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Purpose: Precise determination of target is an essential procedure in prostate interventions, such as prostate biopsy, lesion detection, and targeted therapy. However, the prostate delineation may be tough in some cases due to tissue ambiguity or lack of partial anatomical boundary. In this study, we proposed a novel supervised registrationbased algorithm for precise prostate segmentation, which combine the convolutional neural network (CNN) with a statistical shape model (SSM). Methods: The proposed network mainly consists of two branches. One called SSM-Net branch was exploited to predict the shape transform matrix, shape control parameters, and shape fine-tuning vector, for the generation of the prostate boundary. Furtherly, according to the inferred boundary, a normalized distance map was calculated as the output of SSM-Net. Another branch named ResU-Net was employed to predict a probability label map from the input images at the same time. Integrating the output of these two branches, the optimal weighted sum of the distance map and the probability map was regarded as the prostate segmentation. Results: Two public datasets PROMISE12 and NCI-ISBI 2013 were utilized to evaluate the performance of the proposed algorithm. The results demonstrate that the segmentation algorithm achieved the best performance with an SSM of 9500 nodes, which obtained a dice of 0.907 and an average surface distance of 1.85 mm. Compared with other methods, our algorithm delineates the prostate region more accurately and efficiently. In addition, we verified the impact of model elasticity augmentation and the fine-tuning item on the network segmentation capability. As a result, both factors have improved the delineation accuracy, with dice increased by 10% and 7% respectively. Conclusions: Our segmentation method has the potential to be an effective and robust approach for prostate segmentation.

as it is crucial for the clinical diagnosis, therapeutic procedure, and treatment planning of various prostate disorders (e.g., prostate cancer, prostatitis or prostatic hypertrophy) b2 2 .

For example, prostate delineation is widely applied for the precise localization of prostate boundary in radiotherapy for dose planning. Besides, in the image-guided computer-assisted surgery, the segmentation of the prostate on preoperative MRI is an essential reference for the inter-operative low-quality image, like ultrasound image b3 3 . However, until now prostate on MR images is still mostly segmented manually by radiologists. The handcrafted delineation of prostate boundary is a time-consuming and labor-intensive operation with a low reproducibility because of its high dependence on medical experience. Moreover, those problems are further aggravated when the borderline is indistinct. As pointed out by Yu et al. b4 4 , automatic prostate segmentation is also a challenging task due to the issue of intensity inhomogeneity, variation of anatomical appearance, and lack of boundary discriminability.

In order to address this challenging task, different automatic or semi-automatic segmentation approaches have been reported in recent years. Martin et al. b5,b6 5,6 proposed a semi-automatic prostate segmentation method, in which a rigid intensity-based registration algorithm and a non-rigid hybrid registration framework were employed successively to align an atlas to the patient image. In their work, 18 MRI series were involved to construct the atlas. Two accuracy metrics respectively based on volume and surface distance were used to investigate the segmentation performance. Results showed that the segmentation accuracy of the apex region and the central region is higher than the base part. In another publication, to add additional knowledge into the segmentation procedure, Korsager et al.

b7 7 combined the spatial information of a prostate atlas with the intensity information in a graph cut segmentation framework to achieve automatic prostate delineation. Their validation experiment was investigated on 76 axial MR images. As a result, a mean Dice similarity coefficient (DSC) of 0.88 and a mean surface distance of 1.45 mm were reported.

Besides, Tian et al. Recently, the performance of deep learning approaches has outperformed to the tranditional state-of-the-art methods in many fields, especially in computer vision b9,b10 9,10 and medical image processing 

II. Materials and methods

:section2

Fig.

figure1

1 is an overview of the proposed prostate segmentation algorithm. The segmentation network comprises two branches, serving as a boundary predictor and a label classifier respectively. As shown by Fig. figure1 1A, the first SSM-Net branch is used to deduce from the input, three variables: the SSM global transform, shape control parameters, and the pointwise fine-tuning vector. Then, a patient-specific deformation field is calculated based on the predicted variables, and a surface of target is further generated via a coordinate sampler.

The second ResU-Net branch is employed to predict a probability label map from the input images, instead of directly using its binarized result as the target region. The parameters of the whole network can be optimized by minimizing the loss function value, which is related to two parts (Sec.

sec::section2.4

II.D.): 1) the dice coefficient between the predicted probability map and the input binary label, defined as Loss 1. 2) the similarity between the SSM deformed surface and the input prostate, defined as Loss 2. In the inference phase(Fig. 1st author name or however authors to be briefly identified generated contour obtained by deforming the SSM by using the deformation field predicted by the SSM-Net branch, a distance map is directly calculated to serve as the target boundary constraints. Then, the weighted sum of the distance map and the probability map is regarded as the final prostate segmentation. 

