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Abstract. The efficiency of simulation-driven design optimization based on surrogate models,
depends strongly on the suitability of the surrogate model for the simulation data on which it is
based. We investigate adaptive surrogate modelling methods that maximize the efficiency and
the robustness for any optimization problem. Specific techniques include: adaptive sampling,
noise filtering by metamodel tuning, and small initial datasets to give maximum freedom to the
adaptation. These methodological advancements are demonstrated for an analytical test prob-
lem, as well as the shape optimization of the DTMB 5415 ship model for calm-water resistance.

1 INTRODUCTION

In naval engineering, simulation-driven design optimization (SDDO) is continuously grow-
ing in popularity, because it allows the designers to explore innovative designs and to better
assess the designs’ performance in the intended operational environment. The effectiveness of
SDDO comes from the tight integration of (a) mathematical models, from analytical models
to numerical simulations, to evaluate the design performance, (b) highly controllable shape
deformation techniques, and (c) effective optimization algorithms (global/local and derivative-
based/derivative free algorithms). And yet, accurate performance predictions for innovative
configurations or off-design conditions require high-fidelity physics-based models, such as CFD
simulations. Furthermore, the number of iterations required by an optimization algorithm to
converge, may imply performing a significant number of simulations, especially if a global opti-
mum is desired. As a consequence, the computational requirements (such as hardware and/or
computational time) may easily become unaffordable for most users. The cost associated with
SDDO may be reduced by supervised machine learning via surrogate modeling methods. Here,
a surrogate model is trained on the responses from a limited number of simulations and the
optimization is then performed over the surrogate model, which is cheap to evaluate. Among
these methods, multi-fidelity (MF) approaches are gaining attention, due to their capability to
combine the accuracy of high-fidelity solvers with the computational cost of low-fidelity solvers.
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Different fidelities for the input data may be defined based for example on the physical model
[1] or spatial and/or temporal discretization [11]. These data are combined into one surrogate
model, by correcting a low-fidelity model using suitable error metamodels (or bridge functions)
which represent the difference between fidelity levels, ordered following a given hierarchy. The
resulting MF surrogate is then explored by the optimization algorithm.

The efficiency and the robustness of a multi-fidelity active learning approach depend strongly
on its suitability for the specific problem being modeled. Since surrogate models have many free
parameters and modelling choices, a practically useable method requires automated, adaptive
tuning and selection of these parameters for each specific design optimization, see e.g. [12, 7]. The
present authors’ work on MF active learning and model auto-tuning includes adaptive sampling
of the datapoints [10], noise reduction through tuned least-squares fitting of the surrogate models
[15], the use of more than two fidelity levels [14], and reduced initial datasets to provide maximum
freedom to the adaptation [5].

The objective of the paper is to present the authors’ current adaptive multi-fidelity active
learning approach. The performance of the method is evaluated using an analytical test and a
SDD case based on computational fluid dynamics (CFD) simulations, namely the shape opti-
mization of the DTMB 5415 ship model, for which different fidelity levels are provided by CFD
with adaptive grid refinement. Under the assumption of a limited budget of function evalua-
tions, the proposed MF method shows better performance in comparison with less sophisticated
MF models.

2 MULTI-FIDELITY ACTIVE LEARNING METHOD

2.1 Multi-fidelity setting

Consider x ∈ RD as a design variables vector of dimension D. Let the true merit function
to be optimized f(x), be assessed by N fidelity levels: the highest-fidelity level is f1(x), the
lowest-fidelity is fN (x), and the intermediate fidelity levels are {fi}N−1

i=2 (x). Using ·̃ to denote

surrogate model prediction and ·̂ for multi-fidelity prediction, the MF approximation f̂i(x) of
fi(x) (i = 1, . . . , N − 1) is the sum of the lowest-fidelity surrogate and surrogates of the errors
(inter-level errors or bridge-functions, ε̃) between subsequent levels

f̂i(x) = f̃N (x) +

N−1∑
k=i

ε̃k(x). (1)

For each i-th fidelity level the training set is Ti = {xj , fi(xj)}Jij=1, with Ji the training set size.

