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Abstract

Purpose: Precise determination of target is an essential procedure in prostate inter-
ventions, such as prostate biopsy, lesion detection, and targeted therapy. However, the 
prostate delineation may be tough in some cases due to tissue ambiguity or lack of par-
tial anatomical boundary. In this study, we proposed a novel supervised registration-
based algorithm for precise prostate segmentation, which combine the convolutional 
neural network (CNN) with a statistical shape model (SSM).
Methods: The proposed network mainly consists of two branches. One called SSM-
Net branch was exploited to predict the shape transform matrix, shape control pa-
rameters, and shape fine-tuning vector, for the generation of the prostate boundary. 
Furtherly, according to the inferred boundary, a normalized distance map was calcu-
lated as the output of SSM-Net. Another branch named ResU-Net was employed to 
predict a probability label map from the input images at the same time. Integrating 
the output of these two branches, the optimal weighted sum of the distance map and 
the probability map was regarded as the prostate segmentation.
Results: Two public datasets PROMISE12 and NCI-ISBI 2013 were utilized to eval-
uate the performance of the proposed algorithm. The results demonstrate that the 
segmentation algorithm achieved the best performance with an SSM of 9500 nodes, 
which obtained a dice of 0.907 and an average surface distance of 1.85 mm. Compared 
with other methods, our algorithm delineates the prostate region more accurately and 
efficiently. In addition, we verified the impact of model elasticity augmentation and the 
fine-tuning item on the network segmentation capability. As a result, both factors have 
improved the delineation accuracy, with dice increased by 10% and 7% respectively. 
Conclusions: Our segmentation method has the potential to be an effective and ro-
bust approach for prostate segmentation.

Keywords: registration-based segmentation, statistical shape mode, probability map, 
boundary distance map37
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I. Introduction56

sec:introduction

With Magnetic Resonance (MR) imaging becoming an increasingly important non-invasive57

imaging modality
b1
1, prostate MR segmentation has been paid close attention in recent years,58

as it is crucial for the clinical diagnosis, therapeutic procedure, and treatment planning59

of various prostate disorders (e.g., prostate cancer, prostatitis or prostatic hypertrophy)
b2
2.60

For example, prostate delineation is widely applied for the precise localization of prostate61

boundary in radiotherapy for dose planning. Besides, in the image-guided computer-assisted62

surgery, the segmentation of the prostate on preoperative MRI is an essential reference for63

the inter-operative low-quality image, like ultrasound image
b3
3. However, until now prostate64

on MR images is still mostly segmented manually by radiologists. The handcrafted delin-65

eation of prostate boundary is a time-consuming and labor-intensive operation with a low66

reproducibility because of its high dependence on medical experience. Moreover, those prob-67

lems are further aggravated when the borderline is indistinct. As pointed out by Yu et68

al.
b4
4, automatic prostate segmentation is also a challenging task due to the issue of intensity69

inhomogeneity, variation of anatomical appearance, and lack of boundary discriminability.70

In order to address this challenging task, different automatic or semi-automatic seg-71

mentation approaches have been reported in recent years. Martin et al.
b5,b6
5,6 proposed a72

semi-automatic prostate segmentation method, in which a rigid intensity-based registra-73

tion algorithm and a non-rigid hybrid registration framework were employed successively to74

align an atlas to the patient image. In their work, 18 MRI series were involved to construct75

the atlas. Two accuracy metrics respectively based on volume and surface distance were76

used to investigate the segmentation performance. Results showed that the segmentation77

accuracy of the apex region and the central region is higher than the base part. In an-78

other publication, to add additional knowledge into the segmentation procedure, Korsager79

et al.
b7
7 combined the spatial information of a prostate atlas with the intensity information80

in a graph cut segmentation framework to achieve automatic prostate delineation. Their81

validation experiment was investigated on 76 axial MR images. As a result, a mean Dice82

similarity coefficient (DSC) of 0.88 and a mean surface distance of 1.45 mm were reported.83

Besides, Tian et al.
b8
8 utilized a superpixel-based graph cut framework to acquire the prostate84

surface on MRI. A superpixel is a group of pixels that have similar characteristics such as85

intensity or location. Due to the capacity to carry wider information, serving as a more86
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convenient and compact representation of the original image, the superpixel image has been87

widely used in image segmentation algorithms. In Tian’s study, a graph cuts algorithm and88

an active contour model were integrated for cross-promotion. According to their experiment89

results, the verification on 43 MRI examples obtained a mean dice of 0.893.90

Recently, the performance of deep learning approaches has outperformed to the trandi-91

tional state-of-the-art methods in many fields, especially in computer vision
b9,b10
9,10 and medical92

image processing
b11,b12
11,12. In those researches, neural networks often work as information ex-93

tractors to eliminate the tedious procedure of traditional feature choice and collection. For94

precise segmentation of MRI prostate, Guo et al.
b13
13 used more concise and effective hierar-95

chical features from MRI prostate image by utilizing a stacked sparse autoencoder. Based96

on the extracted features, a sparse patch matching method was employed to deduce the97

corresponding prostate likelihood map, which was further combined with a sparse shape98

model for the final segmentation. Besides, Mun et al.
b14
14 integrated encoding, bridge, decod-99

ing, and classification modules to develop a baseline convolutional neural network (CNN)100

to extract volumetric information. In the meantime, Jia et al.
b15
15 researched a coarse-to-fine101

algorithm for MRI prostate segmentation through a deep learning method. In their algo-102

rithm, a registration-based segmentation was firstly used to obtain a rough prostate region.103

