update the variables hj , huj , we could use the Godunov
method, namely (24). In practice, since we would like to use the Lagrangian variables, we do the following.
We indeed find un+1−

j using formula (24), then for the water heights we simply exploit

Lhn+1−
j,i = Lhnj,i = hnj,i

and finally we state
Lhn+1−

j,i un+1−
j,i = Lhnj,iu

n+1−
j,i = hnj,iu

n+1−
j,i .

Thus, we do not actually use the Godunov updating formula for the evolution equations for τn+1−
j , namely

∂tτj − τj∂xuj = 0, but only for the equations for the velocities, which are written in conservative form.

13



Indeed we could also observe that their updating formula can be reformulated using the numerical fluxes.
Hence, together with the evolution equations for Cj , we state



un+1−
1,i = un1,i −

∆t

∆x
(C∗,n

1,i+1/2 − C∗,n
1,i−1/2 + C∗,n

2,i+1/2 − C∗,n
2,i−1/2) + ∆t

Si+1/2 + Si−1/2

2

un+1−
2,i = un2,i −

∆t

∆x
(r(C∗,n

1,i+1/2 − C∗,n
1,i−1/2) + C∗,n

2,i+1/2 − C∗,n
2,i−1/2) + ∆t

Si+1/2 + Si−1/2

2

Cn+1−
1,i = Cn

1,i−
∆t

∆x
(a21,i+1/2u

∗,n
1,i+1/2 − a21,i−1/2u

∗,n
1,i−1/2) + un1,i

∆t

∆x
(a21,i+1/2 − a21,i−1/2)

Cn+1−
2,i = Cn

2,i−
∆t

∆x
(a22,i+1/2u

∗,n
2,i+1/2 − a22,i−1/2u

∗,n
2,i−1/2) + un2,i

∆t

∆x
(a22,i+1/2 − a22,i−1/2)

(25)

where Si+1/2 = −g
zi+1 − zi

∆x
. Then, it is straightforward to write the Lagrangian system approximation,



(Lh)n+1−
1,i = hn1,i

(Lhu)n+1−
1,i = (hu)n1,i − hn1,i

∆t

∆x
(C∗,n

1,i+1/2 − C∗,n
1,i−1/2 + C∗,n

2,i+1/2 − C∗,n
2,i−1/2)+

+hn1,i∆t
Si+1/2 + Si−1/2

2
(Lh)n+1−

2,i = hn2,i

(Lhu)n+1−
2,i = (hu)n2,i − hn2,i

∆t

∆x
(r(C∗,n

1,i+1/2 − C∗,n
1,i−1/2) + C∗,n

2,i+1/2 − C∗,n
2,i−1/2).

+ hn2,i∆t
Si+1/2 + Si−1/2

2

(26)

Let us observe that this discretization (26) is indeed consistent with system (7) as
C∗,n
j,i+1/2 − C∗,n

j,i−1/2

∆ξ
approxi-

mates ∂ξCj and therefore ∂ξ(ghj).We remark from system (5) that a natural explicit discretization forLj(ξ, t)
is the following,

Ln+1−
j,i = Ln

j,i +
∆t

∆x
(u∗,n

j,i+ 1
2

− u∗,n
j,i− 1

2

) with Ln
j,i = 1. (27)

Thus, it is clear that we can do the following approximation,
Ln
1,i

Ln
2,i

= 1.

At last, we can conclude observing that this numerical approximation of the acoustic (Lagrangian) system
can be interpreted as a path-conservative numerical method. Indeed, the choice of the path is naturally driven
by the presence of the linearly degenerate characteristic fields associated to the eigenvalues of the relaxation
system (14). While, for the topography z, the segment path is considered in order to ensure the well-balanced
property.

4.2 Implicit approximation of the acoustic-Lagrangian system

In order to have an implicit discretization for the Lagrangian step, the idea consists in simply exploiting
the star values of the approximate Riemann solver computed at time tn+1− instead of tn. As a consequence,
we would get a linear system which could be numerically solved, allowing us to obtain un+1−

j , Cn+1−
j . Let

us underline that at this stage we do not need the values τn+1−
j , whose approximation could increase the

complexity of the numerical method, giving a non-linear system and increasing the computational cost. Thus,
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the implicit approximation of the acoustic system reads

un+1−
1,i = un1,i −

∆t

∆x
(C∗,n+1−

1,i+1/2 − C∗,n+1−
1,i−1/2 + C∗,n+1−

2,i+1/2 − C∗,n+1−
2,i−1/2) + ∆t

Si+1/2 + Si−1/2

2

un+1−
2,i = un2,i −

∆t

∆x
(r(C∗,n+1−

1,i+1/2 − C∗,n+1−
1,i−1/2) + C∗,n+1−

2,i+1/2 − C∗,n+1−
2,i−1/2) + ∆t

Si+1/2 + Si−1/2

2

Cn+1−
1,i = Cn

1,i−
∆t

∆x
(a21,i+1/2u

∗,n+1−
1,i+1/2 − a21,i−1/2u

∗,n+1−
1,i−1/2) + un+1−

1,i

∆t

∆x
(a21,i+1/2 − a21,i−1/2)