N Number of SSM nodes M Number of SSM variations ū3N×1 (ū 3N ) SSM mean shape ψ 3N ×M SSM variation / PCA basis κ M ×1 (κ M ) Variance of SSM variations θ M ×1 (θ M ) SSM shape control parameters t 3 : T, R
Transform parameters: translation and rotation I 3×3 (I) Identity matrix

B. Operators and functions

diag( v) Diagonal matrix of vector v V (ψ 3N ×M , κ M , θ M , ū3N )
Model surface deformation

According to the theory of the PCA-based model, an arbitrary shape can be represented by superimposing a deformation field to the mean shape. In our work, a deformation field is described as the sum of global transform, weighted variations, and the mean shape. That means, according to the notations defined in Table Table1 1, shape can be written as follows:

u = ū3N + V (ψ 3N ×M , κ M , θ M , t 3 ) = ū3N + ψ 3N ×M • diag(κ M ) • θ M • R + T (1) equation1
The deformation ability of SSM depends on its node number (N ) and the variation matrix ψ 3N ×M . As only very limited datasets were used to build the SSM, the model is insufficient to explain all possible shape variations. Two approaches were employed to solve this problem. Firstly, according to the principle of statistic shape, augmenting the example Last edited Date :

II.A. Statistical shape model 1st author name or however authors to be briefly identified shapes by involving small and very smoothly varying deformations, can make the variation matrix (noted as

ψ 3N ×M • diag(κ M ) in Eq. ( equation1 1)) more representative. ψ 3N ×M • diag(κ M ) is
PCA dimensionality reduction form of variation matrix ψ 3N ×M .

ψ 3N ×3N =    k SSM (x 1 , x 1 ) • • • k SSM (x 1 , x N ) . . . . . . . . . k SSM (x N , x 1 ) • • • k SSM (x N , x N )    (2) equation2 k SSM (x, x ) = 1 n -1 n i=1 (u i (x) -µ SSM (x)) (u i (x ) -µ SSM (x )) T (3) equation3
Combining sample covariance kernel (k SSM (x, x )) calculated from sample data, and Gaussian kernel k (s,σ) g can enlarge the flexibility of the model. For the Gaussian kernel in this paper, the smoothness σ = 10mm and the scale of the deformation s = 2mm.

k aug (x, x ) = k SSM (x, x ) + k (2,10) g (x, x ) (4) equation4 k (s,σ) g (x, x ) = s • diag(exp(- x -x 2 σ 2 )) (5) equation5
Secondly, supplementing a point-by-point item ξ 3N to the deformed target (u ) was another feasible approach to represent more possible targets, as shown as Eq. (

6). Item ξ 3N equation6 
was predicted by the SSM-net branch automatically. As shown in Figure 2, the prediction of the offset vector shared the same residual CNN structure as the prediction of shape control parameters (noted as θ M in Eq. (

)).

u = ū3N + V (ψ 3N ×M , κ M , θ M , t 3 ) + ξ 3N = ū3N + ψ 3N ×M • diag(κ M ) • θ M • R + T + ξ 3N (6) equation6
The surface model is commonly defined in the physical spatial coordinate system to maintain the visualization invariance on different platforms. The transformation between model space and image space in this work is shown as follows: control parameters with the size of M × 1 (M is the number of shape variations). The involved convolution layers following the "contracting path" with the kernel size 3 × 3 × 3 used 1 pixel stride, and the employed max-pooling layers used pooling size of 2. Similarly, the prediction of fine-tuning vector shared the same residual CNN structure, expect that the average pooling layer is replaced by a max-pooling layer with the pooling size of 2, the stride of 2. In the last step of the SSM-net branch, the variables including the transform matrix, the shape control parameters, and the fine-tuning vector, are input to the last spatial transformation layer, to yield the prostate contour.

P i = (P m -P 0 )/s + 0.5 ( 
As illustrated by the ResU-net branch in Fig. figure2 2, a residual U-Net is employed to infer the probability label map. U-net b24 24 is a widely used network with high accuracy for object segmentation. In our segmentation framework, each residual block consists of two convolution layers with a kernel size of 3 × 3 × 3, pixel stride of 1. And the max-pooling layers use a pooling size equal to the stride and the size of the up-sample layers is set to 2.

The sigmoid function is utilized as the activation function of the last layer to limit output values to [0,1]. For the whole network, the structure of each layer is shown in Fig. 