Then a pixel-wise recognizer based on a neural network was further adopted to classify the104

prostate boundary from the image background. Finally, a refinement algorithm was applied105

to smooth the contour. Similar to Jia’s work, He et al.
b16
16 exploited another coarse-to-fine106

prostate segmentation system via different algorithms. They firstly proposed an adaptive fea-107

ture learning probability boosting tree for prostate pre-segmentation. Next, a CNN method108

was developed to obtain the prostate profile model by the judgment of the inner, external,109

and boundary points. For the last step, an active shape model was employed for the final110

surface refinement. Their results showed the method is accurate and robust for prostate111

segmentation, as the neural network was utilized for the extraction of latent image features112

and the prediction of the prostate boundary. In addition, Wang et al.
b17
17 introduced a 3D113

deep-supervised full CNN with group dilated convolution, aiming to preserve extra image114

information for prostate delineation. Their method achieved a dice of 0.86. Generally, the115

aforementioned methods demonstrated that compared with the traditional segmentation al-116

gorithms, the approaches based on the deep learning method can delineate the target more117

accurately in less time. However, the aforementioned ways only involved the information of118

I. INTRODUCTION
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the specific input image while without any prior knowledge constraints that are potentially119

helpful to improve the prostate segmentation accuracy.120

Statistical shape model (SSM) is a geometric model containing a mean shape and mul-121

tiple compressed primarily shape variations of a collection of similar shapes. Due to the122

ability to represent prior geometric information, SSM has been widely applied in different123

medical modalities for the segmentation and registration of various anatomical structures,124

including brain, bone, liver, heart, prostate and so on
b18
18–

b21
21. In this paper, based on a125

registration approach, we proposed a novel segmentation algorithm to tackle the prostate126

extraction problem by combining a boundary predictor and a label classifier. Specifically,127

a GoogLeNet-based branch (SSM-Net) was involved as the boundary predictor to deduce128

the prostate contour to obtain a boundary distance map, serving as the target contour con-129

straints. Meanwhile, a 3D residual U-net branch (ResU-Net) was employed as the label130

classifier to predict a probability label map from the input images, to judge the class pos-131

sibility of each pixel. In the inference step, the optimal weighted sum of the distance map132

and the probability map was regarded as the final prostate segmentation. In our validation133

experiment, six different SSMs with various nodes were built to investigate the accuracy and134

efficiency of the whole algorithm.135

II. Materials and methods136

sec::section2

Fig.
figure1
1 is an overview of the proposed prostate segmentation algorithm. The segmentation137

network comprises two branches, serving as a boundary predictor and a label classifier re-138

spectively. As shown by Fig.
figure1
1A, the first SSM-Net branch is used to deduce from the139

input, three variables: the SSM global transform, shape control parameters, and the point-140

wise fine-tuning vector. Then, a patient-specific deformation field is calculated based on the141

predicted variables, and a surface of target is further generated via a coordinate sampler.142

The second ResU-Net branch is employed to predict a probability label map from the input143

images, instead of directly using its binarized result as the target region. The parameters of144

the whole network can be optimized by minimizing the loss function value, which is related145

to two parts (Sec.
sec::section2.4
II.D.): 1) the dice coefficient between the predicted probability map and146

the input binary label, defined as Loss 1. 2) the similarity between the SSM deformed surface147

and the input prostate, defined as Loss 2. In the inference phase(Fig.
figure1
1B), according to the148
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generated contour obtained by deforming the SSM by using the deformation field predicted149

by the SSM-Net branch, a distance map is directly calculated to serve as the target bound-150

ary constraints. Then, the weighted sum of the distance map and the probability map is151

regarded as the final prostate segmentation.152

Figure 1: The overview of the proposed prostate segmentation frame-
work.figure1

II.A. Statistical shape model153

sec::section2.1

Due to the capacity to carry prior geometric information of numerous examples in differ-154

ent medical modalities, SSM has been widely applied in object recognition, image process,155

surgery implant design
b22
22. Generally, it involves two parts to describe the statistical spatial156

information of a collection of objects: a geometric model for the representation of the mean157

shape, and a series of variation vectors to depict the principal components of divergences158

between the objects and the mean shape. As the most prevalent SSM type, Principal Com-159

ponent Analysis (PCA) based shape model can model the variability of various types of160

objects such as images, displacement fields, surface meshes, and volumetric meshes. In our161

II. MATERIALS AND METHODS II.A. Statistical shape model
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work, we built PCA SSMs based on triangulated surface meshes, to represent the prostate162

surface on the patient image. For the prostate, the procedures of building the PCA model163

can be summarized as following steps: 1) Segment the target from the original image vol-164

ume. 2) Construct and refine 3D surface triangle mesh based on the binary target label. 3)165

