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ABSTRACT
The explosion of data volumes generated by an increasing number of applications is strongly impacting
the evolution of distributed digital infrastructures for data analytics and machine learning (ML). While
data analytics used to be mainly performed on cloud infrastructures, the rapid development of IoT
infrastructures and the requirements for low-latency, secure processing has motivated the development
of edge analytics. Today, to balance various trade-offs, ML-based analytics tends to increasingly
leverage an interconnected ecosystem that allows complex applications to be executed on hybrid
infrastructures where IoT Edge devices are interconnected to Cloud/HPC systems in what is called the
Computing Continuum, the Digital Continuum, or the Transcontinuum.

Enabling learning-based analytics on such complex infrastructures is challenging. The large scale
and optimized deployment of learning-based workflows across the Edge-to-Cloud Continuum requires
extensive and reproducible experimental analysis of the application execution on representative testbeds.
This is necessary to help understand the performance trade-offs that result from combining a variety
of learning paradigms and supportive frameworks. A thorough experimental analysis requires the
assessment of the impact of multiple factors, such as: model accuracy, training time, network overhead,
energy consumption, processing latency, among others.

This review aims at providing a comprehensive vision of the main state-of-the-art libraries and
frameworks for machine learning and data analytics available today. It describes the main learning
paradigms enabling learning-based analytics on the Edge-to-Cloud Continuum. The main simulation,
emulation, deployment systems, and testbeds for experimental research on the Edge-to-Cloud Contin-
uum available today are also surveyed. Furthermore, we analyze how the selected systems provide
support for experiment reproducibility. We conclude our review with a detailed discussion of relevant
open research challenges and of future directions in this domain such as: holistic understanding of
performance; performance optimization of applications;efficient deployment of Artificial Intelligence
(AI) workflows on highly heterogeneous infrastructures; and reproducible analysis of experiments on
the Computing Continuum.

1. Introduction
The current digital revolution is impacting human be-

ings in the way they live, work, learn, and communicate.
This has resulted in impressive progress in many areas such
as Cloud Computing, High-Performance Computing (HPC),
Artificial Intelligence (AI), Big Data Analytics, and the In-
ternet of Things. Furthermore, new challenging application
scenarios are emerging from a variety of domains such as au-
tonomous vehicles, real-time manufacturing, precision agri-
culture, smart cities, to cite just a few [152, 93].

The explosion of data generated by many applications
in the aforementioned areas and the need for real-time an-
alytics and fast decision making has resulted in a shift of
the data processing paradigms, as well as of Machine Learn-
ing (ML) paradigms, from centralized approaches towards
decentralized and multi-tier computing infrastructures and
services [89]. Data processing and AI workflows can no
longer rely on traditional approaches that send all data to
centralized and distant Cloud datacenters for processing or
AI model training and inference. Instead, they need to lever-
age myriads of resources close to the data generation sites
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(i.e., in the Edge or Fog) in order to promptly extract in-
sights [10] and satisfy the ultra-low latency requirements of
applications, while keeping reasonable resource usage and
preserving privacy constraints. In practice, to balance con-
tradictory requirements, in many situations it makes sense
to weight the respective benefits of centralization and decen-
tralization and make appropriate trade-offs to smartly use the
advantages of each type of infrastructure.

This contributes to the emergence of what is called the
Computing Continuum [49] (or the Digital Continuum or the
Transcontinuum). It seamlessly combines resources and ser-
vices at the center of the network (e.g., in Cloud datacenters),
at its Edge, and in-transit, along the data path. Typically,
data is first generated and preprocessed (e.g., filtering, basic
inference) on Edge devices, while Fog nodes further pro-
cess partially aggregated data. Then, if required, data is
transferred to HPC-enabled Clouds for Big Data analytics,
Artificial Intelligence model training, and global simulations.

Due to the complexity incurred by application deploy-
ments on such highly distributed and heterogeneous Edge-
to-Cloud infrastructures, the Computing Continuum vision
remains to be realized in practice. Deploying, analyzing, and
optimizing large-scale, real-life applications on such infras-
tructures requires configuring a myriad of system-specific
parameters (e.g., from AI and Big Data systems, applications,
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ingestion systems, among others) and reconciling many re-
quirements or constraints in terms of interoperability, mobil-
ity, communication latency, network efficiency, data privacy,
and hardware resource consumption (e.g., GPU memory,
CPU power, storage size, and others) [156].

Furthermore, enabling intelligence on the Edge-to-Cloud
Continuum to allow fast and accurate decision making re-
quires the efficient deployment of complex AI workflows
on massively distributed infrastructures composed by het-
erogeneous resources. Therefore, enabling intelligence on
the Computing Continuum requires the reproducible and ex-
tensive evaluations of AI workflow deployments exploring
the combination of a variety of ML paradigms and frame-
works and analyzing their performance trade-offs and impact
on performance metrics such as model accuracy, training
time, network overhead, energy consumption and application
processing latency.

This systematic literature review provides a comprehen-
sive vision of the main state-of-the-art libraries and frame-
works for ML and Data Analytics. It also describes the main
learning paradigms for enabling intelligence on the Comput-
ing Continuum. The main contributions of this paper are:

1. A taxonomy of Data Analytics and AI libraries and
frameworks, and ML paradigms that may compose
Edge-to-Cloud workflows to enable intelligence on the
Computing Continuum.

2. A synthetic presentation of the main systems for simu-
lation, emulation, and deployment, as well as the rele-
vant large scale testbeds for experimental evaluation
of complex Edge-to-Cloud workflows.

3. An analysis of how the studies included in our sys-
tematic review provide support for experiment repro-
ducibility, an important requirement of the research
community that allows scientific claims to be verified
by others. We evaluated each article in terms of: (a)
access to artifacts; (b) definition of the experimental
setup; and (c) access to results.

4. A discussion of the relevant open research challenges
and future directions to enable intelligence on the Edge-
to-Cloud Continuum, such as: holistic understanding
of performance of applications; performance optimiza-
tion of Edge-to-Cloud workflows; efficient deployment
of complex AI workflows on highly heterogeneous in-
frastructures; and support of the reproducible analysis
of Edge-to-Cloud experiments.