II.C. Grid mapping ection2.3

As shown in the overview of the segmentation framework (Fig. figure1 1), the patient-specific prostate shape can be obtained by superimposing the predicted deformation field to the standard SSM surface in the inference procedure. While in the training phase, in order to calculate the loss, a predicted binary surface image for SSM (annotated as "generated model surface" in Fig. figure1 1.) is generated by interpolating the input boundary based on the deformation field.

The output binary surface of SSM

g t ∈ R L t W t H t is defined on a regular grid G t = {G t i } = {(x t i , y t i , z t i )}, i ∈ [L t W t H t ]
, where L t ,W t ,H t represent the length, width and height of the output. Similarly, let

G s = {(x s i , y s i , z s i )}, x s i ∈ [0, L s ], y s i ∈ [0, W s ], z s i ∈ [0, H s ]
be the input grid, where, L s ,W s ,H s are the length, width and height of the input binary mask respectively.

The relationship between the output grid G t and the input grid G s can be written as follows.
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For ∀i ∈ [1...L t W t H t ], G s i = D i (G t i ) =   x t i + d i,x y t i + d i,y z t i + d i,z   =   x s i y s i z s i   (8) equation8 D i (G t i )
is the deformation field predicted by SSM-Net branch, with size of

L t × W t × H t × 3. Based on Eq. ( equation8 
8), for each node in the output grid, we can trace its corresponding position on the input mask according to the deformation field. It means that the gray value of output point G t i = (x t i , y t i , z t i ) depends on the gray value of the relevant position

G s i = (x s i + d i,x , y s i + d i,y , z s i + d i,z
) in the input mask.

II.D. Loss function

ection2.4

The loss function of the proposed network consists of two parts: the part for SSM-Net branch and the part for ResU-Net branch.

For SSM-Net branch, according to the mean shape of SSM and the predicted deforma- 1st author name or however authors to be briefly identified tion field, we can calculate the final segmentation directly. To evaluate the accuracy of the prediction, the specific energy function of SSM-Net branch was employed to optimize the deformation field, which is described as follows:

E = L(g t G s ) + λ ϕ = L(g t G s ) + λ 1 θ + λ 2 t + λ 3 ∇ξ (9) equation9
where g represents the gray label in image space. Specifically, g t denotes the boundary of the input mask, and (θ, t, ξ) is the predicted deformation field. In this paper, we defined L as:

L(g t G s ) = 1 -(g t G s )/N (10) equation10
Then, the optimization function can be written as follows:

ϕ = (θ, t, ξ) = arg min(1 -(g s G t )/N ) + λ 1 θ + λ 2 t + λ 3 ∇ξ (11) equation11
where N represents the node number of SSM.

To obtain g t G s , an interpolation is required to calculate the gray value of arbitrary position G s i = (x s i , y s i , z s i ). In this work, 3D bilinear interpolation method b25,b26 25,26 is employed.

Let g t i represents its gray level at point G t i = (x t i , y t i , z t i ). g t i G s i mean the gray level at point G s i = (x s i , y s i , z s i ), and {(m, n, p)} s represents the point (m, n, p) of input mask respectively. According to Eq. (

4), For ∀i ∈ [1...L t W t H t ], g t i G s i = g s (x s i ,y s i ,z s i ) = L s m W s n H s p g t (m,n,p) • max(0, 1 -|x s i -n|) • max(0, 1 -|y s i -m|) • max(0, 1 -|z s i -p|) (12) equation12 equation4 
The partial derivatives with respect to gray g t (m,n,p) and coordinate position (x t i , y t i , z t i ) for the backpropagation of loss can be written as follows (∂g

t i G s i /∂y s i /, ∂g t i G s i /∂z s i are similar with ∂g t i G s i /∂x s i ): ∂g t i G s i ∂g t (m,n,p) = L s m W s n H s p max(0, 1 -|x s i -n|)• max(0, 1 -|y s i -m|) • max(0, 1 -|z s i -p|) (13) equation13 
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∂g t i G s i ∂x s i = L s m W s n H s p g t (m,n,p) • max(0, 1 -|y s i -m|) • max(0, 1 -|z s i -p|) •        0, |x s i -n| > 1, -1, x s i > n, 1, x s i < n. ( 14 
) equation14
For ResU-Net branch, the following loss function is adopted, where, S mask represent the ground truth. ϑ is the network parameters and P ResU is the output probability map. The values of range from 0 to 1. In the prostate inference step, the binarized weighted sum of the deduced probability map and distance map is regarded as the final prostate segmentation. In terms of probability label map, a bigger value means a higher probability for a pixel to belong to the prostate region. The distance map obtained from the boundary image predicted by the SSM-branch, is such that only the pixel on the boundary has a value of 1, while others are equal to 0. It is calculated according to the following equation: 1st author name or however authors to be briefly identified distance between P i and Pi . 10 is the calculation range, which should be changed according to the image resolution because it decides the prostate voxel range in images. As the image volume was resampled to the same resolution, the calculation range is a constant in our work. Furtherly, as the interior prostate gland being segmented should be evaluated with a large value to reflect its high probability, for the pixel P i in the interior region with D ssm (P i ) less than 0.5, its D ssm value is reassigned to 1.

