
HAL Id: hal-03654732
https://hal.science/hal-03654732v1

Submitted on 5 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Crimes et Châtiments dans les Systèmes Distribués
Pierre Civit, Seth Gilbert, Vincent Gramoli, Rachid Guerraoui, Jovan

Komatovic, Zarko Milosevic, Adi Serendinschi

To cite this version:
Pierre Civit, Seth Gilbert, Vincent Gramoli, Rachid Guerraoui, Jovan Komatovic, et al.. Crimes
et Châtiments dans les Systèmes Distribués. AlgoTel 2022 - 24èmes Rencontres Francophones sur
les Aspects Algorithmiques des Télécommunications, May 2022, Saint-Rémy-Lès-Chevreuse, France.
�hal-03654732�

https://hal.science/hal-03654732v1
https://hal.archives-ouvertes.fr

Crimes et Châtiments dans les Systèmes
Distribués

Pierre Civit1 et Seth Gilbert2 et Vincent Gramoli3,4 et Rachid Guerraoui 4

et Jovan Komatovic 4 et Zarko Milosevic 5 et Adi Serendinschi 5

1 Sorbonne University, CNRS, LIP6
2 National University of Singapore
3 University of Sydney
4 EPFL
5 Informal Systems

Considérons un protocole distribué non synchrone dont les 𝑛 processus assurent des propriétés de sûreté et de vivacité
malgré 𝑡 ≤ 𝑛 défaillances (byzantines) arbitraires. Malheureusement, on sait qu’il existe toujours une borne 𝑡0 où il est
impossible de garantir à la fois (i) la sûreté et la vivacité pour 𝑡 ≤ 𝑡0 et (ii) la sûreté seulement pour 𝑡 > 𝑡0.
Dans cet article, nous proposons une transformation générique, appelée 𝜏𝑠𝑐𝑟 , de tout protocole distribué en une version
responsable (accountable) avec un factor 𝑓 = 𝑚𝑖𝑛(⌈𝑛/3⌉ − 1, 𝑡0) qui (i) continue à garantir la sûreté et la vivacité pour
𝑡 ≤ 𝑓 et (ii) garantit que les processus corrects obtiennent ultimement une preuve de culpabilité contre au moins 𝑡0 + 1
processus byzantins responsables de toute violation de sûreté. Combinée à une punition adéquate, une telle détection
incite naturellement à l’exemplarité.

Mots-clefs : responsabilité, détection, fautes Byzantines, incitatifs, systèmes distribués

1 Introduction
There are known limitations to the tasks distributed protocols can solve. For example it is well-known

that the consensus problem cannot be solved if more than 𝑡0 = ⌈𝑛/3⌉ − 1 processes are Byzantine. Similar
results apply to set agreement or lattice agreement. These safety violations can be dramatic, e.g. leading to
what is called a double spending in a blockchain.

Accountability, pioneered by [HKD07], is a potent property in mitigating safety violations. In the context
of distributed protocols, accountability enables correct processes to conclusively detect culprits. However,
in non-synchronous systems, one cannot distinguish a process whose message is delayed from a silent
process and [HKD07] only provide completeness, i.e. every Byzantine process is eventually suspected
forever by a at least one correct process.

In this paper, we consider another property requiring that safety violation implies that every correct
process eventually obtains undeniable proofs of misbehaviour, which has been considered by the commu-
nity only recently for some particular decision tasks like consensus [CGG+] or lattice agreement [dSKRT].
We generalize theses results, by proposing a generic compiler, called 𝜏scr, that transforms any distributed
protocol into an accountable version. The transformation is strongly inspired by the well-studied simula-
tion [AW04] of crash failures on top of Byzantine ones.

2 Generic Accountability Transformation
In this section, we present our generic accountability transformation 𝜏𝑠𝑐𝑟 that maps any non-synchronous

𝑡0-resilient distributed protocol into its accountable counterpart.
First, we give some preliminaries on the model (section 2.1). Next, we provide an intuition behind

𝜏𝑠𝑐𝑟 (section 2.2). Then, we overview 𝜏𝑠𝑐𝑟 (section 2.3). Finally, we argue that 𝜏𝑠𝑐𝑟 indeed produces
an accountable counterpart of a non-synchronous distributed protocol with a quadratic overhead for the
communication and message complexities by an 𝑂 (𝑛2) factore (see theorem 1).