The remainder of this paper is organized as follows. First,
we compare our work with the existing surveys/reviews and
motivate the need for our review in Section 2. In Section 3, we
describe the methodology exploited to guide our systematic
review. Then, we provide answers to the research questions
raised by our methodology in Sections 4 to 9. In Section 4,
we present the main frameworks and libraries for ML in the
Edge and in the Cloud. In Section 5 we present the main
frameworks and libraries for Data Analytics. Next, Section 6

discusses recent efforts on combining ML and Data Analytics
across the Edge-to-Cloud Continuum, as well as the main
learning paradigms used. Section 7 presents the main systems
for simulation, emulation and deployment for experimental
research and the relevant large-scale testbeds. Furthermore,
it presents how the selected studies provide support for the
experiment reproducibility. Finally, Section 8 highlights the
major findings and Section 9 discusses the research challenges
in this area. Section 10 concludes this review.

2. Related Work and Motivation
Previous surveys and systematic reviews in the context

of the Computing Continuum focused on a variety of do-
mains, such as: resource management [18, 94], security and
privacy [104, 8], architectures [40, 29, 6, 64], robotics [149],
blockchain [138, 58], just to cite a few. The scope of our
work is larger: while focusing on distributed intelligence on
the continuum, we review articles in the fields of Machine
Learning (ML) and Data Analytics (DA) applied on Edge,
Cloud, and Edge-to-Cloud environments. Below we discuss
how our work compares to recent surveys in these fields.

Machine andDeep Learning across the Edge-to-Cloud
Continuum. A recent survey [7] explores evolving comput-
ing paradigms such as Edge, Fog, and Cloud highlighting the
latest innovations resulted from their fusion with ML. The
authors discuss open research challenges such as: scalability,
deployment, failure management, hardware heterogeneity,
resource management, security, and interoperability. Fur-
thermore, they present future prospects, including: Big Data
Analytics for fast data-driven decision making; Artificial
Intelligence to enhance resource management, energy man-
agement, security, and reliability; Serverless Computing for
leveraging the infrastructure scalability and decreasing the
application response time, latency, and energy consumption.

A review on ML for data processing and management
tasks across the Edge-to-Cloud continuum is presented in [125].
The authors categorize the usage of ML according to the ap-
plication domain, ML techniques, input data type, and where
they belong in the continuum. Besides, they discuss the re-
search trends toward efficient ML on the edge, in particular:
the optimization of ML techniques to reduce their power
consumption, memory requirement, and computation inten-
sity; efficient hardware for embedded ML; offloading ML
tasks among Edge-to-Cloud resources; and collaborative ML
training.

In [98], the authors review communication-efficient dis-
tributed Machine Learning strategies for the Edge-to-Cloud
continuum. They introduce the principles of distributed ML
operations and approaches of implementing parallelism and
distribution. Furthermore, authors discuss communication
inefficiencies in distributed ML on the Edge and the existing
communication-efficient processing techniques for training in
resource-limited devices. Lastly, they present research direc-
tions where further advancements in communication-efficient
distributed ML may be made.

A review of deep learning applications such as computer
vision, virtual and augmented reality, and natural language
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processing running on Edge devices is presented in [30]. Au-
thors discuss edge-only, hybrid edge-cloud and distributed
computing approaches to accelerate deep learning training
and inference. They summarize the selected articles in terms
of architecture, DNN model, application, key metrics, and
Edge hardware used. Lastly, they discuss the challenges in
deploying deep learning on Edge-to-Cloud environments,
such as: management and scheduling of Edge resources, en-
ergy consumption, application migration, benchmarks, and
privacy. In this research direction, authors [150] describe
the methods and architectures to execute deep learning infer-
ence and training at the edge. They also discuss open issues
regarding the deployment of deep learning at the edge.

An overview of existing Edge Computing systems is pre-
sented in [83]. It discusses techniques to support Deep Learn-
ing models at the Edge, for example: (1) systems and toolkits:
OpenEI, a framework for Edge Intelligence; AWS IoT Green-
grass, for ML Inference; Azure IoT Edge; and Cloud IoT
Edge; and (2) open source Deep Learning packages: Tensor-
Flow, Caffe2, PyTorch, MXNet, and some distributed Deep
Learning models over Cloud and Edge such as DDNN and
Neurosurgeon.

The confluence of IoT and AI detailing their potential ap-
plications and open issues is discussed in [96]. It presents the
recent approaches for deploying DL on resource constrained
Edge devices, Fog and Cloud. They also discuss the two
main categories of IoT data generation, such as IoT stream-
ing data and IoT Big Data, as well as their requirements for
analytics. Lastly, authors highlight the challenges for the suc-
cessful merging of DL and IoT applications, such as the lack
of real-world datasets for IoT applications; the preprocessing
of raw data for DL model training; ensuring data security and
privacy in IoT applications; and online resource provisioning
for IoT analytics; just to cite a few.

Data Analytics across the Edge-to-Cloud Continuum.
In [14] the authors provide a review focusing on the efforts
of using Big Data Analytics solutions in the Edge-to-Cloud
Continuum. They present the relevant Data Analytics plat-
forms (e.g., Hadoop, Flink, Spark, Storm, Nifi, and others)
and Machine Learning libraries (e.g., Spark MLlib, Tensor-
flow, Keras, Scikit-learn, etc.) to enable a real-time Big Data
pipeline from the Edge to the Cloud. Lastly, authors discuss
the following open challenges: interoperability, characteriz-
ing smart city applications, and privacy issues.

A survey on IoT Big Data Analytics covering Big Data
generation, acquisition, storage, learning, and analytics is
presented in [131]. It discusses parallel processing models
and engines for the analysis of Big Data such as Spark, Flink,
and Storm. Regarding IoT Big Data learning, they present
Machine Learning frameworks working on Big Data and
processing in parallel such as Spark MLlib, SAMOA, and
FlinkML. Lastly, authors highlight open issues related to
Machine Learning and Big Data Analytics in IoT.