L(ϑ, S mask ) = 1 - 2 × P ResU (ϑ) × S mask P ResU + S mask ( 
D ssm (P i ) = 1 -P i -Pi /10 ( 
The probability map generated by the Res-Unet branch is such that the central region of the prostate has a probability of 1 whilst the marginal prostate region is valued with a lower value, which contributes to most of the prediction deviation, especially when the contour of the prostate is indistinct. In contrast, in this case, the SSM-Net branch can deduce a relatively reasonable boundary due to the representation of prostate shape prior and provided complementary information for the result of the ResU-Net branch. However, the distance map calculated from the SSM-Net branch might not match the segmentation results from the ResU-Net branch, therefore, we have investigated the segmentation performance of the proposed method under different combinations of SSM-Net and ResU-Net branches, as shown as follows:

P combined = w 1 P ResU + (1 -w 1 )D ssm (19) equation19
Two metrics were introduced to evaluate the performance of the proposed segmentation framework, including the dice similarity coefficient (DSC) and the average over the shortest distance between the boundary points of the volumes(ABD). The DSC is formulated as follows:

Dice = 2 * S pred ∩ S mask /( S pred + S mask ) (20) equation20
where S pred and S mask respectively present the predicted segmentation and the input ground truth.

III. Results

:section3

III.A. Data acquisition and experiment set up 1st author name or however authors to be briefly identified 

). The experiments showed that the best result in terms of the Dice coefficient is achieved when λ 1 , λ 2 , and λ 3 are equal to 0, 0.01, and 0.01. In the following work, λ 1 , λ 2 and λ 3 are set to 0, 0.01, and 0.01. In addition, we figured out the proposed segmentation framework performs best when the "hyperparameter" w 1 in Eq. ( 5 illustrates the DSC and ABD of the proposed prostate segmentation framework when adopted different SSMs. 4-fold cross-validation was conducted for each group. The DSC and ABD of the ResU-Net branch are constant over the different groups. In terms of the SSM-Net branch, when the network adopts SSMs with 1625 to 9750 nodes (referred as network nodes in the following text), the dice result has significant improved from 0.69 to 0.90 (paired t-test, p <0.001). At the same time, the ABD value has an opposite steep trend, decreasing from 2.63 mm to 2.39 mm. Both dice and ABD have the best result when network node number is 9750, with an average dice of 0.862 and an ABD of 2.04 mm. As regards the performance of the whole framework, it has a similar trend with the SSM-Net branch, with the dice reached a peak of 0.907 and the ABD declined to the lowest of 1.85 mm. For the two groups with more than 9750 nodes, they performed slightly inferior with a Last edited Date : III.C. Accuracy evaluation and analysis page 16

1st author name or however authors to be briefly identified figure5 dice of 0.89. According to the record data, we concluded that the SSM with 9750 nodes is optimal to employ in our framework for the representation of the prostate spatial boundary.

The segmentation procedure of the proposed framework is shown in Fig. figure6 6. The purple model in (c) represents the SSM, whose center is initially positioned at the origin (0,0,0) of the anatomical coordinate system of LPS (Left, Posterior, Superior). As shown in (c), according to the input image, the SSM-Net branch respectively predicts the global transform, weight parameters, and an offset vector for the calculation of the deformation field. The 3D white surface in (d) represents the generated prostate boundary by applying the deformation field to the SSM. Fig. the exhibition, we deduced that the segmentation on the prostate central zone has higher accuracy than the base of the prostate (more complex to delineate). For the case of the severe hyperplastic prostate gland which is larger than the mean shape of SSM, the segmentation framework has relatively poor performance with the maximum ABD was 2.7 mm and the dice coefficient was 0.83. Compared to the segmentation approach employing only the SSM method, our framework can achieve more accurate delineation when the target is beyond the SSM deformation range.

