
HAL Id: hal-03654735
https://hal.science/hal-03654735v1

Submitted on 28 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Consensus Byzantin Responsable Optimal
Pierre Civit, Seth Gilbert, Vincent Gramoli, Rachid Guerraoui, Jovan

Komatovic

To cite this version:
Pierre Civit, Seth Gilbert, Vincent Gramoli, Rachid Guerraoui, Jovan Komatovic. Consensus Byzantin
Responsable Optimal. AlgoTel 2022 - 24èmes Rencontres Francophones sur les Aspects Algorithmiques
des Télécommunications, May 2022, Saint-Rémy-Lès-Chevreuse, France. �hal-03654735�

https://hal.science/hal-03654735v1
https://hal.archives-ouvertes.fr


Consensus Byzantin Responsable Optimal

Pierre Civit1 et Seth Gilbert2 et Vincent Gramoli3,4 et Rachid Guerraoui 4

et Jovan Komatovic 4

1 Sorbonne University, CNRS, LIP6
2 National University of Singapore
3 University of Sydney
4 EPFL

Il est connu que la propriété d’accord du problème du consensus byzantin entre 𝑛 processus peut être violée dans un
système non-synchrone si le nombre 𝑡 de processus défectueux dépasse 𝑡0 = ⌈𝑛/3⌉ − 1 [DLS88]. Dans cet article, nous
étudions le problème du consensus byzantin responsable (accountable) qui se doit de (i) résoudre le consensus byzantin
dans le scénario optimiste où 𝑡 ≤ 𝑡0 et (ii) de permettre aux processus corrects d’obtenir une preuve indéniable de culpa-
bilité de 𝑡0 +1 processus fautifs dans le pire des cas, où des processus corrects sont en désaccord. Nous présentons ainsi
ABC : une transformation simple mais efficace de tout protocole de consensus byzantin en une version responsable.
ABC introduit un surcoût de (1) seulement deux tours de communication et 𝑂 (𝑛2) bits échangés supplémentaires dans
le scénario optimiste, et (2) trois tours de communication et 𝑂 (𝑛3) bits échangés supplémentaires sinon. En appliquant
notre transformation à un algorithme de consensus byzantin quadratique (il en existe et sont optimaux en complexité en
bits échangés), le résultat obtenu est prouvé optimal.

Mots-clefs : responsabilité, détection, fautes Byzantines, incitatifs, systèmes distribués

1 Problem Description
Consensus problem [PSL80] is one of the most studied problem in distributed computing. This task

consists in having a set Ψ = {𝑃1, ..., 𝑃𝑛} of 𝑛 processes, communicating by exchanging messages through
a non-synchronous † reliable point-to-point network, that have to agree on a common value. That is, every
process 𝑖 proposes a value and eventually decides (at most once) a value s. t. the following properties hold:

— (Liveness) Termination: Every correct process eventually decides.
— (Safety) Agreement: All correct processes decide the same value.
— (Safety) Validity: ‡ If all processes are correct and propose the same value, only that value can be

decided by a correct process.
It has been shown [DLS88] that no non-synchronous algorithm can ensure the conjunction of the afore-

mentioned properties if the number 𝑡 of Byzantine processes (that can perform arbitrary faults, deviating
from their prescribed protocols) exceeds the threshold 𝑡0 = ⌈𝑛/3⌉−1, even if an idealised PKI (digital signa-
tures) is assumed, as we do, where each message sent by process 𝑝 is properly authenticated. Furthermore,
it is impossible [CGG21] to ensure a gracefully degraded version that would ensure (i) Safety and Liveness
for 𝑡 ≤ 𝑡0 and (ii) Safety only for 𝑡 > 𝑡0.

This limitation motivated researchers to investigate accountable variants of this problem [CGG21, SWN+21]
that consist in (1) solving consensus when 𝑡 ≤ 𝑡0, and (2) allowing all correct participants to eventually ob-
tain undeniable proof of culpability against 𝑡0 + 1 Byzantine processes in case of safety violation (𝑡 > 𝑡0).
This second property is slightly different from the completeness, ensured by Peer-Review [HKD07], where
every Byzantine process is eventually suspected forever by at least one correct process. We say that a set

†. Non-synchronous systems include: asynchronous systems, where the bound on message delivery time does not exist, and
partially synchronous systems [DLS88], where the (potentially unknown) bound holds only eventually after a (potentially unknown)
global stabilization time (GST).