A review on Edge, Fog, and Cloud computing infrastruc-
tures used for IoT Big Data Analytics is presented in [13].
Authors review the combination of DL and Big Data Ana-
lytics in the development of smart cities and provide a com-

parison of deep learning frameworks and libraries; models;
and datasets used in smart city applications. Furthermore,
they review articles exploiting IoT and DL to develop intel-
ligent applications and services for smart cities and outline
the challenges in developing such applications.

In summary, all these related works focus on specific
domains such as: Machine Learning on the Edge-to-Cloud
continuum [7, 125, 98]; Deep Learning mainly focusing on
the Edge, but also discussing hybrid Edge-Cloud deploy-
ments [30, 150, 83, 96]; and Data Analytics on Edge-to-
Cloud environments [14, 131, 13].
Motivation: study the challenges of ML and DA con-
vergence across the Continuum. As opposed to these
previous studies, we are interested in the specific issues (and
the frameworks that address them) arising at the frontier of
DL and ML, as this combination is rapidly gaining traction as
a standard for analytics on the continuum. To the best of our
knowledge, our literature review is the first to systematically
explore the recent efforts and to summarize the existing ap-
proaches on applying Machine Learning, Data Analytics, and
their combination to enable distributed intelligence on the
Edge, Cloud, and Edge-to-Cloud continuum. Furthermore,
our review is unique especially from two main perspectives:
(1) it discusses relevant open challenges and research op-
portunities identified after reviewing the articles; and (2) it
provides an extensive analysis of the articles in terms of ex-
perimental evaluations and validation, allowing to identify:
(i) the relevant large-scale testbeds; (ii) simulation, emulation,
and deployment systems; (iii) the common ML/DA frame-
works and libraries; metrics; the common models/algorithms,
datasets, and Edge hardware; (iv) the scale of the testbeds
used to validate the proposed solutions; and (v) their support
for reproducibility.

3. Review Methodology
The systematic review methodology leveraged in this

work is based on [71, 48]. The Figure 1 illustrates the three
main processes of the review, which are: 1) Planning the
Review; 2) Conducting the Review; and 3) Reporting the
Review. Next, we describe their corresponding activities in
detail.
3.1. Planning the Review

In more and more application areas, we are witnessing
the emergence of complex workflows that combine comput-
ing, analytics and learning. Such application workflows are
evolving towards an interconnected ecosystem that often re-
quire a hybrid execution infrastructure from IoT devices to
Cloud/HPC systems (aka Computing Continuum). A holis-
tic understanding of the complex continuum ecosystem is
challenging.
3.1.1. Identify the Need for the Review

This systematic review aims to provide a taxonomy of
libraries, frameworks, and learning paradigms that compose
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Figure 1: Systematic review methodology.

Edge-to-Cloud workflows to enable intelligent analytics. Fur-
thermore, we highlight systems and testbeds that allow the
analysis of such Edge-to-Cloud workflows, as well as the
recent efforts to enable the computing continuum vision and
the relevant research opportunities.
3.1.2. Define the Research Questions

The objective of the systematic review is to answer the
following research questions with a focus on the Edge-to-
Cloud Continuum:
RQ1. What are themain state-of-the-art methods for Ma-

chine Learning and Data Analytics?
RQ2. How are the existingMachine Learning andData An-

alytics approaches combined to enable intelligence?
RQ3. What are the existing solutions for experimental re-

search and how do the selected studies support the
reproducibility of the experiments?

RQ4. What are the open challenges and research opportu-
nities in this area?

3.1.3. Define the Search String
The keywords used in the search queries are: IoT, edge,

fog, big data, stream processing, learning and intelligence.
Therefore, the search string applied in the scientific databases
is: "IoT" AND ("edge" OR "fog") AND "big data" AND
"stream processing" AND ("learning" OR "intelligence").
3.1.4. Define the Sources of Research

The selected scientific databases are: ScienceDirect, ACM,
IEEE Xplore, Springer Link, and Usenix (FAST, NSDI, ATC,
HotEdge, and HotCloud).

3.1.5. Define Inclusion and Exclusion Criteria
The search scope of this study is limited to journal and

conference articles, magazines and book chapters published
between January 2016 and August 2021.

The main characteristics that the articles must present
to be included in this systematic review are: (1) help to an-
swer to at least one of the four research questions defined in
Subsection 3.1.2; and (2) evaluate existing or propose novel
systems, frameworks or architectures enabling intelligence on
the Edge, Cloud, or Edge-to-Cloud environments. Articles
not respecting these requirements are eliminated.
3.1.6. Define the Data Extraction Procedure

The process of extracting information from the articles
consists in filling a form that is designed to answer the re-
search questions of the systematic review. Therefore, the
form is structured as follows: title, publication year, scien-
tific database, venue, resume of the contributions, frame-
work/libraries for learning or analytics cited, experimental
approach, and open challenges or future works.
3.2. Conducting the Review

The search string applied on the scientific databases re-
turned a total of 1159 articles: 242 from ScienceDirect; 206
from ACM; 325 from IEEE Xplore; 290 from Springer Link;
and 96 from Usenix.
3.2.1. Identify the Primary Studies

As a refinement step, we started the screening process,
which consists in reading the abstract and conclusions for
each article. This refinement step eliminates out of scope
articles. Finally, we selected a total of 69 papers for quality
evaluation and extraction of relevant information.
3.2.2. Evaluate the Quality of the Studies

The quality evaluation of the selected articles is based on
checking if they are related to techniques or approaches that
enable intelligent analytics on the Edge-to-Cloud continuum.
3.2.3. Extract the Relevant Information

For each one of the 69 articles selected in 3.2.1 we read
the whole paper to extract the relevant information and then
fill the form defined in 3.1.6.
3.3. Reporting the Review

Lastly, two types of reports are issued: general statistics
about the studies and answers to the questions raised by our
methodology.
3.3.1. Present an Overview of the Studies

Since the form is filled, we generate relevant statistics
derived from a global analysis of the articles. Such statistics
are aligned to the research questions defined in 3.1.2 and they
are presented in the next sections.
3.3.2. Present the Answers to the Research Questions

Finally, according to the relevant information extracted
from all articles, we structured the remaining sections of our
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(a) Selected articles by scientific database. (b) Selected articles by year of publication.
Figure 2: Percentage of selected articles per year of publication and per scientific database.