Last edited Date :

III.D. The influence of network flexibility on segmentation accuracy According to the analysis in Section 1st author name or however authors to be briefly identified As shown in Figure 4, driven by their first three principal components of variations, the first four statistical shape models with nodes number from 1625 to 9750 perform quite different from each other, while the two statistic shape models with nodes number of 13000 and 15250 have almost similar performance with the model with 9750. Thus, the mesh shape with nodes number of 9750 is accurate enough to represent the anatomical structure of a regular prostate in the physical coordinate system. However, when nodes number is more than 9750, the accuracy (including DSC and ABD) does not improve with the increase of nodes number. That's because when the model owns a substantial number of nodes, one pixel in the image space may correspond to more than one node in the physical space, resulting in decreased performance.

In the past three decades, three major categories of automatic prostate segmentation The proposed method has a very good potential for clinical application. After establishing the SSM model and training the network, the MR images containing the prostate can be segmented automatically. The 3D model of the prostate can be reconstructed from the segmented results, which is useful for morphological analysis, volume calculation, etc. Moreover, such workflow can be integrated into our previously developed image-guided surgical system b39,b40 39,40 to improve its efficiency and automation.

V. Conclusions

:section5

In this study, we introduced a novel registration-based algorithm that combines CNN and SSM and applied it to the task of precise prostate segmentation. A two branches structure was designed, through which the prior knowledge introduced by SSM and boundary features

V. CONCLUSIONS

extracted by the CNN were fully used for prostate segmentation. Extensive experimental results conducted on two public datasets demonstrated that the proposed network can achieve better performance than several state-of-the-art algorithms for prostate segmentation.
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  b8 8 utilized a superpixel-based graph cut framework to acquire the prostate surface on MRI. A superpixel is a group of pixels that have similar characteristics such as intensity or location. Due to the capacity to carry wider information, serving as a more Last edited Date : convenient and compact representation of the original image, the superpixel image has been widely used in image segmentation algorithms. In Tian's study, a graph cuts algorithm and an active contour model were integrated for cross-promotion. According to their experiment results, the verification on 43 MRI examples obtained a mean dice of 0.893.
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 22 Figure 2: The structure of the whole network.
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Figure 3 :

 3 Figure 3: The schematic diagram of segmentation generation and image interpolation. (a) shows that the spatial structure of a predicted segmentation is equal to the sum of the SSM and a deformation field. (b) illustrates the 2D calculation strategy of the gray value on the model boundary according to the binary input mask and the deformation field. indicated with red arrows. g(P) represents the gray value of point P.

  15) equation15Thus, the parameterized ResU-Net branch can be optimized during the training procedure: the loss function of the whole network is defined as Eq. ( equation17 17), to optimize the network weights. Where α and β are trainable parameters. L combined = αL(l, M, φ) + βL(ϑ, S mask ) (17) equation17 II.E. Inference of prostate region ection2.5

ection3. 1

 1 We validated the proposed network on two public datasets: the MICCAI PROMISE12 challenge dataset b27 27 and NCI-ISBI 2013 challenge dataset b28 28 . The first database contains 50 III. RESULTS prostate transversal T2 MRIs for training and 30 prostate images for testing. And the second database respectively involves 60, 10, and 10 cases for training, leaderboard, and testing. The two datasets share 11 common volumes, and the ground truths of the PROMISE12 testing set are unavailable. Thus, a total of 119 T2 MRI image cases are collected for our experiment. As the gathered data have different voxel spacing and image size, the input images were resized to the shape of 176 × 128 × 48 beforehand. From the 119 volumes, 40 randomly selected cases contributed to the SSM establishment, and the rest data were used for the network optimization. Specifically, 63 out of the 79 image volumes (3/4) were applied for the network training and the remaining (1/4) for the validation. The modeling procedure and the network segmentation performance are illustrated in Section sec::section3.2 III.B. and Section sec::section3.3 III.C. respectively. And Section sec::section3.4 III.D. analyzes and discusses the influence of SSM flexibility on the framework segmentation accuracy. The network training and all experiments were conducted on a computer with Intel® Core (TM) I7-8700K with a 3.70 GHz CPU, 8 GB memory, and two graphic cards of 8GB NVIDIA GeForce GTX 1080 Ti.III.B. SSM establishment and analysisection3.2The node number and the principal component number are two dominant factors for the flexibility of SSM. The former is decided according to the node number of the counted meshes, and the latter is determined by the compactness of SSM. The compactness is measured via the accumulation of SSM variations which are arranged according to their eigenvalues. In this work, we selected the first M principle components to keep 95% of the total eigenvalues.To investigate the influence of the two factors on the segmentation accuracy of the segmentation method, six SSMs with various nodes and principal components were built. 3D slicer (https://www.slicer.org) was utilized for the refinement of 3D surfaces. In addition, the Gaussian process model building, model fitting, and the PCA-based model building are completed via the Statismo library b22 22 . The details of SSMs are presented in Table