The resulting inter-level error training set is defined as Ei = {xj , εi(xj)}Jij=1, where

εi(xj) = fi(xj)− f̂i+1(xj). (2)

The surrogate models are based on stochastic radial basis functions (SRBF) which provide
both the prediction and its associated uncertainty [12]. If the uncertainty U

f̃N
of the lowest-

fidelity prediction is uncorrelated with the uncertainty Uε̃k of the inter-level error predictions,

2



Jeroen Wackers et al.

the uncertainty U
f̂i

of the MF prediction can be evaluated as (i = 1, . . . , N − 1)

U
f̂i
(x) =

√√√√U2
f̃N

(x) +
N−1∑
k=i

U2
ε̃k
(x). (3)

2.2 Stochastic radial basis functions with least squares approximation

Given a (single-fidelity) training set T = {xi, f(xi)}Ji=1, the SRBF surrogate model prediction

f̃ (x) is computed as the expected value (EV) over a stochastic tuning parameter of the surrogate
model [12], τ ∼ unif[1, 3]

f̃ (x) = EV [g (x, τ)]τ ,

g (x, τ) = EV [f ] +

M∑
j=1

wj ||x− cj ||τ ,
(4)

where wj are unknown coefficients, || · || is the Euclidean norm and cj are the RBF centers, with
j = 1, . . . ,M andM ≤ J . Noise reduction in the training set is achieved by choosing a number of
RBF centers M smaller than the number of training points J , and cj coordinates are defined via
k-means clustering [4] of the training points coordinates. wj are determined with least squares
regression by solving w = (ATA)−1AT(f − EV [f ]). The optimal number of stochastic RBF
centers (M⋆) is defined by minimizing a leave-one-out cross-validation (LOOCV) metric [15].

2.3 Initial training set and bounded surrogate model

The reduced training set (RS) of [5] is used: except on the lowest fidelity level, where the
domain center and the centers of the boundary faces are sampled, the metamodels are initialized
with only a point in the domain center. For the error metamodels, this requires a SRBF
surrogate which can handle extrapolation. Therefore, a bounded surrogate model prediction
and uncertainty (both identified with the B subscript) for the error metamodels are defined as
described in Algorithm 1. The definition of Uε̃Bi

(x) stems from the consideration that the error

surrogates represent errors in the MF approximation f̂ . Therefore the average error can be used
as reference for the surrogate model prediction uncertainty when an extrapolation is performed.

In Algorithm 1 a sigmoid-like function s(r) is used to provide a smooth transition between
the SRBF prediction and the bounded prediction

s(r) =
1

1 + eα(r−γ)
, (5)

where, for the present work, α = −75 and γ = 0.2. To define r, the smallest hyperrectangle
(whose edges are parallel to the Cartesian coordinated axis) containing the training points is
defined and r is the Euclidean distance of x from the hyperrectangle boundaries.

2.4 Active learning method

The MF surrogate model is dynamically updated by adding new training points. First, a new
training point x⋆ is identified based on the aggregate-criteria active learning (ACAS, see Fig.
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Algorithm 1: Bounding of the SRBF prediction and the associated uncertainty for the
error metamodels.

if Ji = 1, i = 1, . . . , N − 1 then // One training point available

ε̃Bi(x) = ε(x1) ;
Uε̃Bi

(x) = ε(x1) ;

else if Ji > 1, i = 1, . . . , N − 1 then // Ji training points available

ε̃Bi(x) = ε̃i(x) [1− si(r)] + EV[εi]si(r) ;
Uε̃Bi

(x) = min(Uε̃i ,EVεi]) ;

end
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Figure 1: Example of the active learning method using one fidelity: (a) shows the initial surrogate
model with the associated prediction uncertainty and training set; (b) shows the position of the
new training point and the new surrogate model prediction and its uncertainty.