Table 1
Selected articles by area and computing paradigm.

Area Percentage Qty. Computing Paradigm Percentage Qty. Papers

Edge 58% 15
[169, 77, 86, 167, 102, 75,
162, 166, 30, 62, 42, 80, 50,
76, 43]Machine Learning (ML) 35% 24

Edge-to-Cloud 42% 9 [144, 31, 128, 170, 97, 85, 57,
67, 119]

Edge 56% 9 [9, 36, 56, 3, 66, 147, 163, 68,
37]

Data Analytics (DA) 23% 16
Edge-to-Cloud 44% 7 [148, 39, 161, 38, 132, 123,

73]

Cloud 36% 10 [4, 88, 118, 145, 109, 101, 84,
12, 99, 157]

Combining ML and DA 42% 29
Edge-to-Cloud 64% 19

[151, 131, 96, 83, 165, 114,
72, 5, 160, 164, 60, 44, 111,
52, 127, 129, 106, 74, 120]

review based on the research questions. From the informa-
tion registered in the form, we grouped, defined taxonomies,
and summarized all articles in order to answer the research
questions.

Figure 2 presents the percentage of selected papers per
scientific database and per year of publication, respectively.
We highlight that after the screening process, no article pub-
lished in 2016 was selected. Table 1 summarizes the selected
articles by area and computing paradigm exploited.

4. Machine Learning Methods on the
Edge-to-Cloud Continuum
Figure 3 presents the taxonomy of learning methods with

a focus on the Edge and across the Edge-to-Cloud Contin-
uum. The distributed training can be achieved across the
Continuum or among Edge devices, while the inference is
typically done at the Edge, for latency purposes. TheMachine
Learning frameworks/libraries identified in the articles are
presented in Tables 11 (designed for the Cloud) and 12 (de-
signed for the Edge), respectively. Table 2 characterizes the
selected articles with respect to the resources exploited in the
experimental evaluations, such as: frameworks and libraries;
application/task; metrics; hardware; models; and datasets.
Table 3 presents a quantitative analysis summarizing Table 2.

4.1. Inference on the Edge
Next, we present the recent efforts to enable inference on

resource-limited Edge devices. The following papers focus
on hardware and software aspects, as well as, frameworks
and algorithms for the efficient inference on Edge devices.

In [42] the authors discuss the potential research direc-
tions to enable Edge Intelligence. First, they discuss how AI
technologies may help to solve complex problems in Edge
Computing, such as: service placement; resource provision-
ing; network planning; mobility management; among oth-
ers. Furthermore, they explore issues on performing AI on
resource-scarce Edge devices and the recent research efforts
to solve problems in this direction, such as: frameworks for
model training and inference; accelerating DNN computa-
tion on hardware; model compression; asynchronous model
aggregation, among others.

In [50] the authors investigate the benefits of using embed-
dedMachine Learning in wearable sensors to increase battery
lifetime. Their approach focus on optimizing data generation
and transferring and uses Support Vector Machines for clas-
sification. Evaluations show that their approach significantly
reduces the amount of data transferred and therefore extends
the battery lifetime of resource-constrained sensors.

A tree-based algorithm for efficient prediction on IoT
devices is proposed in [76]. NamedBonsai, the algorithmwas
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designed to be fast, accurate, compact and energy-efficient at
prediction time. Evaluations show that Bonsai outperforms
state-of-the-art algorithms such as kNN, SVM, and single
hidden layer NN algorithms in terms of accuracy, model size,
inference time, and energy consumption.

A novel framework for collaborative DNN inference on
Edge devices is proposed in [80]. Named Edgent, the frame-
work exploits DNN computation partitioning and DNN right-
sizing to enable low-latency inference. Authors evaluate
Edgent under static and dynamic bandwidth environments
and considered performance metrics for model inference such
as: accuracy, latency requirements, and throughput. Through
experiments on Raspberry Pi (acting as a mobile device), they
demonstrate the effectiveness of Edgent towards low-latency
Edge intelligence.

In [43] the authors discuss strategies for accelerating
DNN inference by partitioning the model between Edge de-
vices. Next, they evaluate the implementation of an offload-
ing system for Deep Learning inference in a Raspberry Pi 3
with the Intel Movidius hardware accelerator. Experimental
results considering metrics such as processing latency, data
transfer latency, and network bandwidth demonstrate that
intelligent offloading may improve the performance when
running in resource constrained Edge devices.

In [169] the authors propose three parallelism schemes
(All-In-One, Pipeline, and Parallel) to deploy Deep Neural
Networks (DNNs) on resource-constrained devices for infer-
ence. Each parallelism approach explores the finer granular-
ity of containerizing a DNN model at the edge. Experimen-
tal evaluations show that parallelizing a VGG-16 model for
inference starts to improve performance as network speed
increases.

Since Edge devices are heterogeneous in terms of hard-
ware characteristics and there is a variety of state-of-the-art
Machine Learning packages that can be used for inference
at the Edge, in [167] authors investigate how such learning
packages perform on different Edge devices. They compare
TensorFlow, Caffe2, MXNet, PyTorch, and TensorFlow-Lite
running two trained CNN-basedmodels (AlexNet as the large-
scale model and SqueezeNet and MobileNet as the small-
scale models) on Edge devices such as MacBook, FogNode,
Jetson TX2, Raspberry Pi, and Nexus 6P. The performance
comparison includes metrics such as latency, memory foot-
print, and energy.

In [62] the authors propose a framework to automatically
port a Cloud-based model to a suite of models for Edge de-
vices. Named Mistify, the framework decouples the model
design (optimized for accuracy) and the deployment (opti-
mized for resource efficiency) phases. Experimental results
show that Mistify reduces the DNN porting time needed to
cater to a wide spectrum of Edge deployment scenarios by
more than 10 times.

In summary, the articles demonstrated that techniques to
minimize the data transfer, reduce the model size, partition-
ing and offloading the model, and parallelizing the inference
among Edge devices, are effective to improve the perfor-
mance when running in resource constrained Edge devices.