Cn+1−
2,i = Cn

2,i −
∆t

∆x
(a22,i+1/2u

∗,n+1−
2,i+1/2 − a22,i−1/2u

∗,n+1−
2,i−1/2) + un+1−

2,i

∆t

∆x
(a22,i+1/2 − a22,i−1/2)

(28)

System (28) can be reformulated as a linear system of form

A
−→
Y =

−→
b +

−→
f (29)

where, in our case,
−→
Y =

(
un+1−
1,1 , un+1−

2,1 , Cn+1−
1,1 , Cn+1−

2,1 , . . . , un+1−
1,i , un+1−

2,i , Cn+1−
1,i , Cn+1−

2,i , . . . , un+1−
1,M , un+1−

2,M , Cn+1−
1,M , Cn+1−

2,M

)T
,

−→
b =

(
un1,1, u

n
2,1, Cn

1,1, Cn
2,1, . . . , u

n
1,i, u

n
2,i, Cn

1,i, Cn
2,i, . . . , u

n
1,M , un2,M , Cn

1,M , Cn
2,M

)T
,

−→
f =



...

...

∆t
Si+1/2 + Si−1/2

2

∆t
Si+1/2 + Si−1/2

2

−∆t

2

( a21,i+1/2Si+1/2

λ+,n
ext,i+1/2 + λ+,n

int,i+1/2

−
a21,i−1/2Si−1/2

λ+,n
ext,i−1/2 + λ+,n

int,i−1/2

)
∆t
2

(
a2
1,i+1/2

−(λ+,n
ext,i+1/2

)2

λ+,n
ext,i+1/2

+λ+,n
int,i+1/2

Si+1/2 −
a2
1,i−1/2

−(λ+,n
ext,i−1/2

)2

λ+,n
ext,i−1/2

+λ+,n
int,i−1/2

Si−1/2 −
(
λ+,n
int,i+1/2Si+1/2 − λ+,n

int,i−1/2Si−1/2

))
...
...


and the matrix A defined consequently, see also appendix A for more details. Thus, in each line of our matrix
A we only have 12 entries which could be different from zero. Therefore, even if the matrix dimension is
large (4M×4M,M number of cells), since the matrix is sparse, the computational cost is not too high to solve
the linear system.

Then, the variable Lhj and Lhuj would be updated as explained in the previous section 4.1, getting the
following implicit approximation

(Lh)n+1−
1,i = hn1,i

(Lhu)n+1−
1,i = (hu)n1,i − hn1,i

∆t

∆x
(C∗,n+1−

1,i+1/2 − C∗,n+1−
1,i−1/2 + C∗,n+1−

2,i+1/2 − C∗,n+1−
2,i−1/2)+

+hn1,i∆t
Si+1/2 + Si−1/2

2
(Lh)n+1−

2,i = hn2,i

(Lhu)n+1−
2,i = (hu)n2,i − hn2,i

∆t

∆x
(r(C∗,n+1−

1,i+1/2 − C∗,n+1−
1,i−1/2) + C∗,n+1−

2,i+1/2 − C∗,n+1−
2,i−1/2).

+ hn2,i∆t
Si+1/2 + Si−1/2

2

(30)

Let us observe that the approximation of the ratio L1

L2
in the evolution equations for (Lhu)1, (Lhu)2 is kept

explicit in order to have a simpler discretization.
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Figure 3: Sketch of the connection between Lagrangian and Eulerian coordinates.

4.3 Transport-projection step

Let us finally see how to discretize the transport system or projection step. The two approximations will
be very similar, still different.

Regarding the former, sincewe have two sets of two equations of form ∂tXj+uj∂xXj = 0withX = h, hu
and j = 1, 2, we observe that

∂tXj + uj∂xXj = ∂tXj −Xj∂xuj + ∂x(Xu)j = 0,

thus we simply exploit the following explicit approximation

Xn+1
j,i = Xn+1−

j,i (1 +
∆t

∆x
(u∗j,i+1/2 − u∗j,i−1/2))−

∆t

∆x

(
u∗j,i+1/2X

n+1−
j,i+ 1

2

− u∗j,i−1/2X
n+1−
j,i− 1

2

)
.

In particular, the latter discretization is equivalent to

Xn+1
j,i = (LX)n+1−

j,i − ∆t

∆x

(
u∗j,i+1/2X

n+1−
j,i+ 1

2

− u∗j,i−1/2X
n+1−
j,i− 1

2

)
(31)

where we used an explicit upwind discretization for Xn+1−
j,i+1/2, namely

Xn+1−
j,i+1/2 =

{
Xn+1−

j,i if u∗j,i+1/2 ≥ 0

Xn+1−
j,i+1 if u∗j,i+1/2 < 0.