Subdivide and decimate the meshes to a specific number of points. 4) Transform the meshes166

to the same posture and align them correspondingly. 5) Establish PCA-based SSMs based167

on the corresponding objects. 6) Augment the SSM flexibility by employing a Gaussian168

process.169

Table 1: Mathematic notations of statistical shape modelTable1

A. Variables: scalars, vectors, matrices

N Number of SSM nodes
M Number of SSM variations
ū3N×1(ū3N) SSM mean shape
ψ3N×M SSM variation / PCA basis
κM×1(κM) Variance of SSM variations
θM×1(θM) SSM shape control parameters
t3 : T,R Transform parameters: translation and rotation
I3×3(I) Identity matrix

B. Operators and functions

diag(~v) Diagonal matrix of vector ~v
V (ψ3N×M , κM , θM , ū3N) Model surface deformation

According to the theory of the PCA-based model, an arbitrary shape can be represented170

by superimposing a deformation field to the mean shape. In our work, a deformation field171

is described as the sum of global transform, weighted variations, and the mean shape. That172

means, according to the notations defined in Table
Table1
1, shape can be written as follows:173

u
′
= ū3N + V (ψ3N×M , κM , θM , t3)

= ū3N + ψ3N×M · diag(κM) · θM ·R + T
(1) equation1

The deformation ability of SSM depends on its node number (N) and the variation174

matrix ψ3N×M . As only very limited datasets were used to build the SSM, the model is175

insufficient to explain all possible shape variations. Two approaches were employed to solve176

this problem. Firstly, according to the principle of statistic shape, augmenting the example177
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shapes by involving small and very smoothly varying deformations, can make the variation178

matrix (noted as ψ3N×M · diag(κM) in Eq. (
equation1
1)) more representative. ψ3N×M · diag(κM) is179

PCA dimensionality reduction form of variation matrix ψ3N×M .180

ψ3N×3N =

kSSM (x1, x1) · · · kSSM (x1, xN)
...

. . .
...

kSSM (xN , x1) · · · kSSM (xN , xN)

 (2) equation2

kSSM (x, x′) =
1

n− 1

n∑
i=1

(ui (x)− µSSM (x)) (ui (x
′)− µSSM (x′))

T
(3) equation3

Combining sample covariance kernel (kSSM (x, x′)) calculated from sample data, and181

Gaussian kernel k
(s,σ)
g can enlarge the flexibility of the model. For the Gaussian kernel in182

this paper, the smoothness σ = 10mm and the scale of the deformation s = 2mm.183

kaug (x, x′) = kSSM (x, x′) + k(2,10)g (x, x′) (4) equation4

k(s,σ)g (x, x′) = s · diag(exp(−‖x− x
′‖2

σ2
)) (5) equation5

Secondly, supplementing a point-by-point item ξ3N to the deformed target (u′) was184

another feasible approach to represent more possible targets, as shown as Eq. (
equation6
6). Item ξ3N185

was predicted by the SSM-net branch automatically. As shown in Figure 2, the prediction of186

the offset vector shared the same residual CNN structure as the prediction of shape control187

parameters (noted as θM in Eq. (
equation6
6)).188

u
′
= ū3N + V (ψ3N×M , κM , θM , t3) + ξ3N

= ū3N + ψ3N×M · diag(κM) · θM ·R + T + ξ3N
(6) equation6

The surface model is commonly defined in the physical spatial coordinate system to189

maintain the visualization invariance on different platforms. The transformation between190

model space and image space in this work is shown as follows:191

Pi = b(Pm − P0)/s+ 0.5c (7) equation7

II. MATERIALS AND METHODS II.A. Statistical shape model



Running title here: Printed April 16, 2022 page 7

where s is the image resolution, and P0 is the position of image origin in the physical192

spatial coordinate system. Pm indicates the coordinate of model node m in spatial space193

and Pi is the corresponding coordinate of Pm in image space.194

II.B. CNN architecture of the segmentation framework195

sec::section2.2

Figure 2: The structure of the whole network.figure2

This subsection describes the architecture of the network involved in our segmentation196

framework. As illustrated in Fig.
figure2
2, the input image was size of (176, 128, 48, 1). For197

the SSM-Net branch, the inception block of GoogLeNet was utilized for the extraction of198

the prostate position. There, GoogLeNet
b23
23 is a CNN originally designed for the ILSVRC199

(ImageNet Large Scale Visual Recognition Competition). Its adopted inception blocks are200

composed of several convolutional filters of various sizes, making easier the exploration of201

image details at different scales. On the basis of the original GoogLeNet, a dense layer with202

a size of 128 is connected to its flatten layer, for the prediction of the global transform (Dx,203

Dy, Dz, Rx, Ry, Rz), including three parameters for translation and three parameters for204

rotation, as shown by the left column of SSM-Net branch in Fig.
figure2
2. The right column of205

the SSM-Net branch in Fig.
figure2
2A shows the network structure for the prediction of shape206