Figure 3: Taxonomy of learning methods on the Edge and
Edge-to-Cloud Continuum.

4.2. Distributed Training on the Edge
Next, we present the recent efforts to enable distributed

Machine Learning and Deep Learning training on Edge de-
vices. The following papers focus on lightweight Deep Learn-
ing models, learning paradigms, collaborative learning sys-
tems, and the frameworks and libraries for optimizing Deep
Learning on mobile devices.

In [77] the authors propose a system for enabling iterative
collaborative processing (ICP) in resource constrained Edge
environments with a focus on Machine Learning applications
(e.g., model training). The proposed system consists in a cen-
tral controller that coordinates all the Edge devices (workers).
The controller communicates the initial values of the model
parameters to all the Edge devices and updates the model
parameters at the end of every iteration using the individual
model parameters from all the Edge devices. Lastly, it sends
the updated parameters to the workers for next iteration. This
process repeats until the model parameters have converged.

CLONE [86] is a collaborative learning setting on the
Edge built on top of the Federated Learning algorithm and
long short-term memory networks. In CLONE, the learning
tasks are solved by a group of distributed Edge nodes. Each
Edge node trains the neural network model locally based on
its private data and uploads asynchronously the parameters to
a Parameter EdgeServer. The EdgeServer aggregates those
parameters and sends them back to Edge devices. Experi-
mental results show that, compared to a stand-alone model
training, CLONE reduces training time significantly without
sacrificing prediction accuracy.

A Lightweight Convolutional Neural Network (L-CNN)
is proposed in [102] to enable real-time human identification
on a network Edge using fewer resources and preserving the
high accuracy of CNNs. In order to enhance performance
on Edge, authors propose a hybrid lightweight tracking algo-
rithm named Kerman (Kernelized Kalman filter). Kerman
works along with L-CNN to further improve the speed and
reliability of feature extraction for human abnormal behavior
detection. Experimental results demonstrate that the pro-
posed algorithms can track the humans as objects in real-time
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with decent accuracy at a resource consumption affordable
by Edge devices.

Besides these novel approaches and systems to enable
distributed training on the Edge, some recent efforts focus on
understanding the performance of learning on the Edge.

A survey on Deep Learning applied on mobile network-
ing is presented in [165]. Mobile Data Analytics on Edge
devices is achieved either through distributed Machine Learn-
ing systems such asMLbase, Gaia, TUX [158], and Adam; or,
through Deep Learning libraries such as TensorFlow, Theano,
PyTorch, andMXNET. Sincemobile networks are ever chang-
ing, applications should learn and adapt fast to the domain
changes. Therefore, authors discuss learning paradigms such
as Online Learning, Lifelong Learning, and Transfer Learn-
ing. Lastly, a discussion on open source platforms (e.g.,
TensorFlow, Caffe, and NCNN) that seek to optimize Deep
Learning on mobile devices is presented.

An empirical study of on-device Deep Learning for smart-
phones such as Android devices is presented in [162]. The
study includes 21 frameworks based on their popularity (forks
and stars on GitHub) in which authors investigate how those
frameworks are used in DL applications. Another study [75]
explores scenarios where it is advantageous to do training
on the Edge. Experimental results show that peak memory
footprint, which is crucial for training on Edge devices, can
be reduced by checkpointing strategies such as full binomial
checkpointing.

As a conclusion, the articles demonstrated that lightweight
Deep Learning models may help to reduce the resource usage
while preserving the model accuracy. Furthermore, collab-
orative model training strategies on resource-scarce Edge
devices have been shown to be effective to reduce the train-
ing time without sacrificing accuracy.
4.3. Distributed training across the Edge-to-Cloud

Continuum
The articles presented in this section focus on deploy-

ing and distributing the processing of Machine Learning and
Deep Learning workloads among Edge and Cloud environ-
ments. They propose novel systems and architectures and
analyze the performance trade-offs of Cloud only vs. Edge-
to-Cloud collaborative training.

An overview of challenges and of existing approaches
to distributed Machine Learning for IoT applications in the
Fog is presented in [119]. The authors start by presenting
the main challenges in processing IoT data, such as gener-
ation, transmission, and processing. Then, they highlight
the challenges related to the execution of Machine Learning
techniques in resource constrained Fog devices. Lastly, the
authors present existing approaches to distribute intelligence
on Fog devices with a focus on distributed processing and
information sharing.

[85] provides a review of 5G on traditional and emerging
technologies and share their ideas on future research chal-
lenges and opportunities. In particular, they exploit how
5G can help the development of Federated Learning. They
present the domains impacted by 5G such as Edge comput-

ing, security and privacy, artificial intelligence, and database
systems.

A decentralized distributed Deep Learning system named
DLion is proposed in [67]. DLion builds on top of Tensor-
Flow and implements techniques such as compute capacity-
aware batching, adaptivemodel parameter tuning, and network-
aware data exchange features in order to reduce training time,
improving model accuracy, and providing system scalability
for Deep Learning in micro-clouds. Experiments compare
DLion with existing distributed Deep Learning systems such
as Gaia and Ako, showing that DLion reaches the target accu-
racy faster than them. Besides, the compute capacity-aware
batching technique implemented in DLion helps to reduce
the training time.

The authors of [128] propose a container-based IoT gate-
way architecture for Ambient Assisted Living (AAL) sce-
narios to support the deployment of Deep Learning models.
Such models are implemented and trained in the Cloud to
detect the fall of people and deployed remotely on the Edge
gateways to provide predictive analytics. Results show an im-
provement of the inference time compared to the Cloud-based
approach.

Still in the same direction of fall detection, authors of [97]
propose a system that detects falls on Edge devices (e.g., mo-
bile phones) by using Boosted Decisions Trees. The proposed
approach reduces the amount of data and network traffic sent
to the Cloud and presents almost the same detection capabili-
ties as the classification process performed in the Cloud.

Authors of [170] propose SAFACE, a three-layer Edge
computing system for face recognition. SAFACE employs
Unsupervised Learning which can gradually fine-tune a por-
tion of the face recognition model. The three-layer system
consists of: Cloud, to train the CNN model; middle servers,
for face recognition, fine-tune pre-trained CNN model, and
context-aware scheduling; and Edge, for face detection. Ex-
perimental results demonstrate its advantages in improving
recognition accuracy and reducing processing latency.