‡. this property is often called weak validity w.r.t. alternative properties like external validity or strong validity. The choice of such
a validity property does not impact this work.



Pierre Civit et Seth Gilbert et Vincent Gramoli et Rachid Guerraoui et Jovan Komatovic

Base Consensus
Protocol

Communication Complexity
of the Base Consensus Protocol

Communication Complexity
of the Accountable Variant

in the Common Case

Accountability
Threshold Paper

HotStuff [YMR+19] 𝑂 (𝑛3) 𝑂 (𝑛3) 2𝑛/3 [SWN+21]
Binary DBFT [CGLR18] 𝑂 (𝑛3) 𝑂 (𝑛4) 𝑛 [CGG21]

Multivalue DBFT [CGLR18] 𝑂 (𝑛4) 𝑂 (𝑛4) 𝑛 [CGG21]
Any 𝑋 𝑋 𝑛 this paper

TABLE 1: Overview of the main properties of existing accountable Byzantine consensus protocols. We consider
worst-case communication complexities (after Global Stabilisation Time (GST) [DLS88]) in all columns. Worst-case
communication complexity (after GST) of a Byzantine consensus protocol is bounded by the 𝑂 (𝑛2) Dolev-Reischuk
bound. The accountability threshold is the number of tolerated Byzantine processes to provide accountability.

S of properly authenticated messages sent by a process 𝑃𝑖 is a proof of culpability of 𝑃𝑖 if there does not
exist an execution 𝑒 of the system where (1) 𝑃𝑖 sends all the messages from the S set, and (2) 𝑃𝑖 is correct.
Observe that a proof of culpability of a process contains messages signed by the process with its PKI private
key. Indeed, the PKI private key of a correct process is never revealed

Accountability in distributed systems is important since it discourages bad behavior. If malicious be-
havior is guaranteed to result in apprehension and punishment, malicious processes are much less likely to
carry out an attack in the first place, thus strengthening the security of the system.

All previous works employed sophisticated mechanisms for obtaining accountability instead of treating
the base consensus protocol as a “black box”, thus obtaining simpler and more efficient accountable Byzan-
tine consensus protocols. table 1 compares accountable Byzantine consensus protocols obtained by ABC
with the existing alternatives. The metric used in table 1 is the communication complexity which is the max-
imum number of signed messages sent by all correct processes after GST combined across all executions
of the system.

Algorithm 1 Intuition Behind Transformation

function 𝑝𝑟𝑜𝑝𝑜𝑠𝑒(𝑣) do
⊲ bc is any Byzantine consensus protocol
𝑣′← bc.propose(𝑣)
broadcast [CONFIRM, 𝑣′]
wait for 𝑛 − 𝑡0 [CONFIRM, 𝑣′]
return 𝑣′

The generic transformation ABC proposed by this
paper owns its simplicity and efficiency to the observa-
tion that the composition presented in algorithm 1 solves
the Byzantine consensus problem when 𝑡 ≤ 𝑡0. Indeed,
if the number of faults does not exceed 𝑡0, all processes
eventually broadcast and receive 𝑛 − 𝑡0 matching CON-
FIRM messages. However, the important mechanism il-
lustrated in algorithm 1 is that faulty processes must send
conflicting CONFIRM messages in order to cause dis-
agreement. Indeed, a disagreement between two correct
processes 𝑃𝑖 and 𝑃 𝑗 that would respectively decide 𝑣𝑖
and 𝑣 𝑗 with 𝑣𝑖 ≠ 𝑣 𝑗 , would imply the reception of 𝑛 − 𝑡0 [CONFIRM, 𝑣𝑖] messages by 𝑃𝑖 and 𝑛 − 𝑡0
[CONFIRM, 𝑣 𝑗 ] messages by 𝑃 𝑗 . So at least 2(𝑛 − 𝑡0) − 𝑛 = 𝑡0 + 1 Byzantine processes sent both
[CONFIRM, 𝑣𝑖] and [CONFIRM, 𝑣 𝑗 ]. Hence, whenever correct processes disagree, they only need to
exchange received CONFIRM messages to obtain accountability in the form of 𝑡0 + 1 pairs of conflicting
signed CONFIRM messages with different values 𝑣𝑖 and 𝑣 𝑗 from as many Byzantine processes. Indeed,
a correct process never sends two conflicting CONFIRM messages since the original Byzantine consensus
protocol allow him to decide at most only once.