1) presented in [10], which samples points with large prediction uncertainty and small objective
function value:

x⋆ = argmin
x

[
f̂(x)− U

f̂
(x)

]
, (6)

Once x⋆ is identified, the fidelity to be evaluated is selected. The new training point is added
to the k-th training set Tk and to the lower-fidelity sets from k+1 up to N , where k = maxloc(ϕ)
and the elements of ϕ for i = 1, . . . , N − 1 are defined as

ϕi =


√

U2
ε̂i
−MSEi

βi
, if MSEi < U2

ε̂i
,

Uε̂i
βi

, if MSEi ≥ U2
ε̂i
,

(7)

and for i = N as

ϕN =


√

U2
f̃N

−MSEN

βN
if MSEN < U2

f̃N
,

U
f̃N
βN

if MSEN ≥ U2
f̃N

.
(8)

Here βi = ci/c1 with ci the computational cost associated to the i-th level and c1 the computa-
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tional cost of the highest-fidelity. MSEi is the mean-squared error computed as

MSEi =


1
Ji

∑Ji
j=1 [εi(yj)− ε̃i(yj)]

2 if i < N,

1
JN

∑JN
j=1

[
fN (yj)− f̃N (yj)

]2
if i = N.

(9)

This approach aims to better distribute the available budget of function evaluations among
the fidelity levels. Indeed, when the least-squares regression is accurate for a fidelity and the
surrogate prediction uncertainty decreases towards the average noise variance in the training
set, it is not interesting to continue sampling that fidelity level, since the surrogate prediction is
already accurate compared with the noise affecting the training set. Thus, adding more (noisy)
training points will not improve the metamodel accuracy.

3 HYDRODYNAMIC FLOW SOLVER

Simulations to create the input data are performed with the Navier-Stokes solver ISIS-CFD
developed at ECN – CNRS, available in the FINE™/Marine computing suite from Cadence
Design Systems. ISIS-CFD is an incompressible unstructured finite-volume solver for multifluid
flow. The velocity field is obtained from the momentum conservation equations and the pressure
field is extracted from the mass conservation constraint transformed into a pressure equation.
Free-surface flow is simulated with a conservation equation for the volume fraction of water,
discretized with specific compressive discretization schemes. A detailed description of the solver
is given by [6].

The computational grids are created through adaptive grid refinement [13]. For the MF
optimization, grid adaptation is used to take into account the need for several fidelities. The
interest of this procedure is that different fidelity results can be obtained by running the same
simulations and simply changing the refinement threshold, a parameter which determines the
global mesh fineness. Thus, it is straightforward to automate the MF simulations. The grids for
the simulation of different geometries are obtained through grid deformation [2].

4 OPTIMIZATION PROBLEMS

For the numerical tests, the MF SRBF method presented here (labeled RS-MSE) is compared
with a method (labeled RS) where the correction with the MSE is removed from Eqs. (7) and
(8) and with one (FS) where furthermore, the RS is replaced by a full startset on all levels. The
assessment of these methods is based on an analytical test and a CFD-based design optimization
problem, with design space dimension D = 2. The optimization is performed with a fixed
budget of function evaluations: considering a normalized computational cost of a highest-fidelity
evaluation (equal to 1), the overall computational cost CC is proportional to the training set
sizes Jl: CC = J1 +

∑N
l=2 βlJl.

4.1 Analytical test problem

This is an analytical test problem affected by artificial numerical noise with D = 2, defined as

minimize f(x)
subject to l ≤ x ≤ u,

(10)
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where li = 0.3 and ui = 1 (for i = 1, . . . , D) are the lower and upper bound for x, respectively,
and f(x) is approximated by N = 2 fidelity levels (f1(x) and s2(x)) as

f1(x) = sin

(
1

x1x2

)
,

f2(x) =f1(x)− 9A2 cos

(
1

x1x2

)
,

s2(x) =f2(x) +N (x),

(11)

with A2 = 0.5, N ∼ unif[−0.1R1; 0.1R1] the noise associated to the 2-nd fidelity, and R1 = 2
the function range of the highest fidelity level. f1(x) has two loci with the same lowest value for
x1x2 = 2/(3π) and x1x2 = 2/(7π), see Fig. 2a.