Next, let us move on to the projection step discretization. In order to be able to explain it, it is convenient
to give few details about the link between Eulerian and Lagrangian coordinates, for which we also refer to
Figure 3. Recall that we use the index j for the layer and i for the cell of the mesh, we define ξ̂j,i+ 1

2
(t) such

that ∀i
xj(ξ̂j,i+ 1

2
(T ), T ) = xi+ 1

2
, with T ≥ 0,

where the corresponding trajectories are given by
∂xj
∂t

(ξ̂j,i+ 1
2
(T ), t) = uj(xj(ξ̂j,i+ 1

2
(T ), t), t)

xj(ξ̂j,i+ 1
2
(T ), 0) = ξ̂j,i+ 1

2
(T ).

Therefore, it is easy to obtain the following approximation xi+ 1
2
= ξ̂j,i+ 1

2
+∆tu∗

j,i+ 1
2

. Similarly, we also find

x∗,n+1−
j,i+ 1

2

= xi+ 1
2
+∆tu∗

j,i+ 1
2

and thus xi+ 1
2
−x∗

j,i+ 1
2

= ξ̂j,i+ 1
2
−ξi+ 1

2
.Moving to the integrals of the variables,

we can change coordinates as in the following∫ xj(ξj,r,t)

xj(ξj,l,t)
Xj(x, t)dx =

∫ ξj,r

ξj,l

Lj(ξ, t)Xj(ξ, t)dξ.
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leading to

Xj,i(t) =
1

∆x

∫ x
i+1

2

x
i− 1

2

Xj(x, t)dx =
1

∆x

∫ xj(ξ̂j,i+1
2
,t)

xj(ξ̂j,i− 1
2
,t)

Xj(x, t)dx =
1

∆x

∫ ξ̂
j,i+1

2

ξ̂
j,i− 1

2

Lj(ξ, t)Xj(ξ, t)dξ. (32)

Therefore, splitting the integrals in three parts

Xn+1
j,i =

1

∆x

∫ ξ
i− 1

2

ξ̂
j,i− 1

2

Lj(ξ, t
n+1−)Xj(ξ, t

n+1−)dξ+

+
1

∆x

∫ ξ
i+1

2

ξ
i− 1

2

Lj(ξ, t
n+1−)Xj(ξ, t

n+1−)dξ +
1

∆x

∫ ξ̂
j,i+1

2

ξ
i+1

2

Lj(ξ, t
n+1−)Xj(ξ, t

n+1−)dξ.

(33)

and approximating them, we obtain

Xn+1
j,i = (LX)n+1−

j,i − ∆t

∆x

(
u∗j,i+1/2(LX)n+1−

j,i+ 1
2

− u∗j,i−1/2(LX)n+1−
j,i− 1

2

)
(34)

where

(LX)n+1−
j,i+1/2 =

{
(LX)n+1−

j,i if u∗j,i+1/2 ≥ 0

(LX)n+1−
j,i+1 if u∗j,i+1/2 < 0

∀i. For similar procedure applied to the shallow water system or the blood flow equations, see respectively
[20] and [17]. Hence, the only difference between formulation (31) and (34) is related to the use of the variable
X or LX in the definition of the numerical fluxes. Observe that, in the numerical simulations, we always use
formulation (34).

4.4 Properties of the numerical scheme

Considering the explicit and implicit Lagrangian approximations (26),(30) and the projection formulation
(34), we can find an overall approximation for the two-layer shallow water system (1),

hn+1
1,i = hn1,i −

∆t

∆x

(
u∗,#1,i+1/2(Lh)

n+1−
1,i+ 1

2

− u∗,#1,i−1/2(Lh)
n+1−
1,i− 1

2

)
(hu)n+1

1,i = (hu)n1,i−hn1,i
∆t

∆x
(C∗,#

1,i+1/2 − C∗,#
1,i−1/2 + C∗,#

2,i+1/2 − C∗,#
2,i−1/2)+

−∆t

∆x

(
u∗,#1,i+1/2(Lh)

n+1−
1,i+ 1

2

− u∗,#1,i−1/2(Lh)
n+1−
1,i− 1

2

)
+ hn1,i∆t

Si+1/2 + Si−1/2

2

hn+1
2,i = hn2,i −

∆t

∆x

(
u∗,#2,i+1/2(Lh)

n+1−
2,i+ 1

2

− u∗,#2,i−1/2(Lh)
n+1−
2,i− 1

2

)
(hu)n+1

2,i = (hu)n2,i−hn2,i
∆t

∆x
(r(C∗,#

1,i+1/2 − C∗,#
1,i−1/2) + C∗,#

2,i+1/2 − C∗,#
2,i−1/2).

−∆t

∆x

(
u∗,#2,i+1/2(Lh)

n+1−
2,i+ 1

2

− u∗,#2,i−1/2(Lh)
n+1−
2,i− 1

2

)
+ hn2,i∆t

Si+1/2 + Si−1/2

2
.

(35)

with either # = n or # = n+ 1− depending on the explicit and implicit approximation.