Table2

  

  2. Thethird column shows the models after flexibility augmentation. Last edited Date : III.B. SSM establishment and analysis page 14

Figure figure4 4

 4 Figurefigure44 illustrates the flexibilities of the primary SSMs. The green models in the middle column depicts the mean shapes with increasing node numbers from top to button. From the middle to the rightmost, the three columns respectively exhibit the deformed shapes generated from the mean shape of SSM by weighting the first three principles variations with three times of their corresponding deviations. Accordingly, the three-column shapes on the left describe the generated models deformed by negative triple deviations. Generally, each row horizontally reveals the influence of the first three principal variations on the deformation of each SSM, and each column vertically compares the different performances of SSMs. In conclusion, the last three SSMs with node numbers of 9750, 13000, 15250 had similar interior and exterior characteristics, while the first three SSMs behaved quite differently.

equation19 19 )

 19 equals 0.6 by trial and error. III. RESULTS III.C. Accuracy evaluation and analysis

Figure 4 :

 4 Figure 4: The flexibility of the statistical shape models with different node numbers. The middle column with green color exhibits the mean models, and the left three columns and the right three columns respectively show the deformed models drove by 3 √ λ times of the first three principal components of variations. λ is the corresponding deviation of each component.
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Figure 5 :

 5 Figure 5: The DSC and ABD results of the whole framework, SSM-Net branch, and ResU-Net branch respectively.

figure77

  figure7 7 illustrates the delineation results of four images series. Four slices range from number 16 to number 46 with an interval of 10, are selected to display the recognition

Figure 6 :

 6 Figure 6: The whole segmentation procedure. (a) The input MR image for segmentation. (b) The probability map. (c) The purple model represents the SSM, whose center initially positioned at the origin (0,0,0). (d) The generated contour of the prostate from the SSM. (e) The distance map. (f) The segmentation result.

Figure 7 :

 7 Figure 7: The segmentation results of four image cases via the proposed method. Each row stands one example, and each column shows their segmentation results of the same layers of different examples.

sec::section2. 2

 2 figure8 8 presents the DSC and ABD values of the SSM-Net branch with various nodes and different utilization situations of augmentation and offset item. As shown by those statistical trend lines, regardless of the model augmentation or fine-tuning item, the SSM-Net branch with 9750 nodes or more outperformed other situations. In terms of the model flexibility augmentation, its application has improved the

Figure 8 :

 8 Figure 8: The influence of the deformation ability of SSM-Net branch on its segmentation performances, including dice scores and ABD values). The network elastic ability is mainly determined by three factors: node numbers, flexibility augmentation and the offset item.

figure8

  figure8

  figure8 8, compared with the results of the network without augmentation and offset, the best average dice and distance of the network adopting model elastic augmentation were improved to 0.81 and 2.36 mm respectively. And the network employing both augmentation and offset had higher average dice and smaller average distance than the network utilizing only offset item, as informed by the lines with green and red dots in the figure. Similarly, we figure out that the employment of offset item also contributed to the improvement of the SSM-Net branch. Specifically, compared with the segmentation result of the network without augmentation (the line with cyan dots in subgraph (a)), the involvement of fine-tuning item (the line with blue dots in subgraph (a)) increased the highest average dice of the six groups from 0.74 to 0.79. Based on the network which applies only flexibility augmentation (the lines with blue dots), the utilization of offset items (the lines with red dots) improved the average dice coefficient by 0.06 and the distance by 0.25 mm, making the SSM-Net branch achieve the best result.

  Several teams have combined deep learning algorithms with atlas or deformable models in their researches. Similarly, our segmentation combined neural network with SSM for high precise MRI prostate segmentation. In this way, prior knowledge is introduced by SSM to serve as the boundary constraint and a rough reference, and furtherly combined with a neural network (ResU-Net in our work) which can obtain details from the target image, for the precise recognization of the target region. Besides, as SSM is built based on lots of medical image data, the generated model can reasonably represent the deformation. Therefore, our method required less time (approximately 3 s) while performed a satisfactory segmentation accuracy with high robustness.In medical image processing, the collection of the training dataset limits the application of various learning-based approaches. Fortunately, SSM utilizes geometric information rather than intensity information. Therefore, all images in different modalities such as computed tomography, ultrasound and MRI can contribute to the construction of SSM. It is worth mentioning that, if the dataset is sufficient, active shape model(ASM) and statistical deformation models (SDM) could become superior training supervisors than SSM, as the former can carry intensity information of images and the latter is capable to represent the statistical information of deformation field of a collection of examples. In addition, the introduction of the finite element model (FEM) is worth considering for our further development, because the biomechanical information in FEM can contribute to the delineation of a specific target.