Last edited Date : II.B. CNN architecture of the segmentation framework
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control parameters with the size of M × 1 (M is the number of shape variations). The207

involved convolution layers following the ”contracting path” with the kernel size 3 × 3 × 3208

used 1 pixel stride, and the employed max-pooling layers used pooling size of 2. Similarly,209

the prediction of fine-tuning vector shared the same residual CNN structure, expect that210

the average pooling layer is replaced by a max-pooling layer with the pooling size of 2, the211

stride of 2. In the last step of the SSM-net branch, the variables including the transform212

matrix, the shape control parameters, and the fine-tuning vector, are input to the last spatial213

transformation layer, to yield the prostate contour.214

As illustrated by the ResU-net branch in Fig.
figure2
2, a residual U-Net is employed to215

infer the probability label map. U-net
b24
24 is a widely used network with high accuracy for216

object segmentation. In our segmentation framework, each residual block consists of two217

convolution layers with a kernel size of 3 × 3 × 3, pixel stride of 1. And the max-pooling218

layers use a pooling size equal to the stride and the size of the up-sample layers is set to 2.219

The sigmoid function is utilized as the activation function of the last layer to limit output220

values to [0,1]. For the whole network, the structure of each layer is shown in Fig.
figure2
2.221

II.C. Grid mapping222

sec::section2.3

As shown in the overview of the segmentation framework (Fig.
figure1
1), the patient-specific223

prostate shape can be obtained by superimposing the predicted deformation field to the224

standard SSM surface in the inference procedure. While in the training phase, in order225

to calculate the loss, a predicted binary surface image for SSM (annotated as “generated226

model surface” in Fig.
figure1
1.) is generated by interpolating the input boundary based on the227

deformation field.228

The output binary surface of SSM gt ∈ RLtW tHt
is defined on a regular grid Gt = {Gt

i} =

{(xti, yti , zti)}, i ∈ [LtW tH t], where Lt,W t,H t represent the length, width and height of the

output. Similarly, let Gs = {(xsi , ysi , zsi )}, xsi ∈ [0, Ls], ysi ∈ [0,W s], zsi ∈ [0, Hs] be the input

grid, where, Ls,W s,Hs are the length, width and height of the input binary mask respectively.

The relationship between the output grid Gt and the input grid Gs can be written as follows.

II. MATERIALS AND METHODS II.C. Grid mapping
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Figure 3: The schematic diagram of segmentation generation and im-
age interpolation. (a) shows that the spatial structure of a predicted
segmentation is equal to the sum of the SSM and a deformation field.
(b) illustrates the 2D calculation strategy of the gray value on the
model boundary according to the binary input mask and the deforma-
tion field. indicated with red arrows. g(P) represents the gray value of
point P.figure3

For ∀i ∈ [1...LtW tH t],

Gs
i = Di(G

t
i) =

xti + di,x
yti + di,y
zti + di,z

 =

xsiysi
zsi

 (8) equation8

Di(G
t
i) is the deformation field predicted by SSM-Net branch, with size of Lt ×W t ×229

H t × 3. Based on Eq. (
equation8
8), for each node in the output grid, we can trace its corresponding230

position on the input mask according to the deformation field. It means that the gray231

value of output point Gt
i = (xti, y

t
i , z

t
i) depends on the gray value of the relevant position232

Gs
i = (xsi + di,x, y

s
i + di,y, z

s
i + di,z) in the input mask.233

II.D. Loss function234

sec::section2.4

The loss function of the proposed network consists of two parts: the part for SSM-Net branch235

and the part for ResU-Net branch.236

For SSM-Net branch, according to the mean shape of SSM and the predicted deforma-

Last edited Date : II.D. Loss function
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tion field, we can calculate the final segmentation directly. To evaluate the accuracy of the

prediction, the specific energy function of SSM-Net branch was employed to optimize the

deformation field, which is described as follows:

E = L(gt �Gs) + λ ‖ϕ‖

= L(gt �Gs) + λ1 ‖θ‖+ λ2 ‖t‖+ λ3 ‖∇ξ‖
(9) equation9

where g represents the gray label in image space. Specifically, gt denotes the boundary of237

the input mask, and (θ, t, ξ) is the predicted deformation field. In this paper, we defined L238

as:239

L(gt �Gs) = 1− (gt �Gs)/N (10) equation10

Then, the optimization function can be written as follows:

ϕ = (θ, t, ξ) = arg min(1− (gs �Gt)/N) + λ1 ‖θ‖+ λ2 ‖t‖+ λ3 ‖∇ξ‖ (11) equation11

where N represents the node number of SSM.240

To obtain gt � Gs, an interpolation is required to calculate the gray value of arbitrary

position Gs
i = (xsi , y

s
i , z

s
i ). In this work, 3D bilinear interpolation method

b25,b26
25,26 is employed.

Let gti represents its gray level at point Gt
i = (xti, y

t
i , z

t
i). g

t
i �Gs

i mean the gray level at point

Gs
i = (xsi , y

s
i , z

s
i ), and {(m,n, p)}s represents the point (m,n, p) of input mask respectively.