Remark 1. The numerical approximation (35) preserves the positivity of the water heights h1, h2. Indeed, it is
enough to exploit the CFL condition (23) to prove it.

Theorem 1. The numerical approximation (35) with star values (21) is well-balanced in the sense it preserves
the stationary solution (3).
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Proof. We start assuming that the stationary solution (3) is satisfied at time tn, namely unj,i = 0, hn1,i = hn1,i+1

and hn2,i + zi = hn2,i+1 + zi+1 ∀i, we want to prove that hn+1
j,i = hnj,i and (hu)n+1

j,i = (hu)nj,i for j = 1, 2 and
∀i.

Then, first of all we consider the explicit approximation. Since C2,i+1 − C2,i + M = g(h2,i+1 − h2,i +
zi+1 − zi) = 0 and uj,i = 0 by hypothesis, it is straightforward to see that u∗,n1,i−1/2 = u∗,n2,i−1/2 = 0. Similarly

we get C∗,n
1,i+1/2 = C1,i and C∗,n

2,i+1/2 =
C2,i + C2,i+1

2
. Observing that C∗,n

2,i+1/2 − C∗,n
2,i−1/2 =

Si+1/2+Si−1/2

2 , we
get hn+1

j,i = hn+1−
j,i = hnj,i and (hu)n+1

j,i = (hu)n+1−
j,i = (hu)nj,i for j = 1, 2 and ∀i. Thus, we proved that

the explicit approximation is well-balanced. Let us now move to the implicit one. The heart of the proof is
to show that, when we are under the lake at rest condition, system (28) can be reformulated in a form as
AUn+1− = AUn withAmatrix which would lead to the conclusion of the proof. Indeed, it is easy to see such
a thing as unj,i = 0 ∀i, for j = 1, 2 while for the water heights we have hn1,i = hn1,i+1 and hn2,i+1 − hn2,i =
−zi+1 + zi ∀i.

5 Numerical simulations

In the following, we are interested in comparing the numerical results of the four following numerical
schemes:

• "IFCP" (Intermediate Field Capturing Parabola) method applied to the two-layer shallow water system
(1), for which we refer to [18];

• "LP-ARS" scheme, for which we use the explicit acoustic approximation described in section 4.1 and the
transport discretization (34);

• "LP-ARS-IMP" method, for which we use the implicit acoustic approximation described in section 4.2
and the transport discretization (34);

• "LP-HLL" scheme, where once again we use the transport discretization (34) but we approximate the
Lagrangian step by applying the HLL strategy to the Lagrangian system (7), see for instance [22] or
appendix B.

Observe that the IFCP solutions are taken as a reference to establish if the proposed numerical strategies
can be considered satisfying.

Furthermore, we use r = 0.98 and transmissive boundary conditions. As far as the LP-ARS-IMP method
is concerned, we consider both the acoustic (22) and transport (23) CFL conditions with CFL = 0.5 unless
otherwise stated. Finally, we underline that for all the numerical simulations, we exploitedMATLAB language
with a single Intel Core i7 CPU.

5.1 Riemann problems

Using M = 200 cells, we start considering academic test cases, namely two Riemann problems.

RP 1. Taking into account a channel of length L = 10 m, we consider a dam-break problem for the
interface. More explicitly, we take the following initial data, u1(x, t = 0) = 0, u2(x, t = 0) = 0 and

h1,L = 0.2, h1,R = 0.8, h2,L = 0.8, h2,R = 0.2,

refer also to [18] for more details about this and the following Riemann problem.
In Figure 4 we show the results for the water heights h1, h2 and fluxes q1, q2 using the four above-

mentioned methods. In general, we observe that all the schemes give analogous solutions where in particular
the IFCP and LP-HLLmethods are respectively the less and themost diffusive. It is not surprising the difference
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Figure 4: RP 1 of section 5.1: water height h1, h2 (left) and discharge q1, q2 (right). IFCP (red), LP-ARS (blue), LP-ARS-IMP (magenta)
and LP-HLL (black) outputs obtained withM = 200 cells at time t = 10 s.

in accuracy between the IFCP and the LP-HLL as the HLL strategy neglects the internal waves. Nevertheless,
refining the mesh, we observed that the LP-HLL solution seems to converge towards the reference output.
On the other hand, is it important to underline that the LP-ARS method gives results very close to the IFCP
ones. Moreover, since we have used the same time step, the LP-ARS-IMP outputs are only slightly more
diffusive than the LP-ARS ones. Let us conclude observing that we could have used a much larger time step
for the implicit method as we are in a sub-critical regime. For this reason, we now consider a series of meshes
(M = 64, 128, 256, 512 cells) in order to compare the efficiency of the two methods. Thus, for the implicit
LP-ARS-IMP method we only use the transport CFL condition (23) and neglect the acoustic one (22). Then,
we compute the reference solution with the IFCP method and M = 2048 cells. Finally, in table 1 we insert
the errors in norm L1 while in table 2 we show the computational times. As expected the errors of the LP-
ARS-IMP scheme are slightly greater than those of the LP-ARS method. On the other hand, we immediately
see that the LP-ARS-IMP scheme allows faster simulations.