  

  b11,b12 11,12 . In those researches, neural networks often work as information extractors to eliminate the tedious procedure of traditional feature choice and collection. For precise segmentation of MRI prostate, Guo et al.

	Statistical shape model (SSM) is a geometric model containing a mean shape and mul-
	tiple compressed primarily shape variations of a collection of similar shapes. Due to the
	ability to represent prior geometric information, SSM has been widely applied in different
	medical modalities for the segmentation and registration of various anatomical structures,
	including brain, bone, liver, heart, prostate and so on	b18 18 -	b21 21 . In this paper, based on a
	registration approach, we proposed a novel segmentation algorithm to tackle the prostate
	extraction problem by combining a boundary predictor and a label classifier. Specifically,
	a GoogLeNet-based branch (SSM-Net) was involved as the boundary predictor to deduce
	the prostate contour to obtain a boundary distance map, serving as the target contour con-
	straints. Meanwhile, a 3D residual U-net branch (ResU-Net) was employed as the label
	classifier to predict a probability label map from the input images, to judge the class pos-
	sibility of each pixel. In the inference step, the optimal weighted sum of the distance map
	and the probability map was regarded as the final prostate segmentation. In our validation
	experiment, six different SSMs with various nodes were built to investigate the accuracy and
	efficiency of the whole algorithm.		

b13 

13 used more concise and effective hierarchical features from MRI prostate image by utilizing a stacked sparse autoencoder. Based on the extracted features, a sparse patch matching method was employed to deduce the corresponding prostate likelihood map, which was further combined with a sparse shape model for the final segmentation. Besides, Mun et al. b14 14 integrated encoding, bridge, decoding, and classification modules to develop a baseline convolutional neural network (CNN) to extract volumetric information. In the meantime, Jia et al. b15 15 researched a coarse-to-fine algorithm for MRI prostate segmentation through a deep learning method. In their algorithm, a registration-based segmentation was firstly used to obtain a rough prostate region. Then a pixel-wise recognizer based on a neural network was further adopted to classify the prostate boundary from the image background. Finally, a refinement algorithm was applied to smooth the contour. Similar to Jia's work, He et al. b16 16 exploited another coarse-to-fine prostate segmentation system via different algorithms. They firstly proposed an adaptive feature learning probability boosting tree for prostate pre-segmentation. Next, a CNN method was developed to obtain the prostate profile model by the judgment of the inner, external, and boundary points. For the last step, an active shape model was employed for the final surface refinement. Their results showed the method is accurate and robust for prostate segmentation, as the neural network was utilized for the extraction of latent image features and the prediction of the prostate boundary. In addition, Wang et al. b17 17 introduced a 3D deep-supervised full CNN with group dilated convolution, aiming to preserve extra image information for prostate delineation. Their method achieved a dice of 0.86. Generally, the aforementioned methods demonstrated that compared with the traditional segmentation algorithms, the approaches based on the deep learning method can delineate the target more accurately in less time. However, the aforementioned ways only involved the information of I. INTRODUCTION the specific input image while without any prior knowledge constraints that are potentially helpful to improve the prostate segmentation accuracy.

Table 1 :

 1 Mathematic notations of statistical shape model

		Figure 1: The overview of the proposed prostate segmentation frame-
	figure1	work.
		II.A. Statistical shape model
	ection2.1	
		Due to the capacity to carry prior geometric information of numerous examples in differ-
		ent medical modalities, SSM has been widely applied in object recognition, image process,
		surgery implant design	b22 22 . Generally, it involves two parts to describe the statistical spatial
		information of a collection of objects: a geometric model for the representation of the mean
		shape, and a series of variation vectors to depict the principal components of divergences
		between the objects and the mean shape. As the most prevalent SSM type, Principal Com-
		ponent Analysis (PCA) based shape model can model the variability of various types of
		objects such as images, displacement fields, surface meshes, and volumetric meshes. In our
		II. MATERIALS AND METHODS	II.A. Statistical shape model