According to Eq. (
equation4
4), For ∀i ∈ [1...LtW tH t],

gti �Gs
i = gs(xsi ,ysi ,zsi ) =

Ls∑
m

W s∑
n

Hs∑
p

gt(m,n,p) ·max(0, 1− |xsi

− n|) ·max(0, 1− |ysi −m|) ·max(0, 1− |zsi − p|)

(12) equation12

The partial derivatives with respect to gray gt(m,n,p) and coordinate position (xti, y
t
i , z

t
i)

for the backpropagation of loss can be written as follows (∂gti � Gs
i/∂y

s
i /, ∂g

t
i � Gs

i/∂z
s
i are

similar with ∂gti �Gs
i/∂x

s
i ):

∂gti �Gs
i

∂gt(m,n,p)
=

Ls∑
m

W s∑
n

Hs∑
p

max(0, 1− |xsi − n|)·

max(0, 1− |ysi −m|) ·max(0, 1− |zsi − p|)

(13) equation13

II. MATERIALS AND METHODS II.D. Loss function
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∂gti �Gs
i

∂xsi
=

Ls∑
m

W s∑
n

Hs∑
p

gt(m,n,p) ·max(0, 1− |ysi −m|)

·max(0, 1− |zsi − p|) ·


0, |xsi − n| > 1,

−1, xsi > n,

1, xsi < n.

(14) equation14

For ResU-Net branch, the following loss function is adopted, where, Smask represent the

ground truth. ϑ is the network parameters and PResU is the output probability map. The

values of range from 0 to 1.

L(ϑ, Smask) = 1− 2× ‖PResU(ϑ)× Smask‖
‖PResU‖+ ‖Smask‖

(15) equation15

Thus, the parameterized ResU-Net branch can be optimized during the training procedure:

ϑ̂ = arg min
ϑ

L(ϑ, Smask) (16) equation16

Based on Eq. (
equation10
10) and Eq. (

equation15
15), the loss function of the whole network is defined as241

Eq. (
equation17
17), to optimize the network weights. Where α and β are trainable parameters.242

Lcombined = αL(l,M, φ) + βL(ϑ, Smask) (17) equation17

II.E. Inference of prostate region243

sec::section2.5

In the prostate inference step, the binarized weighted sum of the deduced probability map

and distance map is regarded as the final prostate segmentation. In terms of probability

label map, a bigger value means a higher probability for a pixel to belong to the prostate

region. The distance map obtained from the boundary image predicted by the SSM-branch,

is such that only the pixel on the boundary has a value of 1, while others are equal to 0. It

is calculated according to the following equation:

Dssm(Pi) = 1− ‖Pi − P̂i‖/10 (18) equation18

where, Pi represents pixel i, Dssm(Pi) is the value of Pi on the distance map. P̂i is the244

closest boundary point of Pi on the input boundary image, and ‖Pi − P̂i‖ is the Euclidean245

Last edited Date : II.E. Inference of prostate region
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distance between Pi and P̂i. 10 is the calculation range, which should be changed according246

to the image resolution because it decides the prostate voxel range in images. As the image247

volume was resampled to the same resolution, the calculation range is a constant in our248

work. Furtherly, as the interior prostate gland being segmented should be evaluated with a249

large value to reflect its high probability, for the pixel Pi in the interior region with Dssm(Pi)250

less than 0.5, its Dssm value is reassigned to 1.251

The probability map generated by the Res-Unet branch is such that the central region

of the prostate has a probability of 1 whilst the marginal prostate region is valued with

a lower value, which contributes to most of the prediction deviation, especially when the

contour of the prostate is indistinct. In contrast, in this case, the SSM-Net branch can

deduce a relatively reasonable boundary due to the representation of prostate shape prior and

provided complementary information for the result of the ResU-Net branch. However, the

distance map calculated from the SSM-Net branch might not match the segmentation results

from the ResU-Net branch, therefore, we have investigated the segmentation performance of

the proposed method under different combinations of SSM-Net and ResU-Net branches, as

shown as follows:

Pcombined = w1PResU + (1− w1)Dssm (19) equation19

Two metrics were introduced to evaluate the performance of the proposed segmentation

framework, including the dice similarity coefficient (DSC) and the average over the shortest

distance between the boundary points of the volumes(ABD). The DSC is formulated as

follows:

Dice = 2 ∗ ‖Spred ∩ Smask‖/(‖Spred‖+ ‖Smask‖) (20) equation20

where Spred and Smask respectively present the predicted segmentation and the input ground252

truth.253

III. Results254

sec::section3

III.A. Data acquisition and experiment set up255

sec::section3.1

We validated the proposed network on two public datasets: the MICCAI PROMISE12 chal-256

lenge dataset
b27
27 and NCI-ISBI 2013 challenge dataset

b28
28. The first database contains 50257

III. RESULTS
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prostate transversal T2 MRIs for training and 30 prostate images for testing. And the second258

database respectively involves 60, 10, and 10 cases for training, leaderboard, and testing.259

The two datasets share 11 common volumes, and the ground truths of the PROMISE12260

testing set are unavailable. Thus, a total of 119 T2 MRI image cases are collected for our261

experiment. As the gathered data have different voxel spacing and image size, the input262

images were resized to the shape of 176 × 128 × 48 beforehand.263

From the 119 volumes, 40 randomly selected cases contributed to the SSM establish-264

ment, and the rest data were used for the network optimization. Specifically, 63 out of265

the 79 image volumes (3/4) were applied for the network training and the remaining (1/4)266

for the validation. The modeling procedure and the network segmentation performance are267

illustrated in Section
sec::section3.2
III.B. and Section

sec::section3.3
III.C. respectively. And Section

sec::section3.4
III.D. analyzes and268

discusses the influence of SSM flexibility on the framework segmentation accuracy. The net-269

work training and all experiments were conducted on a computer with Intel® Core (TM)270