Error (L1) of h1 Error (L1) of q1 Error (L1) of h2 Error (L1) of q2
Mesh LP-ARS LP-ARS-IMP LP-ARS LP-ARS-IMP LP-ARS LP-ARS-IMP LP-ARS LP-ARS-IMP

64 0.2630 0.3063 0.0561 0.0661 0.2604 0.3038 0.0556 0.0657
128 0.1714 0.2169 0.0367 0.0467 0.1697 0.2143 0.0364 0.0458
256 0.1059 0.1440 0.0230 0.0312 0.1048 0.1429 0.0227 0.0311
512 0.0605 0.0900 0.0134 0.0204 0.0598 0.0891 0.0132 0.0202

Table 1: Errors in norm L1 of the variables hj , qj = hjuj with j = 1, 2 using LP-ARS and LP-ARS-IMP schemes. Meshes of size
M = (64, 128, 256, 512) cells.

RP 2. As a second test, we consider a channel of length L = 100 with discontinuity in the middle. The
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Figure 5: RP 2 of section 5.1: free surface h1 + h2, water height h2 (left) and velocity u1, u2 (right). IFCP (red), LP-ARS (blue),
LP-ARS-IMP (magenta) and LP-HLL (black) outputs obtained withM = 200 cells at time t = 5 s.

Method M = 64 M = 128 M = 256 M = 512

LP-ARS 0.213301 0.588727 1.907348 6.749875

LP-ARS-IMP 0.0319 0.1070 0.5477 3.4986

Table 2: Computational times in seconds for LP-ARS and LP-ARS-IMP schemes with meshes of sizeM = (64, 128, 256, 512) cells.
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initial conditions for the water heights are given by

h1,L = 0.5, h1,R = 0.55, h2,L = 0.5, h2,R = 0.45,

while for the fluxes we state

q1,L = 1.25, q1,R = 1.375, q2,L = 1.25, q2,R = 1.125,

see again [18]. Then, Figure 5 shows the different outputs which generally confirms what we have observed
for the previous Riemann problem. The solutions are in agreement with the ones presented in [18].

5.2 Stationary solution and perturbation

Next, we numerically verify that our numerical strategy is indeed well-balanced in the sense that it pre-
serves the stationary solution (3). Thus, we take L = 1 and as initial condition we consider the following
steady state

h1(x, t = 0) = 1, h2(x, t = 0) + z(x) = 1, u1(x, t = 0) = 0, u2(x, t = 0) = 0, (36)

where

z(x) =

{
1
4(1 + cos(π x−0.5

0.1 )) if 0.4 ≤ x ≤ 0.6

0 otherwise.

Our numerical methods are indeed able to preserve this stationary solution up to a machine error of order
10−13 computed in the L∞ norm using t = 5s as ending time and the initial condition as exact solution.

Let us now introduce a small perturbation of the steady state, namely

h1(x, t = 0) =

{
1 + 10−5 if 0.1 ≤ x ≤ 0.2

1 otherwise.

In Figure 6 we show the LP-ARS results at different times and we observe that the perturbations propagate
away so that we are able to recover the zero-velocity steady state (36). Indeed, the outputs are in agreement
with the ones presented in [3]. We did not include the solutions for the other schemes as they are analogous.
However, it is interesting to observe that LP-HLL solution is almost identical to the LP-ARS one while the
LP-ARS-IMP output is more diffusive even if we use the same CFL condition.

5.3 Transcritical non-smooth stationary solution

In this section we aim to verify that our schemes are able to recover a transcritical non-smooth stationary
solution if proper steady boundary conditions are imposed. We refer the reader to [5] for further details on
this simulation. As a second step, we will also introduce some perturbations in the resulting steady state.

Thus, let us consider a channel of length L = 10 m and the following initial conditions

(hu)j(x, t = 0) = 0, h1(x, t = 0) =

{
0.5 if x < 5

0.001 otherwise,

z(x) = 1 + 0.5x−(x−5)2 and finally h2(x, t = 0) = 2 − (h1(x, t = 0) + z(x)). Then, for the boundary
conditions we impose (hu)2 = −(hu)1 on both sides and h1(x = L, t) + h2(x = L, t) + z(x = L) = 2
at the end of the channel. In Figure 7 we include the results and compare the different outputs found at
time t = 1000 s. Referring to [18], the flow is sub-critical for x ≥ 5 while for x < 5 is supercritical at the
beginning and then it becomes sub-critical as well. Thus, it is clear that at x = 5 there is a critical flow.
First of all, we generally observe that all the numerical schemes are able to recover the aimed non-smooth
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Figure 6: Evolution of the perturbation in the lake at rest steady state, section 5.2. LP-ARS solution for the free surface h1 + h2 + z
(left) for different times: t = 0 (blue), t = 0.02 (red), t = 0.04 (yellow), t = 0.12 (violet), t = 0.18 (green), t = 0.26 (light blue line).
on the right, LP-ARS solution for h2 + z (blue) and topography z (red). M = 200 cells.