Pierre Civit et Seth Gilbert et Vincent Gramoli et Rachid Guerraoui et Jovan Komatovic et Zarko Milosevic et Adi Serendinschi

2.1 Preliminaries
Distributed protocol We consider a set Ψ of |Ψ| = 𝑛 asynchronous processes that communicate by ex-
changing messages through a non-synchronous (either fully asynchronous or partially synchronous [DLS88])
reliable point-to-point network. Each process 𝑝 ∈ Ψ is assigned a protocol Π𝑝 to follow that describe the
way to send messages and to move from one state to another in accordance with messages delivery. We
assume an idealized PKI, where each message sent by Π𝑝 is properly authenticated. A message content 𝑚
properly signed by process 𝑝 is noted ⟨𝑚⟩𝜎𝑝

. The adversary is assumed to be bounded, i.e., signatures of
processes that follow their protocol cannot be forged. Processes can forward messages to other processes,
they can include messages in other messages they send, and we assume that an included or forwarded
message can still be authenticated. Each message 𝑚 has a unique sender(𝑚) ∈ Ψ and a unique receiver
receiver(𝑚) ∈ Ψ. A tuple Π = (Π𝑝 ,Π𝑞 , ...,Π𝑧), where Ψ = {𝑝, 𝑞, ..., 𝑧}, is a distributed protocol. An
event is either the (local) send of some messages or the (local) reception of some messages or terminal in-
puts (e.g. timer expiration [DLS88]). An execution is a well-formed sequence of events, i.e. every received
message was previously sent. Similarly, a behavior is a well-formed sequence of events that occur on the
same process 𝑝 ∈ Ψ. Given an execution 𝛼, 𝛼 |𝑝 denotes the sequence of events in 𝛼 associated with a
process 𝑝 ∈ Ψ (i.e., the behavior of 𝑝 given 𝛼). A behavior 𝛽𝑝 is valid according to Π𝑝 if and only if it
conforms to the assigned protocol Π𝑝 . A process 𝑝 is correct in an execution 𝛼 according to Π if and only if
𝛼 |𝑝 is valid according to Π𝑝 . Otherwise, 𝑝 is faulty in 𝛼 according to Π. A protocol can potentially ensure
a conjunction of some safety properties (nothing bad occur) and a conjunction of some liveness properties
(something good eventually happen) with 𝑡0-resiliency, i.e. as long as the number of faulty processes is
𝑡 ≤ 𝑡0.

Accountability A set 𝑀 of (different) messages properly signed by a process 𝑝 is a proof of culpability
against 𝑝 according to distributed protocol Π if and only if no execution 𝛼 of Π exists such that 𝑝 is correct
and sends every message 𝑚 ∈ 𝑀 in 𝛼.

Let Π be a distributed protocol that ensures safety properties 𝑃𝑆 and liveness properties 𝑃𝐿 with 𝑡0-
resiliency. A distributed protocol Π̄ is an accountable counterpart of Π with factor 𝑓 ∈ [1, 𝑡0] if there
exists a homomorphic transformation (Π̄,Π, 𝜇𝑒) † with 𝜇𝑒 : execs(Π̄) → execs(Π) that satisfies (1) So-
lution Preservation, i.e. for every infinite execution 𝛼̄ ∈ 𝑒𝑥𝑒𝑐𝑠(Π̄) with less than 𝑓 Byzantine processes,
𝜇𝑒 (𝛼̄) ensures both 𝑃𝑆 and 𝑃𝐿 and (2) Accountability, i.e. if safety 𝑃𝑆 is violated by 𝜇𝑒 (𝛼̄) for some
𝛼̄ ∈ 𝑒𝑥𝑒𝑐𝑠(Π̄) , then every correct process eventually obtains 𝑡0 + 1 proofs of culpability against as many
Byzantine processes according to Π.

2.2 Intuition
Consider a distributed system Ψ with |Ψ| = 𝑛 processes that execute a distributed protocol Π. Imagine

an (unrealistic) oracle 𝜃 that belongs to the system and obtains the following abilities: All communication
between processes goes through 𝜃 that forwards a message 𝑚 sent by a process 𝑝 only if 𝜃 observed a correct
behavior from 𝑝, i.e. 𝑝 followed its prescribed local protocol in accordance with the messages received by
𝑝, observed in a non-ambiguous order by 𝜃. Upon the observation of a commission fault from 𝑝, 𝜃 ignores
𝑝 forever. Such abilities allow 𝜃 to see at any point in time, an execution that is benign, i.e., an execution
in which all processes are either correct or have crashed. Furthermore, every message 𝑚 relayed by 𝜃 has a
"fully-correct" causal past.

The main idea behind our 𝜏𝑠𝑐𝑟 transformation is to simulate concepts performed by the 𝜃 oracle. We
explain how that is achieved in the following subsection.

2.3 Overview
Each process is a hierarchical composition of its four layers (see figure 1):
— The state-machine layer: This layer dictates the behavior of the process, i.e., it instructs which mes-

sages are sent and which internal events are produced given the received messages and observed
internal events.