I7-8700K with a 3.70 GHz CPU, 8 GB memory, and two graphic cards of 8GB NVIDIA271

GeForce GTX 1080 Ti.272

III.B. SSM establishment and analysis273

sec::section3.2

The node number and the principal component number are two dominant factors for the flex-274

ibility of SSM. The former is decided according to the node number of the counted meshes,275

and the latter is determined by the compactness of SSM. The compactness is measured via276

the accumulation of SSM variations which are arranged according to their eigenvalues. In277

this work, we selected the first M principle components to keep 95% of the total eigenvalues.278

To investigate the influence of the two factors on the segmentation accuracy of the seg-279

mentation method, six SSMs with various nodes and principal components were built. 3D280

slicer (https://www.slicer.org) was utilized for the refinement of 3D surfaces. In addition,281

the Gaussian process model building, model fitting, and the PCA-based model building are282

completed via the Statismo library
b22
22. The details of SSMs are presented in Table

Table2
2. The283

third column shows the models after flexibility augmentation.284
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Table 2: The details of statistical shape models with vari-
ous number of nodesTable2

Number of nodes
Original SSMs Augmented SSMs

Variation(3N x M) Variation(3N x M)

1625 4875 × 49 4875 × 50
3250 9750 × 49 9750 × 50
6500 19500 × 49 19500 × 50
9750 29250 × 49 29250 × 50
13000 39000 × 48 39000 × 50
16250 48750 × 47 48750 × 50

III.C. Accuracy evaluation and analysis285

sec::section3.3

Figure
figure4
4 illustrates the flexibilities of the primary SSMs. The green models in the middle286

column depicts the mean shapes with increasing node numbers from top to button. From287

the middle to the rightmost, the three columns respectively exhibit the deformed shapes288

generated from the mean shape of SSM by weighting the first three principles variations289

with three times of their corresponding deviations. Accordingly, the three-column shapes290

on the left describe the generated models deformed by negative triple deviations. Generally,291

each row horizontally reveals the influence of the first three principal variations on the292

deformation of each SSM, and each column vertically compares the different performances293

of SSMs. In conclusion, the last three SSMs with node numbers of 9750, 13000, 15250294

had similar interior and exterior characteristics, while the first three SSMs behaved quite295

differently.296

Based on Eq. (
equation17
17), the network weights was optimized via Adam optimizer with the297

learning rate ranged from 10−5 to 1, and the three regularization coefficients λ1, λ2 and λ3298

ranged from 0 to 1 respectively. During the training period, we compared the performance of299

the proposed segmentation framework applying different values of regularization coefficients300

λ1, λ2 and λ3 in Eq. (
equation11
11). The experiments showed that the best result in terms of the Dice301

coefficient is achieved when λ1, λ2, and λ3 are equal to 0, 0.01, and 0.01. In the following302

work, λ1, λ2 and λ3 are set to 0, 0.01, and 0.01. In addition, we figured out the proposed303

segmentation framework performs best when the “hyperparameter” w1 in Eq. (
equation19
19) equals304

0.6 by trial and error.305
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Figure 4: The flexibility of the statistical shape models with different
node numbers. The middle column with green color exhibits the mean
models, and the left three columns and the right three columns respec-
tively show the deformed models drove by 3

√
λ times of the first three

principal components of variations. λ is the corresponding deviation of
each component.figure4

Fig.
figure5
5 illustrates the DSC and ABD of the proposed prostate segmentation framework306

when adopted different SSMs. 4-fold cross-validation was conducted for each group. The307

DSC and ABD of the ResU-Net branch are constant over the different groups. In terms308

of the SSM-Net branch, when the network adopts SSMs with 1625 to 9750 nodes (referred309

as network nodes in the following text), the dice result has significant improved from 0.69310

to 0.90 (paired t-test, p <0.001). At the same time, the ABD value has an opposite steep311

trend, decreasing from 2.63 mm to 2.39 mm. Both dice and ABD have the best result when312

network node number is 9750, with an average dice of 0.862 and an ABD of 2.04 mm. As313

regards the performance of the whole framework, it has a similar trend with the SSM-Net314

branch, with the dice reached a peak of 0.907 and the ABD declined to the lowest of 1.85315

mm. For the two groups with more than 9750 nodes, they performed slightly inferior with a316
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Figure 5: The DSC and ABD results of the whole framework, SSM-Net
branch, and ResU-Net branch respectively.figure5

dice of 0.89. According to the record data, we concluded that the SSM with 9750 nodes is317

optimal to employ in our framework for the representation of the prostate spatial boundary.318