In [57], a novel Edge-Cloud Machine Learning system is
proposed. The system combines Edge and Cloud Computing
for IoT Data Analytics by taking advantage of Edge nodes to
reduce the network traffic and latency for Machine Learning
tasks. The results show that using sliding window techniques,
the network traffic can be reduced by up to 80% without
significant loss of accuracy.

A novel architecture named Edge Cloud Orchestrator
(ECO) is proposed in [144]. This architecture aims to or-
chestrate and manage Machine Learning deployments and
execution across distributed layers in both Edge and Cloud.
It supports deployment scenarios such as Federated Learning,
Transfer Learning, and Staged Model Deployment. Further-
more, it supports Machine Learning engines and algorithms
such as Spark MLlib (supports a variety of learning algo-
rithms for classification, regression, clustering, among oth-
ers), FlinkML (supports SVM, multiple linear regression,
k-Nearest neighbors, among others), and TensorFlow (sup-
ports SVM, Gradient Boosting Machine, Random Forests,
Naive Bayes, k-nearest neighbors, etc.).
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In [31] the authors explore the use of Synthetic Gradients
(SG) for model-parallel training of a Deep Neural Network
(DNN) model. This approach distributes the training of the
various layers in the Cloud and resource-limited Edge de-
vices. They compare the feasibility of the SG approach with
the conventional back propagation method and evaluate its
accuracy and convergence speed considering a four-layered,
an eight-layered, and a VGG16 model. Results show that
the four-layered model presents comparable performance for
SG and back propagation, but an accuracy degradation is
observed for the VGG16 model using SG. Regarding the con-
vergence speed, using SG, the model learns slower than the
back propagation method even while increasing the number
of layers in the model.

The articles previously presented demonstrate the bene-
fits of collaborative Edge-to-Cloud training. The main per-
formance improvements of such Edge-to-Cloud approaches
refer to: reducing the training time without significant loss
of accuracy; reducing the amount of data sent to the Cloud
and thus the network traffic; and reducing the end-to-end
processing latency of Machine Learning and Deep Learning
applications.
4.4. Main takeaways

This section aims to answer the following research ques-
tion: What are the main state-of-the-art methods for Machine
Learning on the Edge-to-Cloud Continuum? We organize
the existing approaches and the selected studies in two main
categories, they are: inference and distributed training on the
Edge; and distributed training combining Edge and Cloud.

We highlight that there is not a single library or framework
that fits all the needs given the heterogeneous and complex na-
ture of the Edge-to-Cloud Computing Continuum. Therefore,
the idea is to provide scientists and engineers a clear vision of
the main solutions and existing artifacts and resources (e.g.,
frameworks/libraries; application/task; metrics; hardware;
models; and datasets) so that they can easily identify which
ones may be exploited to better attend to their project and
research needs.

Next, we summarize themain limitations of perform-
ing Machine Learning over Edge devices: (i) comput-
ing power: Edge devices are typically limited in terms of
accelerator memory (CPU, GPU, TPU) and storage, thus
they can not handle large ML/DL models. This can be al-
leviated either by minimizing the model size (while main-
taining accuracy) or by distributing the model across de-
vices [43, 169, 62, 77, 86, 102, 75, 67, 31]; (ii) network
communication: Edge devices are typically interconnected
through wireless low-bandwidth and unreliable network links.
They may become offline at any time for any reason or the
network may be congested. This requires fault-tolerant and
communication-efficient approaches for distributed model
training [80, 169, 57, 98]; and (iii) energy consumption:
Edge devices are typically battery-powered, thus they can not
handle energy-intensive ML/DL tasks. This should be ad-
dressed by energy-efficient inference and training techniques
to extend the battery lifetime [50, 76].

Figure 4: Taxonomy of analytics approaches on the Edge-to-
Cloud Continuum.

The articles presented will serve as a basis to identify the
recent efforts and also how such libraries and frameworks
are being used for: collaborative learning on the Edge and
Fog; deploying Neural Networks and performing distributed
Machine Learning tasks on resource-constrained devices;
how these libraries and frameworks perform on Edge devices;
and performance trade-offs for training on the Edge vs. on
the Cloud.

5. Data Analytics Methods on the
Edge-to-Cloud Continuum
Figure 4 presents the taxonomy of analytics approaches

with a focus on the Edge and Edge-to-Cloud Continuum.
The Data Analytics frameworks identified in the articles are
presented in Tables 13 (designed for the Cloud) and 14 (de-
signed for the Edge), respectively. Table 4 characterizes
the selected articles with respect to resources exploited in
the experimental evaluations, such as: frameworks; applica-
tion/task; metrics; and hardware. Table 5 presents quantita-
tive analysis summarizing Table 4. In the next subsections,
we present how these frameworks support analytics on the
Edge-to-Cloud Continuum.
5.1. Data Processing on the Edge

Typically, IoT applications are latency-sensitive and they
generate large amounts of data from sensors and Edge de-
vices. Processing such data efficiently on the Edge of the
network to obtain insights and react fast is critical. This sec-
tion presents the recent efforts and novel systems proposed
to distribute data processing among Edge devices to achieve
high throughput and low latency.

In [147] the authors focus on using Edge computing for
real-time analysis of healthcare systems. They discuss chal-
lenges of Edge computing such as: performance, deploy-
ment expertise in order to consider various parameters like
infrastructure configurations, connectivity, and energy re-
quirements; and data management.

A systematic study of data stream processing and analyt-
ics in the Fog considering four dimensions, such as system,
data, human, and optimization is presented in [163]. For
each dimension, the authors present technical issues and new
design challenges. For example, high throughput and low
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latency in stream processing systems can be achieved by op-
timizing their configurations such as: the number of bolts in
the Storm DAG topology or the micro-batch size of Spark
streaming, among others.