†. Homomorphic transformations preserve a syntactic correspondence between Π̄ and Π and some intuitive properties, e.g. a
correct process in execution 𝛼̄ of Π̄ remains correct in execution 𝜇𝑒 (𝛼̄) of Π

Formatting a submission for AlgoTel

— The verification layer: The responsibility of this layer is creating a benign execution of the system
(i.e., it simulates the correctness verification responsibility of 𝜃). Specifically, the verification module
builds a benign execution out of all secure-delivered messages (see the secure broadcast layer below).
Observe that this layer is concerned with all processes of the system (whereas the state-machine
layer is concerned only with the “host” process). Finally, the verification layer performs a local
computation, i.e., it fulfills its duty irrespectively of the number of faulty processes.

— The secure broadcast layer: Every message instructed to be sent by the state-machine layer is secure-
broadcast. The secure-broadcast (a.k.a. multi-shot reliable-broadcast) is a well-studied primitive of
communication, handling messages of the form ⟨𝑚, 𝑠⟩𝜎𝑞

where 𝑚 is the content of the message, 𝑠
is a sequence number, and ⟨.⟩𝜎𝑞

indicates that the whole is signed by process 𝑞. It is defined with
primitives scr-bcast and scr-deliver that ensures Integrity, i.e. if a correct process p scr-delivers a
message ⟨𝑚, 𝑠⟩𝜎𝑞

with 𝑞 correct, then q has scr-bcast ⟨𝑚, 𝑠⟩𝜎𝑞
, Uniformity, i.e. if a correct process

𝑝 scr-delivers a message ⟨𝑚, 𝑠⟩𝜎𝑞
, then every correct process eventually secure delivers ⟨𝑚, 𝑠⟩𝜎𝑞

,
Obligation, i.e. if a correct process 𝑝 scr-bcasts a message ⟨𝑚, 𝑠⟩𝜎𝑞

, then every correct process
eventually scr-delivers ⟨𝑚, 𝑠⟩𝜎𝑞

and Source Order i.e., if a correct process scr-delivers ⟨𝑚, 𝑠⟩𝜎𝑞
then

𝑝 already scr-delivered a message ⟨𝑚′, 𝑠′⟩𝜎𝑞
for every 𝑠′ ∈ [1, 𝑠[and did not scr-deliver a message

⟨𝑚′′, 𝑠⟩𝜎𝑞
with 𝑚′′ ≠ 𝑚. If a correct process stores at any layer the conflicting messages ⟨𝑚, 𝑠⟩𝜎𝑞

and ⟨𝑚′′, 𝑠⟩𝜎𝑞
with 𝑚 ≠ 𝑚′′, then it broadcasts {⟨𝑚, 𝑠⟩𝜎𝑞

, ⟨𝑚′′, 𝑠⟩𝜎𝑞
} to everyone as a proof of

culpability against 𝑞 which is then ignored forever. Obligation and Uniformity are guaranteed only if
the number of faulty processes does not exceed ⌈𝑛/3⌉−1, while Integrity and Source Order is ensured
for every 𝑡 ≤ 𝑛.

— The network layer: The layer is concerned with network manipulation (i.e., the sending and receiving
of messages).

FIGURE 1: Overview of the 𝜏𝑠𝑐𝑟
transformation

We now explain how the presented layers work in harmony to imple-
ment our 𝜏𝑠𝑐𝑟 transformation. Let us focus on a single correct process
𝑝 ∈ Ψ. Every message 𝑚 instructed to be sent by the state-machine
of 𝑝 is (1) accompanied by the entire ongoing behavior of 𝑝 up to the
point of sending 𝑚 (i.e., accompanied by all messages received by 𝑝

thus far) ‡, and (2) secure-broadcast. In this way, 𝑝 “announces” to all
processes what its ongoing behavior is to allow all processes to safely
verify the correctness of 𝑝. The correctness verification of 𝑝 by a cor-
rect process 𝑞 carries in the way imposed by 𝜃 (see section 2.2):

— It is checked whether the accompanied behavior is indeed cor-
rect.

— It is checked whether the accompanied behavior is a suffix of
the previously verified behavior of 𝑝 (this verification passes be-
cause of the order-preservation property of secure broadcast and
the fact that 𝑝 is correct).

— If either of the previous two verifications does not pass, process
𝑝 is declared as faulty and is ignored by 𝑞 in the future. In our
example, 𝑝 is correct, implying that it will never be declared as
faulty by 𝑞.

— Process 𝑞 verifies that all messages received by 𝑝 in the accom-
panied behavior are “part” of the benign execution built by the
verification module of process 𝑞 §. Note that in executions with
up to ⌈𝑛/3⌉ − 1 Byzantine processes, since 𝑝 is correct and the
properties of the secure broadcast primitive hold, this condition
is eventually satisfied.