The segmentation procedure of the proposed framework is shown in Fig.
figure6
6. The purple319

model in (c) represents the SSM, whose center is initially positioned at the origin (0,0,0) of the320

anatomical coordinate system of LPS (Left, Posterior, Superior). As shown in (c), according321

to the input image, the SSM-Net branch respectively predicts the global transform, weight322

parameters, and an offset vector for the calculation of the deformation field. The 3D white323

surface in (d) represents the generated prostate boundary by applying the deformation field324

to the SSM. Fig.
figure7
7 illustrates the delineation results of four images series. Four slices range325

from number 16 to number 46 with an interval of 10, are selected to display the recognition326
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Figure 6: The whole segmentation procedure. (a) The input MR
image for segmentation. (b) The probability map. (c) The purple
model represents the SSM, whose center initially positioned at the
origin (0,0,0). (d) The generated contour of the prostate from the
SSM. (e) The distance map. (f) The segmentation result.figure6

performances on different prostate zones. Each row stands one example, and accordingly,327

each column shows the delineation results of the same layers of different examples. From328

the exhibition, we deduced that the segmentation on the prostate central zone has higher329

accuracy than the base of the prostate (more complex to delineate). For the case of the severe330

hyperplastic prostate gland which is larger than the mean shape of SSM, the segmentation331

framework has relatively poor performance with the maximum ABD was 2.7 mm and the332

dice coefficient was 0.83. Compared to the segmentation approach employing only the SSM333

method, our framework can achieve more accurate delineation when the target is beyond334

the SSM deformation range.335
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Figure 7: The segmentation results of four image cases via the pro-
posed method. Each row stands one example, and each column shows
their segmentation results of the same layers of different examples.figure7

III.D. The influence of network flexibility on segmentation accu-336

racy337

sec::section3.4

According to the analysis in Section
sec::section2.2
II.B., network node number, flexibility augmentation338

of SSM, and fine-tuning item (offset) are the three dominant factors to affect the network339

deformation ability. To investigate their impacts on the network delineation accuracy, we340

verified the individual segmentation performance of the SSM-Net branch under different341

combinations of the three elastic determinants. Fig.
figure8
8 presents the DSC and ABD values of342

the SSM-Net branch with various nodes and different utilization situations of augmentation343

and offset item. As shown by those statistical trend lines, regardless of the model augmenta-344

tion or fine-tuning item, the SSM-Net branch with 9750 nodes or more outperformed other345

situations. In terms of the model flexibility augmentation, its application has improved the346
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Figure 8: The influence of the deformation ability of SSM-Net branch
on its segmentation performances, including dice scores and ABD val-
ues). The network elastic ability is mainly determined by three factors:
node numbers, flexibility augmentation and the offset item.figure8

network accuracy. As shown by the lines with cyan and blue dots in Fig.
figure8
8, compared347

with the results of the network without augmentation and offset, the best average dice and348

distance of the network adopting model elastic augmentation were improved to 0.81 and349

2.36 mm respectively. And the network employing both augmentation and offset had higher350

average dice and smaller average distance than the network utilizing only offset item, as351

informed by the lines with green and red dots in the figure. Similarly, we figure out that352

the employment of offset item also contributed to the improvement of the SSM-Net branch.353

Specifically, compared with the segmentation result of the network without augmentation354

(the line with cyan dots in subgraph (a)), the involvement of fine-tuning item (the line with355

blue dots in subgraph (a)) increased the highest average dice of the six groups from 0.74356

to 0.79. Based on the network which applies only flexibility augmentation (the lines with357

blue dots), the utilization of offset items (the lines with red dots) improved the average dice358

coefficient by 0.06 and the distance by 0.25 mm, making the SSM-Net branch achieve the359

best result.360
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Table 3: Comparison between our method and other auto-
matic segmentation methods. All the methods were trained
and tested on the same dataset.Table3

Work Method DSC + std ABD [mm]) Time

Maan et al.
b32
32 3D AAM 0.81 ± 0.13 3.09 ± 0.96 4 min

Vincent et al.
b33
33 AAM 0.86 ± 0.07 2.17 ± 0.63 8 min

Toth et al.
b36
36 Deformation landmark AAM 0.77 ± 0.18 3.64 ± 1.39 3 min

Ou et al.
b30
30 Multi-atlas 0.84 ± 0.06 2.85 ± 0.72 40 min

Gao et al.
b31
31 Multi-atlas + patch-based voxel 0.82 ± 0.02 2.86 ± 0.82 30 min

Milletari et al.
b35
35 V-Net 0.86 ± 0.11 2.13 ± 0.86 <1 min

Yu et al.
b4
4 Volumetric ConvNet 0.87 ± 0.24 2.05 ± 0.69 <1 min

Karimi et al.
b34
34 CNN + SSM 0.88 ± 0.09 2.16 ± 0.77 <1 min

Tian et al.
b37
37 PSNet 0.86 ± 0.40 2.72 ± 0.90 <1 min

Jia et al.
b38
38 Multi-atlas +VGG-19 0.92 ± 0.05 1.63 ± 0.38 40 min

Ours SSM-Net + ResU-Net 0.90 ± 0.08 1.85 ± 0.75 <1min

III.E. Comparison with other methods361

sec::section3.5

362 We compared the performance of our method with existing automatic segmentation methods 

363 (including atlas-based method, deformable model-based method, and deep learning-based 

364 method). Non-open-source methods were excluded for comparison. All deep-learning-based 

365 methods are trained on the same dataset (consisting of 63 volumes), and tested on the 