Roadmap We devote remaining sections to our transformation. Specifically, we first introduce the novel
accountable confirmer problem (section 2), the crucial building block of ABC. Then, we present ABC
and state its correctness and complexity (section 3). Finally, we conclude the paper in section 4.

2 Accountable Confirmer
The accountable confirmer problem is a distributed problem defined among 𝑛 processes. The problem is

associated with parameter 𝑡0 = ⌈𝑛/3⌉ − 1 emphasizing that some properties are ensured only if the number



Formatting a submission for AlgoTel

of faulty processes does not exceed 𝑡0. Accountable confirmer exposes the following interface: (1) request
submit(𝑣) - a process submits value 𝑣; invoked at most once, (2) indication confirm(𝑣′) - a process confirms
value 𝑣′; triggered at most once, and (3) indication detect(𝐹, proof ) - a process detects processes from the
set 𝐹 such that proof represents a proof of culpability of all processes that belong to 𝐹; triggered at most
once. The following properties are ensured:

— Terminating Convergence: If the number of faulty processes does not exceed 𝑡0 and all correct pro-
cesses submit the same value, then that value is eventually confirmed by every correct process.

— Agreement: If the number of faulty processes does not exceed 𝑡0, then no two correct processes
confirm different values.

— Validity: Value confirmed by a correct process was submitted by a correct process.
— Accountability: If two correct processes confirm different values, then every correct process eventu-

ally detects at least 𝑡0 + 1 faulty processes and obtains a proof of culpability of all detected processes.
Terminating convergence ensures that, if (1) the number of faults does not exceed 𝑡0, and (2) all correct
processes submit the same value, then all correct processes eventually confirm that value §. Agreement
stipulates that no two correct processes confirm different values if the system is not corrupted (even if
submitted values of correct processes differ). Validity ensures that any confirmed value is submitted by a
correct process. Finally, accountability ensures detection of 𝑡0 + 1 faulty processes by every correct process
whenever correct processes confirm different values.

Algorithm 2 ABC Transformation - Code For
Process 𝑃𝑖

1: Implements:
2: Accountable Byzantine Consensus, in-

stance abc
3: Uses:
4: ⊲ Byzantine consensus protocol to be

transformed
5: Byzantine Consensus, instance bc
6: Accountable Confirmer, instance ac
7: upon event ⟨abc,Propose | proposal⟩ do
8: trigger ⟨bc,Propose | proposal⟩
9: upon event ⟨bc,Decide | decision⟩ do

10: trigger ⟨ac, Submit | decision⟩
11: upon event ⟨ac,Confirm | confirmation⟩ do

12: trigger ⟨abc,Decide | confirmation⟩
13: upon event ⟨ac,Detect | 𝐹, proof ⟩ do
14: trigger ⟨abc,Detect | 𝐹, proof ⟩

Implementation We now give a naive and very infor-
mal implementation of the accountable confirmer prob-
lem that suffers from a 𝑂 (𝑛3) complexity even when
𝑡 ≤ 𝑡0. An optimization obtaining a 𝑂 (𝑛2) complex-
ity when 𝑡 ≤ 𝑡0 is available in long version of the paper
[CGG+]. ¶.

Each process initially broadcasts the value it submit-
ted in a SUBMIT message: the SUBMIT message contains
the value signed with the PKI private key of the sender.

Once a process receives such a SUBMIT message,
the process (1) checks whether the message is properly
signed, (2) verifies the signature, and (3) checks whether
the received value is equal to its submitted value. If all
of these checks pass, the process stores the entire mes-
sage with its signature. Once a process stores signatures
from (at least) 𝑛 − 𝑡0 processes, the process combine the
received signatures into a full certificate which is simply
the concatenation of the submitted value and the 𝑛−𝑡0 as-
sociated signatures. Then, the process confirms its sub-
mitted value and finally informs other processes about
its confirmation by broadcasting the full certificate.

Finally, once a process receives two conflicting full
certificates, the process obtains a proof of culpability of
(at least) 𝑡0 + 1 faulty processes, which ensures account-
ability.