Method M = 44 M = 88 M = 175 M = 350

LP-ARS 8.103190 25.550884 100.167893 363.242909

LP-ARS-IMP 1.666153 4.393538 34.577729 219.775353

Table 3: Computational times in seconds for LP-ARS and LP-ARS-IMP schemes with meshes of sizeM = (44, 88, 175, 350) cells.

stationary solution even if some differences in the shock position and the left state value are present for the
samemesh valueM = 350 cells. However, in the IFCP results, some spurious oscillations are observed during
the simulation. This is indeed natural since the internal eigenvalues can become complex in a small area of
the supercritical region. On the other hand, unphysical oscillations are not observed when using the LP-ARS
and LP-ARS-IMP schemes, probably partly related to the fact that the eigenvalues of the acoustic system are
always real. Moreover, also the LP-HLL gives a solution without spurious oscillations. However, this is not
surprising as the method neglect the middle waves of the mathematical model. Indeed, we can observe that
the LP-HLL output is much more diffusive than the others.

Finally, since we are in a sub-critical regime, for the implicit scheme we could use a larger time step. On
the right hand side in Figure 7, we show the LP-ARS-IMP solution computed taking as time step the minimum
between the transport time step and the acoustic time step, where the latter is computed using as CFL values
CFL = 0.5, 2.5, 5. Thus, once again, the solutions seem correct with some differences in the left state value.
Then, in table 3, for different mesh values, we also include the computational times of the LP-ARS and LP-
ARS-IMP schemes, where for the latter we use CFL = 5 for the acoustic time step condition. Once again, we
generally see that the LP-ARS-IMP method is faster even if the regime is not always sub-critical. Moreover,
it is clear that, the more we refine the mesh, the smaller will be the difference of the computational times
between the two schemes.

5.3.1 Perturbation of the transcritical non-smooth stationary solution

Next, we consider the transcritical non-smooth stationary solution obtained in Section 5.3 as initial con-
dition and we add a perturbation in the interface. The objective is to verify that the perturbation propagates
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away and we recover the non-smooth stationary solution. Thus, at initial time we impose

h2(x, t = 0) =

{
heq2 + 0.1e−100(x−6.5)2 if 6 ≤ x ≤ 7,

heq otherwise

where the superscript "eq" indicates the transcritical non-smooth steady state. Regarding the boundary con-
ditions, we keep the same as before. Results are shown in Figure 8 using the LP-ARS-IMP scheme. We do
not include the results for the other methods as they are analogous. Indeed, we observe the perturbation
propagates away at different times t = 0, 0.15, 0.5, 1s.

6 Concluding remarks

In this work the classic Lagrange-Projection (LP) approach has been extended to a two-velocities case,
namely the two-layer shallow water system. Hence, we started this work presenting the mathematical model
formulated in Lagrangian coordinates. To numerically approximate such a system, we also considered the
acoustic-transport splitting, an alternative interpretation to the Lagrange-Projection decomposition. In par-
ticular, we were able to build an approximate Riemann solver for the acoustic system and to develop the
associated Godunov-type scheme, both explicitly and implicitly. We underline that such a discretization can
also be interpreted as an approximation for the Lagrangian system. Moreover, in the implicit version of the
scheme, to find the numerical solution we only need to solve a linear system, which entails a not excessive
computational cost. In this way, we were able to obtain a fast implicit-explicit method as we could use very
large time steps, especially in sub-critical regimes.

Numerical simulations were proposed, in which we compared our results against the outputs of the well-
known IFCP scheme. We also considered a LP-HLL method, meaning that the HLL approach has been applied
to the simplified Lagrangian system (7), while keeping the same numerical strategy for the projection step. In
the numerical tests, the LP-ARS strategy (both explicit and implicit) gave satisfying results, generally slightly
more diffusive than the IFCP ones but much more accurate than the LP-HLL outputs.

Furthermore, it is interesting to underline that in the LP strategy we considered an approximated version
of the Lagrangian system, obtaining in this way a new model for which we are able to explicitly write the
eigenvalues and to prove that they are always real. Therefore, the numerical method is able to advance in
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time even if there are small non-hyperbolic regions with complex internal eigenvalues. Indeed, in the test of
Section 5.3, we acknowledged that our schemes do not produce spurious oscillations, contrarily to the IFCP
method.
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A Linear system for the implicit acoustic approximation

Considering the implicit approximation for the acoustic system presented in section 4.2, here we simply
aim to show the form of the matrix A present in the linear system (29). In particular, we have a square matrix
with 4M× 4M entries where only 12 of them could be not null in each line, indeed

A =



du1
i du2

i dC1i dC2i fu1
i fu2

i fC1
i fC2

i 0 . . . . . . . . . . . . . . . . . . 0

ku1
i ku2

i kC1i kC2i lu1
i lu2

i lC1i lC2i 0 . . . . . . . . . . . . . . . . . .
...

nu1
i nu2

i nC1
i nC2

i qu1
i qu2

i qC1i qC2i 0 . . . . . . . . . . . . . . . . . .
...

vu1
i vu2

i vC1i vC2i wu1
i wu2

i wC1
i wC2

i 0 . . . . . . . . . . . . . . . . . .
...