Table1

A. Variables: scalars, vectors, matrices

Table 2 :

 2 The details of statistical shape models with various number of nodes

	Table2		
	Number of nodes	Original SSMs	Augmented SSMs
		Variation(3N x M) Variation(3N x M)
	1625	4875 × 49	4875 × 50
	3250	9750 × 49	9750 × 50
	6500	19500 × 49	19500 × 50
	9750	29250 × 49	29250 × 50
	13000	39000 × 48	39000 × 50
	16250	48750 × 47	48750 × 50
	III.C. Accuracy evaluation and analysis	
	ection3.3		

Table 3 :

 3 Comparison between our method and other automatic segmentation methods. All the methods were trained and tested on the same dataset. appearances, and indiscernible boundaries. Therefore, in this work, we proposed a novel prostate segmentation framework, based on CNN and SSM, which has been widely used in prostate segmentation b29 29 . The results demonstrate that the network has the optimal dice of 0.907 and DSC of 1.85 mm under the network nodes of 9750. And both model elastic augmentation and offset applications have positive effects. The performance on the collected clinical data demonstrates that our prostate segmentation framework is feasible, and it has the potential to be a useful clinical tool for the diagnosis, treatment design, and therapeutic procedure of variable prostate disease.

	Table3		
	Work	Method	DSC + std ABD [mm]) Time
	Maan et al. Vincent et al. b32 32 b33 33 Toth et al. b36 36 Ou et al. b30 30 Gao et al. b31 31 Milletari et al. b35 35 V-Net 3D AAM AAM Deformation landmark AAM Multi-atlas Multi-atlas + patch-based voxel 0.82 ± 0.02 2.86 ± 0.82 30 min 0.81 ± 0.13 3.09 ± 0.96 4 min 0.86 ± 0.07 2.17 ± 0.63 8 min 0.77 ± 0.18 3.64 ± 1.39 3 min 0.84 ± 0.06 2.85 ± 0.72 40 min 0.86 ± 0.11 2.13 ± 0.86 <1 min Yu et al. b4 4 Volumetric ConvNet 0.87 ± 0.24 2.05 ± 0.69 <1 min Karimi et al. b34 34 CNN + SSM 0.88 ± 0.09 2.16 ± 0.77 <1 min Tian et al. b37 37 PSNet 0.86 ± 0.40 2.72 ± 0.90 <1 min Jia et al. b38 38 Multi-atlas +VGG-19 0.92 ± 0.05 1.63 ± 0.38 40 min
	Ours	SSM-Net + ResU-Net	0.90 ± 0.08 1.85 ± 0.75 <1min
	III.E. Comparison with other methods
	ection3.5		
	We compared the performance of our method with existing automatic segmentation methods
	(including atlas-based method, deformable model-based method, and deep learning-based
	method). Non-open-source methods were excluded for comparison. All deep-learning-based
	methods are trained on the same dataset (consisting of 63 volumes), and tested on the
	same dataset (consisting of 16 volumes). For methods that are not based on deep learning,
	their performances are evaluated on the same test dataset (consisting of 16 volumes).. The
	comparison results are summarizes in Table	Table3 3. Results illustrated that our method can
	achieve the second best accuracy than other methods. The inference time consumption of
	our method is much less than atlas or deformable model based methods, and is comparable
	with deep learning network methods.	
	IV. Discussion	
	:section4		
	Prostate segmentation facilitates the diagnosis and treatment of prostate diseases. For ex-

ample, the determination and location of the prostate region are essential information for radiotherapy or high-intensity focused ultrasound operations. However, its clinical application is still limited, because of the segmentation challenges like inhomogeneous intensity, IV. DISCUSSION III.E. Comparison with other methods various anatomical

  have been introduced, including atlas-based algorithms, deformable model-based approaches, and deep learning-based methods. For the first category, the atlas-based strategy has been widely utilized in medical image segmentation and registration b30 30 -b31 31 . Its major principle is to align an atlas that contained spatial prior knowledge to the target images by registration approaches. Then apply the alignment information to deform the atlas label for the final target segmentation. Secondly, in terms of the model-based method, a deformable model is firstly constructed for the representation of standard prostate contour. Then the information extracted from the target image was further applied to drive the model to generate the specific shape. Several groups in the list b32 32 -b34 34 employed deformable model (AAM, ASM, SSM) for the prediction of prostate. For the third group, deep learning-based approaches, especially CNNs are widely introduced in medical image processing because of the powerful feature extraction and non-linear learning capability b34,b4,b35 4,34,35 .
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