(a) High-fidelity f1(x) (b) Low-fidelity f2(x)

Figure 2: Analytical test problem without artificial numerical noise. The dashed lines show the
two loci with the lowest f1(x) value (the x1x2 = 2/(7π) locus is in the neighborhood of the
bottom-right corner).

The computational cost of the analytical test problem is negligible, therefore an artificial
computational cost is defined as β1 = 1 and β2 = 0.2. A computational budget equal to 100D is
used. Since the noise is synthetically added to the analytical functions by a numerical generator
of random numbers, a statistical analysis [3] is performed varying the seed of the random number
generator for 25 repetitions.

4.2 DTMB 5415 model

The shape of the DTMB 5415 destroyer is optimized for minimal resistance RT . The optimiza-
tion problem reads

minimize f(x) = RT (x)
subject to Lpp(x) = Lpp,0

and to l ≤ x ≤ u,
(12)
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where Lpp,0 = 5.72 m (model scale) is the original length between perpendiculars. The ship
is at even keel, with Froude number Fr = 0.30 and Re = 1.18 · 107. The Lpp constraint is
automatically satisfied by the shape modification method.

The modified geometries (g) are produced by the linear superposition of D orthonormal basis
functions (ψ) on the original geometry (g0), as follows

g(ξ,x) = g0(ξ) + δ(ξ,x), (13)

with

δ(ξ,x) =
D∑

k=1

xkψk(ξ), (14)

where ξ are the geometry Cartesian coordinates, whereas −1.25 ≤ {xk}Dk=1 ≤ 1.25 and {ψk}Dk=1

are the reduced design variables and the eigenfunctions, respectively, provided by the design-
space augmented dimensionality reduction (ADR) procedure described in [8]. In the current
work, two design variables are used. The simulation setup for the DTMB 5415 is provided in
[14]; the cost functions are taken as β2 = 0.21 and β3 = 0.06.

5 NUMERICAL RESULTS

The results for the analytical problem are assessed by two error metrics [9]. Knowing the
position of the global optimum x̌, these metrics characterize the normalized error in the design
space and the objective function space, respectively:

Ex ≡ ∥x⋆ − x̌∥, Ef ≡ f(x⋆)− f(x̌)

R1
, (15)

where x⋆ is the location of the approximated optimum (normalized in unit hypercube), and R1

is the range of the highest-fidelity level computed considering the initial FS training set. The
equation for Ef uses an evaluation of the objective with the highest fidelity level at the point
x⋆ identified by the surrogate as the global optimum.

For the DTMB 5415 model problem the reference optimum is not available, therefore a dif-
ferent set of design-sensitive metrics are employed. These metrics quantify design point location
and objective function, respectively:

∆x ≡ ∥x⋆ − x0∥√
D

, ∆f ≡ f(x⋆)− f(x0)

f(x0)
, (16)

where x0 is the original objective function value, meaning that ∆x evaluates the distance of
the global optimum position from the original design in the design variable space, whereas ∆f

provides the objective function variation with respect to the parent design. Additionally, a
prediction error is used to quantify the error of the surrogate model in predicting the minimum
value:

Ep =
f̂(x⋆)− f(x⋆)

R1
. (17)
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(a) |J1| (high fidelity) (b) |J2| (low fidelity) (c) Median of the training sets size
versus CC

Figure 3: Analytical test, box plot of the training sets size and training sets sizes versus com-
putational cost.

5.1 Analytical test problem

The challenge of this optimization test is twofold (Fig. 2): first, it has multiple optima located
on the loci x1x2 = 2/(3π) and x1x2 = 2/(7π), and second, the LF and HF optima are in different
locations, which is a danger for multi-fidelity methods which rely too heavily on LF data.