— Once the last condition is fulfilled, the accompanied behavior of

‡. The transformation implementation (see [CGG+22]) introduces an optimization by piggybacking just a segment of the behavior
obtained after the last message was sent, i.e., every received message is piggybacked at most once.

§. Since we assume that all messages are authenticated, a process cannot claim to have received a message if that is not the case.

Pierre Civit et Seth Gilbert et Vincent Gramoli et Rachid Guerraoui et Jovan Komatovic et Zarko Milosevic et Adi Serendinschi

𝑝 is included in the benign execution built by the verification
module of 𝑞. Moreover, if 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 (𝑚) = 𝑞, the message 𝑚 is
propagated to the state-machine layer of 𝑞 to have 𝑞 react upon
the message 𝑚.

Observe that all correct processes "see" the same benign execution (created by their verification modules)
in all non-corrupted executions (i.e., executions with up to ⌈𝑛/3⌉ − 1 Byzantine processes). More precisely,
if there are less than ⌈𝑛/3⌉ faulty processes, the verification modules of all correct processes build the same
behavior of every process in the system; note that, formally speaking, observed benign executions (which
are sequences of events) can differ in the order of events that are not causally related.

Theorem 1 (Generic Accountable Counterpart) Let Π be a non-synchronous 𝑡0-resilient distributed pro-
tocol. Then, 𝜏𝑠𝑐𝑟 (Π) is an accountable counterpart of Π with factor 𝑚𝑖𝑛(⌈𝑛/3⌉−1, 𝑡0). The communication
complexity is multiplied by a 𝑂 (𝑛2) factor .

PROOF SKETCH.
Since properties of secure-broadcast are ensured when 𝑡 ≤ ⌈𝑛/3⌉ − 1, the transformation does not tackle

liveness when 𝑡 ≤ 𝑚𝑖𝑛(⌈𝑛/3⌉ − 1, 𝑡0). Namely (1) every message sent by a correct process is eventually
validated by every correct process and (2) if a message is validated by a correct process, then it will be
eventually validated by every correct process, avoiding a deadlock for some correct processes during the
validation procedure caused by Byzantine processes.

Recall that the verification module works correctly irrespectively of the number of faulty processes.
Hence, every correct process 𝑝 that adopted a behaviour 𝛽𝑝 leading to a safety violation has observed a
benign execution 𝛼𝑝 (via its verification module) with 𝛽𝑝 = 𝛼𝑝 |𝑝 . If safety is violated and no more than 𝑡0
pairs of conflicting messages are sent, it would be possible to devise an execution where 𝑡0 faulty processes
violate safety by interacting with each correct process 𝑝, exactly as they do in 𝛼𝑝 . Hence, we reach a
contradiction with the fact that the distributed protocol is 𝑡0-resilient.

The quadratic overhead comes from the secure-broadcast layer. Indeed, the Uniformity property is sub-
ject to the well-known 𝑂 (𝑛2) Dolev-Reischuk bound. □

The costly overhead comes from the generality of the solution. Since we do not know which part of the
generic protocol Π is subject to an attack that might violate safety, all the messages are reliable-broadcast to
cover all the possibilities. For some specific protocols ([CGG+], [dSKRT]), it is possible to only reliable-
broadcast some crucial messages to decrease significantly the overhead.

References
[AW04] Hagit Attiya and Jennifer L. Welch. Distributed computing - fundamentals, simulations, and

advanced topics (2. ed.). Wiley series on parallel and distributed computing. Wiley, 2004.

[CGG+] Pierre Civit, Seth Gilbert, Vincent Gramoli, Rachid Guerraoui, and Jovan Komatovic. As easy
as abc: Optimal (a)ccountable (b)yzantine (c)onsensus is easy! In 36th IEEE International
Parallel and Distributed Processing Symposium, IPDPS 2022.

[CGG+22] Pierre Civit, Seth Gilbert, Vincent Gramoli, Rachid Guerraoui, Jovan Komatovic, Zarko Milo-
sevic, and Adi Serendinschi. Crime and punishment in distributed byzantine decision tasks.
IACR Cryptol. ePrint Arch., page 121, 2022.

[DLS88] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial synchrony.
Journal of the Association for Computing Machinery, Vol. 35, No. 2, pp.288-323, 1988.

[dSKRT] Luciano Freitas de Souza, Petr Kuznetsov, Thibault Rieutord, and Sara Tucci Piergiovanni.
Brief announcement: Accountability and reconfiguration - self-healing lattice agreement. In
Seth Gilbert, editor, 35th International Symposium on Distributed Computing, DISC 2021.

[HKD07] Andreas Haeberlen, Petr Kouznetsov, and Peter Druschel. PeerReview: Practical accountability
for distributed systems. SOSP’07, 2007.

	Introduction
	Generic Accountability Transformation
	Preliminaries
	Intuition
	Overview