366 same dataset (consisting of 16 volumes). For methods that are not based on deep learning, 

367 their performances are evaluated on the same test dataset (consisting of 16 volumes).. The

comparison results are summarizes in Table
Table3
3. Results illustrated that our method can368

achieve the second best accuracy than other methods. The inference time consumption of369

our method is much less than atlas or deformable model based methods, and is comparable370

with deep learning network methods.371

IV. Discussion372

sec::section4

Prostate segmentation facilitates the diagnosis and treatment of prostate diseases. For ex-373

ample, the determination and location of the prostate region are essential information for374

radiotherapy or high-intensity focused ultrasound operations. However, its clinical appli-375

cation is still limited, because of the segmentation challenges like inhomogeneous intensity,376

IV. DISCUSSION III.E. Comparison with other methods



Running title here: Printed April 16, 2022 page 21

various anatomical appearances, and indiscernible boundaries. Therefore, in this work, we377

proposed a novel prostate segmentation framework, based on CNN and SSM, which has been378

widely used in prostate segmentation
b29
29. The results demonstrate that the network has the379

optimal dice of 0.907 and DSC of 1.85 mm under the network nodes of 9750. And both model380

elastic augmentation and offset applications have positive effects. The performance on the381

collected clinical data demonstrates that our prostate segmentation framework is feasible,382

and it has the potential to be a useful clinical tool for the diagnosis, treatment design, and383

therapeutic procedure of variable prostate disease.384

As shown in Figure 4, driven by their first three principal components of variations,385

the first four statistical shape models with nodes number from 1625 to 9750 perform quite386

different from each other, while the two statistic shape models with nodes number of 13000387

and 15250 have almost similar performance with the model with 9750. Thus, the mesh388

shape with nodes number of 9750 is accurate enough to represent the anatomical structure389

of a regular prostate in the physical coordinate system. However, when nodes number is390

more than 9750, the accuracy (including DSC and ABD) does not improve with the increase391

of nodes number. That’s because when the model owns a substantial number of nodes,392

one pixel in the image space may correspond to more than one node in the physical space,393

resulting in decreased performance.394

In the past three decades, three major categories of automatic prostate segmentation395

have been introduced, including atlas-based algorithms, deformable model-based approaches,396

and deep learning-based methods. For the first category, the atlas-based strategy has been397

widely utilized in medical image segmentation and registration
b30
30–

b31
31. Its major principle is398

to align an atlas that contained spatial prior knowledge to the target images by registration399

approaches. Then apply the alignment information to deform the atlas label for the final400

target segmentation. Secondly, in terms of the model-based method, a deformable model is401

firstly constructed for the representation of standard prostate contour. Then the information402

extracted from the target image was further applied to drive the model to generate the403

specific shape. Several groups in the list
b32
32–

b34
34 employed deformable model (AAM, ASM,404

SSM) for the prediction of prostate. For the third group, deep learning-based approaches,405

especially CNNs are widely introduced in medical image processing because of the powerful406

feature extraction and non-linear learning capability
b34,b4,b35
4,34,35.407
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Several teams have combined deep learning algorithms with atlas or deformable models408

in their researches. Similarly, our segmentation combined neural network with SSM for409

high precise MRI prostate segmentation. In this way, prior knowledge is introduced by410

SSM to serve as the boundary constraint and a rough reference, and furtherly combined411

with a neural network (ResU-Net in our work) which can obtain details from the target412

image, for the precise recognization of the target region. Besides, as SSM is built based on413

lots of medical image data, the generated model can reasonably represent the deformation.414

Therefore, our method required less time (approximately 3 s) while performed a satisfactory415

segmentation accuracy with high robustness.416

In medical image processing, the collection of the training dataset limits the application417

of various learning-based approaches. Fortunately, SSM utilizes geometric information rather418

than intensity information. Therefore, all images in different modalities such as computed419

tomography, ultrasound and MRI can contribute to the construction of SSM. It is worth420

mentioning that, if the dataset is sufficient, active shape model(ASM) and statistical defor-421

mation models (SDM) could become superior training supervisors than SSM, as the former422

can carry intensity information of images and the latter is capable to represent the statistical423

information of deformation field of a collection of examples. In addition, the introduction of424

the finite element model (FEM) is worth considering for our further development, because425

the biomechanical information in FEM can contribute to the delineation of a specific target.426

The proposed method has a very good potential for clinical application. After estab-427

lishing the SSM model and training the network, the MR images containing the prostate can428

be segmented automatically. The 3D model of the prostate can be reconstructed from the429

segmented results, which is useful for morphological analysis, volume calculation, etc. More-430

over, such workflow can be integrated into our previously developed image-guided surgical431

system
b39,b40
39,40 to improve its efficiency and automation.432

V. Conclusions433

sec::section5

In this study, we introduced a novel registration-based algorithm that combines CNN and434

SSM and applied it to the task of precise prostate segmentation. A two branches structure435

was designed, through which the prior knowledge introduced by SSM and boundary features436
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extracted by the CNN were fully used for prostate segmentation. Extensive experimental re-437

sults conducted on two public datasets demonstrated that the proposed network can achieve438

better performance than several state-of-the-art algorithms for prostate segmentation.439
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