In the same direction of achieving high throughput and
low latency, a novel stream processing engine focused on the
Edge named EdgeWise is proposed in [56]. The idea behind
EdgeWise is the use of a congestion-aware scheduler and a
fixed-size worker pool to improve throughput and latency.
The authors compare EdgeWise with Storm deployed on a
cluster of up to 8 Raspberry Pi nodes and they observe that
EdgeWise reports up to 3 times improvement in throughput
while keeping latency low.

[37] proposes an approach to enable distributed data pro-
cessing within a cluster of Edge devices. The proposed ap-
proach extends Apache NiFi core functionality to include
three custom processors such as CaptureVideo, DetectFaces,
and RecogniseFaces. Experiments show that the proposed
approach has the potential to outperform the Cloud-enabled
setup.

A novel distributed architecture that extends Apache NiFi
to enable stream data processing at the Edge of the IoT net-
work is presented in [36]. Edge Cluster Stream Processing
(ECStream) allows time-constrained data-intensive applica-
tions to be entirely deployed and executed at the Edge and it
is based on a task parallelism model where atomic tasks are
offloaded to peer Edge devices, rather than the full workflow.

An Edge Intelligence framework for building service-
oriented IoT is proposed in [68]. The framework allows
developers to build stream processing capabilities on Edge
server devices and use local streaming analytics to make IoT
applications smart. Through annotation based programming
primitives developers can design their local intelligent capa-
bilities. The authors compare the latency of activity recogni-
tion engine implementations running on an Edge server and
on the Cloud. Experiments show that the proposed framework
can improve performance without degrading the recognition
accuracy.

A new Fog platform for data stream analytics in IoT is
proposed in [3]. It aims to exploit the computational capacity
of Fog devices to process and analyze data without requiring
a frequent use of Cloud resources. Experimental evaluations
show that the proposed system can analyze data streams with
low processing delay and low network utilization.

In [66] the authors propose Fed4Edge, a system that en-
ables the coordination of resources available in Edge devices
to process query pipelines in a collaborative way. Fed4Edge
uses RDF Stream Processing (RSP) engines as autonomous
processing agents. Large scale evaluations on a cluster of
Raspberry Pi show that the scalability can be significantly
improved by adding more Edge devices to a network of pro-
cessing nodes.

A model synchronization mechanism for distributed and
stateful data analytics named SCEDA is proposed in [9].
The authors use Reinforcement Learning to make dynamic
scheduling decisions by learning individual network connec-
tivity trends of Edge nodes as well as the significance of their

updates. The proposed approach tackles the concept drift
and connectivity issues in Edge data analytics to minimize
its accuracy handicap without losing its timeliness benefits.
Experimental results show that SCEDA can achieve a com-
parable level of accuracy as core data analytics.

In summary, the articles presented exploit the computa-
tional capacity of Edge devices to process and analyze data
in a distributed way. The proposed approaches contribute to
allow data-intensive and latency-sensitive applications to be
entirely processed on Edge devices.
5.2. Big Data Processing across the Edge-to-Cloud

The articles presented in this section focus on novel ar-
chitectures and frameworks exploiting collaborative Edge-to-
Cloud data processing for enabling real-time data analytics.
The articles also aim to analyze the performance trade-offs of
Cloud only vs. Edge-to-Cloud collaborative data analytics.

In [38], the authors propose a novel IoT distributed Stream
Processing architecture that distributes the workload among
a cluster of Edge devices. The proposed solution extends
Apache NiFi with new services to discover and select devices
able to perform offloaded tasks according to hardware and
software requirements. The evaluation scenario consists of
an intelligent surveillance system and the authors compare
the performance of a cluster of Edge devices with a Cloud
setup. Results show that an Edge cluster of 6 nodes performs
up to 5-6 times faster than the Cloud deployments.

Later, the same authors proposed [39] a distributed hi-
erarchical data fusion architecture based on Complex Event
Processing technology to handle streaming data. This ap-
proach produces timely and accurate results with minimum
time delay, as soon as necessary information is generated and
collected. The authors compare their solution (distributed
hierarchical data fusion) with a traditional one (sending all
low-level sensor readings to a central Cloud for analysis) and
evaluations show that at lower levels (e.g., Edge and Fog)
decisions can be taken 20x and 90x times faster.

In [132], the authors propose a novel framework of col-
laborative Edge-Cloud processing for enabling live data ana-
lytics in wireless IoT networks. They also present potential
key enablers for the proposed framework and highlight some
of the research directions for Big Data aware collaborative
Edge-Cloud processing, such as adaptive learning/prediction
algorithms.

In [123], the authors propose a novel framework that al-
lows the deployment and optimization [121] of Big Data An-
alytics applications on the Edge-to-Cloud continuum. They
illustrate and validate the framework with a smart surveil-
lance application composed by data processing frameworks
such as Edgent (on the Edge) and Apache Flink and Kafka
(on the Cloud). Experimental evaluations exploit the perfor-
mance trade-offs of Cloud-centric vs. hybrid Edge-Cloud
processing approaches to understand how they impact metrics
such as latency and throughput of the application.

[161] proposes a novel framework that uses fine-grained
stream processing to provide high resource utilization while
meeting latency targets. Named Cameo, the framework dy-
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namically calculates and propagates priorities of events based
on user latency targets. Experiments show that Cameo re-
duces query latency in single and multi-tenant settings.

Several models, technologies and solutions for medical
data processing and analysis are presented in [73]. The au-
thors illustrate examples of case studies and practical solu-
tions composed of health sensor data processed with Kafka
and Spark (an application predicting skin temperature based
on heart rate and step count values) using medical datasets
publicly available such as PhysioNet, UbiqLog and CrowdSig-
nals.

In [148], the authors review the state of the art of the
analytics network methodologies for real-time IoT analytics.
They also present some real-time IoT analytics use cases and
software platforms such as Flink, Spark, Storm, and Druid
along with their network requirements. Lastly, they present
research problems and future research directions focusing on
the network methodologies for the real-time IoT analytics.