. . . . . .

. . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 0 . . . . . . . . . . . .

...

. . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 0 . . . . . . . . . . . .

...

. . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 0 . . . . . . . . . . . .

...

. . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 0 . . . . . . . . . . . .

...
. . . 0 bu1

i bu2
i bC1i bC2i du1

i du2
i dC1i dC2i fu1

i fu2
i fC1

i fC2
i 0 . . .

. . . 0 gu1
i gu2

i gC1i gC2i ku1
i ku2

i kC1i kC2i lu1
i lu2

i lC1i lC2i 0 . . .

. . . 0 mu1
i mu2

i mC1
i mC2

i nu1
i nu2

i nC1
i nC2

i qu1
i qu2

i qC1i qC2i 0 . . .

. . . 0 su1
i su2

i sC1i sC2i vu1
i vu2

i vC1i vC2i wu1
i wu2

i wC1
i wC2

i 0 . . .

. . . . . . . . . . . . . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . .
... . . . . . . . . . . . . . . . . . . 0 bu1

i bu2
i bC1i bC2i du1

i du2
i dC1i dC2i

... . . . . . . . . . . . . . . . . . . 0 gu1
i gu2

i gC1i gC2i ku1
i ku2

i kC1i kC2i
... . . . . . . . . . . . . . . . . . . 0 mu1

i mu2
i mC1

i mC2
i nu1

i nu2
i nC1

i nC2
i

0 . . . . . . . . . . . . . . . . . . 0 su1
i su2

i sC1i sC2i vu1
i vu2

i vC1i vC2i
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with

bu1
i = − ∆t

2∆x
(s+

a2 − s2

s+ s
)i−1/2, fu1

i = − ∆t

2∆x
(s+

a2 − s2

s+ s
)i+1/2, du1

i = 1− bu1
i − fu1

i

bu2
i = − ∆t

2∆x
(

a22
s+ s

)i−1/2, fu2
i = − ∆t

2∆x
(

a22
s+ s

)i+1/2, du2
i = −bu2

i − fu2
i ,

bC1i = − ∆t

2∆x
, dC1i = +

∆t

2∆x
, fC1

i = 0,

bC2i = − ∆t

2∆x
, fC2

i = +
∆t

2∆x
, dC2i = 0;

gu1
i = +

∆t

2∆x
(
(a21 − s2)(a21 − s2)

a22(s+ s)
)i−1/2, lu1

i = +
∆t

2∆x
(
(a21 − s2)(a21 − s2)

a22(s+ s)
)i+1/2, ku1

i = −gu1
i − lu1

i ,

gu2
i = − ∆t

2∆x
(s− a21 − s2

s+ s
)i−1/2, lu2

i = − ∆t

2∆x
(s− a21 − s2

s+ s
)i+1/2, ku2

i = 1− gu2
i − lu2

i ,

gC1i = −r
∆t

2∆x
, lC1i = +r

∆t

2∆x
, kC1i = 0,

gC2i = − ∆t

2∆x
, lC2i = +

∆t

2∆x
, kC2i = 0;

mu1
i = − ∆t

2∆x
(a21)i−1/2, qu1

i = +
∆t

2∆x
(a21)i+1/2, nu1

i = −mu1
i − nu1

i ,

mu2
i = 0, qu2

i = 0, nu2
i = 0,

mC1
i = − ∆t

2∆x
(s+

a21 − s2

s+ s
)i−1/2, qC1i = − ∆t

2∆x
(s+

a21 − s2

s+ s
)i+1/2, nC1

i = 1−mC1
i − qC1i ,

mC2
i = − ∆t

2∆x
(

a21
s+ s

)i−1/2, qC2i = − ∆t

2∆x
(

a21
s+ s

)i+1/2, nC2
i = −mC2

i − qC2i

and

su1
i = 0, wu1

i = 0, vu1
i = 0,

su2
i = − ∆t

2∆x
(a22)i−1/2, wu2

i = +
∆t

2∆x
(a22)i+1/2, vu2

i = −mu1
i − nu1

i ,

sC1i = − ∆t

2∆x
(
(a21 − s2)(a21 − s2)

a21(s+ s)
)i−1/2, wC1

i = − ∆t

2∆x
(
(a21 − s2)(a21 − s2)

a21(s+ s)
)i+1/2, vC1i = −sC1i − wC1

i ,

sC2i = − ∆t

2∆x
(s− a21 − s2

s+ s
)i−1/2, wC2

i = − ∆t

2∆x
(s− a21 − s2

s+ s
)i+1/2, vC2i = 1− sC2i − wC2

i

where we used s = λ+
ext, s = λ+

int to lighten the notations.
Finally, it is clear that the first and last line of the system should be modified according to the considered

boundary condition.