Considering the sampling approach of our three methods, in Fig. 3a-b the training set sizes
are discussed using box plots. The box plot shows the q1, q2 (median), and q3 quartiles, while
the lower and upper whiskers are given by q1 − 1.5IQR and q3 + 1.5IQR, respectively, with
IQR = q3 − q1 the interquantile range. Since nested training sets are used, the number of
low-fidelity samples is equal to the number of active learning iterations minus five (for the
initialization). Thus, the RS approach without the forced HF sampling in the startset leads to
a higher number of iterations with respect to FS, allowing a potential better exploration of the
design space. Differently, the RS-MSE approach performs a lower number of iterations but uses
a higher number of high-fidelity samples in comparison with FS and RS, since LF sampling is
discouraged once the LF uncertainty approaches the noise level. The evolution of the sample
sizes (Fig. 5c) shows the higher number of LF samples at the start (below CC = 10) for both RS
and RS-MSE, indicating that the early exploration is performed with low-fidelity samples only.
This is followed by a larger increase of HF samples for RS-MSE. Still, RS and RS-MSE have
larger whiskers than FS, showing a significant variability and less consistency in the results.

Figure 4 shows the box plots of the three error metrics. The RS and RS-MSE approaches
achieve lower median values than the FS approach, while RS-MSE performs the best; its median
result is an almost exact optimum. Finally, the FS approach achieves the smallest IQR. Thus,
FS is consistent, but it is consistently wrong: the information in the large initial sample set forces
the optimization into a fixed, but suboptimal direction. RS with its greater freedom performs
better, but its reliance on LF data also leads to some bad results, since the LF optimum does
not correspond to the HF one; hence the large IQR for this approach. Finally, RS-MSE with its
initial LF sampling and final emphasis on HF samples provides more consistently good results.

In Fig. 5 the placement of HF samples with respect to x1x2 is studied: the quantity ci is
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(a) Ex (b) Ef

Figure 4: Analytical test, box plots of the Ex and Ef metrics.

(a) x1x2 quantity for J1 of FS (b) x1x2 quantity for J1 of RS (c) x1x2 quantity for J1 of RS-MSE

Figure 5: Analytical test, histogram of the x1x2 quantity for the high-fidelity training set (with
ci the number of elements in each bin).

the number of elements in each bin of width 0.017. The figure shows that FS requests most
of its high-fidelity training point close to the x1x2 = 2/(3π) locus and only a small quantity
in the neighborhood of the x1x2 = 2/(7π) locus, negatively affecting the final performance.
The RS approach request almost the same quantity of high-fidelity training points between the
two loci, in the position of the LF optimum. The RS-MSE approach requests for the highest
number of high-fidelity training points in the x1x2 = 2/(3π) locus and almost the same number
of high-fidelity samples in the second locus as the RS approach. This explains why the RS-MSE
approach achieves the best performance overall.

5.2 DTMB 5415 SDDO problem

Since this optimization of 3D free-surface flows is characterized by high computational costs,
the problem is solved only with the RS-MSE approach. The comparison with the FS approach
is provided taking the results presented in [15]. Since both the adaptive metamodelling strategy
and the CFD simulations have changed, this does not provide a detailed assessment of one topic;
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rather, the comparison globally shows the progress that has been achieved in the last two years.

(a) FS, RT prediction (b) RS-MSE, RT prediction (c) x⋆ convergence

Figure 6: DTMB 5415 SDDO problem, multi-fidelity surrogate model prediction and x⋆ conver-
gence for the FS and RS-MSE approaches.