Indeed, each full certificate contains 𝑛−𝑡0 properly authenticated messages: every process whose message
is in the two conflicting full certificates is faulty and these messages represent a proof of its misbehavior
(recall that no faulty process ever obtains the PKI private key of a correct process).

This algorithm (resp. its optimization in [CGG+]) solves the accountable confirmer problem with:

§. Note that it is not guaranteed that any correct process eventually confirms a value if correct processes submit different values
(even if the number of faulty processes does not exceed 𝑡0).

¶. The optimization takes benefits from (𝑛 − 𝑡0, 𝑛) threshold signature scheme where the cost of asynchronous distributed key
generation (ADKG) is assumed to be amortized.



Pierre Civit et Seth Gilbert et Vincent Gramoli et Rachid Guerraoui et Jovan Komatovic

— 𝑂 (𝑛3) (resp. 𝑂 (𝑛2)) communication complexity in the common case, and
— 𝑂 (𝑛3) communication complexity in the degraded case.

3 BC + Accountable Confirmer = ABC
We now define our ABC transformation (algorithm 2), the main contribution of our work. ABC is

built on the observation that any Byzantine consensus protocol paired with accountable confirmer solves
the accountable Byzantine consensus problem.

Theorem 1 algorithm 2 solves the accountable Byzantine consensus problem with 𝑂 (𝑛2) additional bits of
information exchanged when 𝑡 ≤ 𝑡0.

Finally, we note that ABC does not worsen the communication complexity of any Byzantine consensus
protocol. It is well-known that any protocol that solves the Byzantine consensus problem incurs quadratic
communication complexity due to the Dolev-Reischuk lower bound [DR85]. Given the fact that account-
able confirmer has quadratic communication complexity in the common case, every Byzantine consensus
protocol retains its complexity after our transformation.

Corollary 1 Let Π be a Byzantine consensus protocol with the communication complexity 𝑋Π . Let Π𝐴 be
a protocol obtained by applying ABC to Π. Then, Π𝐴 solves the Byzantine consensus problem with the
communication complexity 𝑋Π .

4 Conclusion
We presented the first generic transformation to obtain optimal Accountable Byzantine Consensus. This

transformation can naturally be applied to randomized consensus, reliable-broadcast and consistent-broadcast.

References
[CGG+] Pierre Civit, Seth Gilbert, Vincent Gramoli, Rachid Guerraoui, and Jovan Komatovic. As easy

as abc: Optimal (a)ccountable (b)yzantine (c)onsensus is easy! In 36th IEEE International
Parallel and Distributed Processing Symposium, IPDPS 2022.

[CGG21] Pierre Civit, Seth Gilbert, and Vincent Gramoli. Polygraph: Accountable byzantine agreement.
In Proceedings of the 41st IEEE International Conference on Distributed Computing Systems
(ICDCS’21), Jul 2021.

[CGLR18] Tyler Crain, Vincent Gramoli, Mikel Larrea, and Michel Raynal. Dbft: Efficient leaderless
byzantine consensus and its application to blockchains. In 2018 IEEE 17th International Sym-
posium on Network Computing and Applications (NCA), pages 1–8. IEEE, 2018.

[DLS88] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial synchrony.
Journal of the Association for Computing Machinery, Vol. 35, No. 2, pp.288-323, 1988.

[DR85] Danny Dolev and Rüdiger Reischuk. Bounds on information exchange for byzantine agree-
ment. Journal of the ACM (JACM), 32(1):191–204, 1985.

[HKD07] Andreas Haeberlen, Petr Kouznetsov, and Peter Druschel. PeerReview: Practical accountability
for distributed systems. SOSP’07, 2007.

[PSL80] Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reaching agreement in the presence
of faults. J. ACM, 27(2):228–234, 1980.

[SWN+21] Peiyao Sheng, Gerui Wang, Kartik Nayak, Sreeram Kannan, and Pramod Viswanath. Bft pro-
tocol forensics. In Computer and Communication Security (CCS), Nov 2021.

[YMR+19] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan-Gueta, and Ittai Abraham. Hot-
Stuff: BFT consensus with linearity and responsiveness. In Proceedings of the 2019 ACM
Symposium on Principles of Distributed Computing, pages 347–356, 2019.


	Problem Description
	Accountable Confirmer
	BC + Accountable Confirmer = ABC
	Conclusion