B HLL scheme applied to the Lagrangian system

With the aim of having a starting numerical scheme in the Lagrange-projection formalism, we applied the
HLL strategy to the Lagrangian system (7). In particular, in order to be able to describe it and since system
∂tLQ+A(LQ)∂ξLQ = S(LQ, z) is in non-conservative form, we first need to briefly introduce the concept of
paths and path-conservative numerical schemes. Indeed, due to the presence of the non-conservative product
A(LQ)∂ξLQ, Dirac’s delta could appear in presence of discontinuities and thus we could not exploit the weak
solution definition in the distributional framework. For this reason, Dal Maso, LeFloch and Murat [16] have
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developed a theory to circumnavigate this problem. To this end, we first need to define a family of Lipschitz
continuous paths Φ : [0, 1]× Ω× Ω → Ω satisfying the following regularity properties

Φ(0;LQL,LQR) = LQL, Φ(1;LQL,LQR) = LQR, and Φ(s;LQ,LQ) = LQ.

Then, given a function LQ with bounded variation, the non-conservative product A(LQ)∂ξLQ would make
sense as a locally bounded measure. For more details, refer for instance to [6, 18]. Obviously, a further
difficulty is related to the choice of the path. Here we do not focus on such a problem and we simply exploit
the easiest formulation for the definition of the path, namely the straight segment,

Φ(s;LQL,LQR) = LQL + s(LQR − LQL).

Moreover, it is important to underline that, due to the numerical viscosity of the method, even if the "correct"
path is chosen, the numerical output could converge to the wrong solution and not the physical one [6].

Then, once the family of paths has been chosen, considering system (7) in compact form ∂tLQ+A(LQ)∂xLQ =
0 and flat topography, the general path-conservative formula reads

LQn+1
i = LQn

i − ∆t

∆x
(D−

i+1/2 + D+
i−1/2)

where D±
i+1/2 = D±(LQi,LQi+1) are two continuous functions satisfying

D±(LQ,LQ) = 0 ∀ LQ ∈ Ω

and
D−(LQL,LQR) + D+(LQL,LQR) =

∫ 1

0
A(Φ(s;LQL,LQR))

∂Φ

∂s
(s;LQL,LQR)ds

Once again, here we do not give further details about path-conservative schemes but we simply refer to [18]
and the references therein.

In particular, here we briefly show the interpretations of the HLL scheme as a PVM (Polynomial Viscosity
Matrix) method and we directly refer to [6] for more details. Therefore, considering the following polynomial
P (x) = α0 + α1x with coefficients

α0 =
λ+
ext|λ

−
ext| − λ−

ext|λ
+
ext|

λ+
ext − λ−

ext

, α1 =
|λ+

ext| − |λ−
ext|

λ+
ext − λ−

ext

,

we obtain the following final form for the fluctuations

D±
i+1/2 =

1

2

(
Ai+1/2(LQi+1 − LQi)

)
± 1

2
Pi+1/2(Ai+1/2)

(
LQi+1 − LQi

)
or equivalently

D±
i+1/2 =

1

2

(
Ai+1/2(LQi+1 − LQi)

)
± 1

2

(
α0,i+1/2(LQi+1 − LQi) + α1,i+1/2Ai+1/2(LQi+1 − LQi)

)
.

Recalling that A(LQ) =∂F(LQ)
∂LQ

+ B(LQ), we can also express the fluctuations as

D±
i+1/2 =

1

2

(
F(LQi+1)− F(LQi) + Bi+1/2(LQi+1 − LQi)

)
±

± 1

2

(
α0,i+1/2(LQi+1 − LQi) + α1,i+1/2

(
F(LQi+1)− F(LQi) + Bi+1/2(LQi+1 − LQi)

))
.

Moreover, since in our case λ−
ext = −λ+

ext, it is clear that we always have α1 = 0.
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Finally, it is straightforward to include the topography source term in the numerical method. Indeed, few
computations give us

D±
i+1/2 =

1

2

(
Ai+1/2(LQi+1 − LQi)− Si+1/2(zi+1 − zi)

)
±

± 1

2
Pi+1/2(Ai+1/2)

(
(LQi+1 − LQi)− A−1

i+1/2Si+1/2(zi+1 − zi)
)
.

In practice, we exploit the following formula

D±
i+1/2 =

1

2

(
F(LQi+1)− F(LQi) + Bi+1/2(LQi+1 − LQi)− Si+1/2(zi+1 − zi)

)
±

± 1

2

(
α0,i+1/2(LQ̃i+1 − LQ̃i) + α1,i+1/2

(
F(LQi+1)− F(LQi) + Bi+1/2(LQi+1 − LQi)− Si+1/2(zi+1 − zi)

))
with LQ̃ = (L1, L1h1, L1h1u1, L2, L2h2 + z, L2h2u2)

t.
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