Figure 6a-b present the multi-fidelity surrogate models at the last iteration of the active
learning approach, the MF datasets, and the predicted optima. The sampling strategies for
the two approaches are radically different: RS-MSE performed an exploration of the domain
using only low-fidelity samples, correctly identifying the minimum region. The precision in this
region is then increased using mainly medium-fidelity evaluations; only two high-fidelity points
are sampled, one of which is almost in the optimum location. Near the end of the sampling,
most points are added around the optimum. FS on the other hand, uses more HF points spread
around the parameter space. Not all these points are useful; note for example the set of points in
the top left corner, where a second minimum was suspected in the initial stages of the sampling.
And while the data points are clustered, none are placed directly around the optimum.

These differences are also reflected in the x⋆ convergence (Fig. 6c). The CC of evaluating the
startset is 7.35 for FS and only 1.24 for RS-MSE which, combined with the efficient initial LF
exploration, means that RS-MSE has globally identified the optimum before FS finishes half its
startset. The subsequent RS-MSE convergence is fast and without oscillations, as medium- and
high-fidelity points are added around the optimum. The optimization has converged around
CC = 15. The FS convergence is much more irregular, as it identifies two incorrect optima
before finally settling on the correct one around CC = 24.

Table 1: DTMB 5415 SDDO problem, summary of the results.

Approach CC x1 x2 ∆x% ∆f% |Ep|% J1 J2 J3

FS 24.0 0.5506 0.1330 26.2 -4.5 1.73 16 18 72
RS-MSE 18.4 0.5043 0.1525 37.2 -4.9 0.87 3 44 103

Table 1 summarizes the performance of the FS and RS-MSE approaches. Although the CC is
lower, the RS-MSE approach correctly identified the region of the minimum, using more low- and
medium-fidelity data than the FS approach. The prediction error is twice lower, which confirms
that the metamodel is accurate around the optimum. The ∆x% value is larger for RS-MSE
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than for FS, meaning that the exploration for the identification of the minimum moved further.
Finally, the RS-MSE approach achieves a lower resistance than the FS approach. Altogether,
the RS-MSE optimization produces a similar optimum as the old FS result, in a more robust
manner, for a total wall clock time that has reduced from 25 to about 11 days.

6 CONCLUSIONS

This paper focuses on assessing the efficiency of an adaptive multi-fidelity method for simu-
lation-driven design optimization. Notably, the tests concern the reduced startset (RS) with
one single point for all the fidelities except the lowest one, and the improved fidelity sampling,
by subtracting the mean-squared error (MSE) between the training set and the least-squares
regression, from the uncertainty on each fidelity level while selecting the fidelity to sample.

Numerical results show that the RS approach is effective in improving the identification of the
minima and better distributing the high-fidelity samples in interesting regions of the domain. It
encourages early exploration with low-fidelity samples, unconstrained by high-fidelity data which
may wrongly indicate sub-optimal regions. This early exploration leads to a reliable identification
of the minimum region. Later on, thanks to the limits imposed on the extrapolated high-fidelity
uncertainty, sampling of high-fidelity data in the observed minimum region is encouraged, which
efficiently increases the precision in the minimum region.

For the analytical test case, the RS-MSE approach achieves even better results than the RS
approach, since its formulation is effective in forcing the fidelity selection towards the high-
fidelity after a large number of low-fidelity evaluations have been performed. This is necessary
for this case, since the low- and high-fidelity optima are in different locations. Finally, the
DTMB 5415 SDDO problem shows that the RS-MSE method is highly effective in identifying
the region of the minimum, performing high- and medium-fidelity evaluations almost exclusively
in this region. Although few high-fidelity points are added, it is likely that the sampling with
(accurate yet cost-effective) medium-fidelity points is encouraged by the RS-MSE.

In conclusion, the test results are promising, showing that the two developments tested
specifically here, have a beneficial effect on the metamodel performance. Similar tests in our
earlier papers have indicated the same for the other aspects of our surrogate modeling approach,
such as the ACAS adaptive sampling and the LS-RBF noise-filtered metamodel. Thus, all these
methods contribute to our eventual goal of achieving fully adaptive automatic multi-fidelity
surrogate modelling.
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