In summary, the articles demonstrate the benefits of col-
laborative Edge-to-Cloud data analytics. The main perfor-
mance improvements highlighted by these studies regarding
the comparison of Edge-to-Cloud vs. Cloud only approaches
refer to minimizing the processing latency of applications.
5.3. Main takeaways

This section aims to answer the following research ques-
tion: What are the main state-of-the-art methods for data
analytics on the Edge-to-Cloud Continuum? We organize
the existing frameworks and the selected studies in two main
categories, they are: data processing on the Edge; and Edge-
to-Cloud Big Data processing.

From the analysis of the selected articles, we observe that,
compared to the Cloud, a few stream processing frameworks
tailored for the Edge exist, such as Apache NiFi, Edgent,
and EdgeWise. We highlight that the recent works focus on
proposing novel approaches for collaborative Edge-Cloud
processing in order to enable live data analytics, instead of fo-
cusing on novel processing frameworks designed for running
just on the Edge.

6. Approaches to Combine Machine Learning
and Data Analytics
The convergence of Big Data and AI has become a re-

search trend that grows over the years given the benefits of
combining and applying both technologies in many areas,
such as self-driving vehicles [61], precision agriculture [19],
smart manufacturing [78], among others. Combining Big
Data and AI leverages advanced analytics capabilities and
allows the efficient extraction of valuable insights from vast
amounts of data [46].

Next, we present the recent efforts on combining Big
Data and AI to enable hybrid Cloud and Edge analytics.
Figure 5 presents the taxonomy of approaches combining
Machine Learning and Data Analytics with a focus on the
Edge-to-Cloud Continuum. The ML and Data Analytics
frameworks/libraries identified in the articles are presented

Figure 5: Taxonomy of approaches combining data analytics
and learning on the Edge-to-Cloud Continuum.

in Tables 11 and 12 and Tables 13 and 14, respectively. Ta-
ble 7 characterizes the selected articles regarding resources
exploited in the experimental evaluations, such as: frame-
works/libraries; application/task; metrics; and hardware; mod-
els; and datasets. Table 6 presents the main state-of-the-
art learning paradigms for collaborative learning. Table 8
presents a quantitative analysis summarizing Table 7.
6.1. Combining Data Analytics and Learning on

the Cloud
The articles presented in this section explore the joint

usage of Data Analytics and Machine Learning frameworks
and algorithms for analytics on Cloud resources. They also
discuss the relevance of learning paradigms (e.g., Deep Learn-
ing, Online Learning, and Transfer Learning, among others)
for Big Data Analytics.

Distributed Cloud-based Machine Learning tools such as
Mahout, Spark MLlib, and FlinkML are presented in [118].
Authors also present research directions and opportunities in
the domain of developing parallel and distributed Machine
Learning algorithms. For instance, they highlight that in
streaming systems, there is a lack of onlineMachine Learning
algorithms that are used to process real-time data to provide
faster insights.

The survey [101] presents ML and DL frameworks and
libraries oriented towards fast processing and streaming of
large-scale data, such as: TensorFlow, PyTorch, MXNet,
Theano, FlinkML, and Spark MLlib. Authors highlight that
there is no single tool suitable for every problem and often a
combination of them is needed to succeed.

Authors of [109] present key characteristics and chal-
lenges of handling Big Data. Regarding current trends in
Big Data Analytics they refer to IoT and Edge analytics (to
provide responses quickly as the events occur) and domain
adaptation (where training data and test data are sampled
from different distributions).

In [4] the authors survey existing solutions for Big Data
stream processing in terms of learning type, supported lan-
guages, and supported Machine Learning tools. Authors
discuss frameworks and platforms such as Apache Spark,
MOA, Samza, Storm, and Kafka.

Another survey [145] presents existing open source tools
for Big Data (e.g., Hadoop, Spark, Storm, and Flink) and Ma-
chine Learning (e.g., Mahout, Spark MLLib, and SAMOA).
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Table 5
Quantitative analysis of artifacts, metrics, and hardware exploited in the Data Analytics
experiments. Percentages refer to the total number of papers in that domain.

Framework/Library Metrics Hardware (Edge) Processors
Kafka 19% end to end latency 47% Raspberry Pi 53% CPU 100%
Flink 15% network 16% Emulated 18% GPU 0%
NiFi 11% model accuracy 16% Arduino 12% TPU 0%
Storm 11% throughput 16% Google Nexus 4 6%
Hadoop 7% classification time 5% Samsung Galaxy J5 6%
Spark 7% Sonoff SC 6%
Edgent 4%
Flume 4%
EdgeWise 4%
FoT-Stream 4%
Cameo 4%
Fed4Edge 4%
MOA 4%

Besides, authors review Machine Learning algorithms in Big
Data such as Supervised, Unsupervised, and Semi-supervised
learning.

In [88] the authors present the challenges associated with
Machine Learning in the context of Big Data and categorize
them according to the Velocity, Volume, Variety, and Ve-
racity dimensions of Big Data. They also present existing
Machine Learning approaches and techniques for data ma-
nipulation (e.g., dimensionality reduction and data cleaning);
processing manipulation (such as vertical/horizontal scaling
and batch/stream oriented); and algorithm manipulation (e.g.,
algorithm modification with new paradigms). Lastly, they
present learning paradigms relevant to Big Data such as Deep
Learning, Lifelong Learning, Online Learning, and Transfer
Learning.

A parallel Machine Learning algorithm for fault classifi-
cation of mobile robotic roller bearings is proposed in [157].
The proposed algorithm combines Support Vector Machine
with Spark to realize parallel operations. Experimental eval-
uations under different training set sizes demonstrate that
the proposed algorithm (Spark SVM on Mesos) outperforms
MapReduce SVM, Storm SVM,Radial Basis FunctionNeural
Network (RBFNN), Deep Belief Network (DBN), present-
ing higher: classification accuracy, processing speed, and
convergence rate.

In [12] the authors explore Spark MLlib with a variety of
Big Data Machine Learning experiments on massive datasets
to understand the qualitative and quantitative attributes of
the platform. Experimental evaluations compare the perfor-
mance of classification and clustering models (such as SVM,
Decision Tree, Naive Bayes, Random Forest, and K-Means)
on a variety of hardware and software configurations. Results
show that with large datasets Spark MLlib outperforms Weka
in terms of running time.

In [99] the authors propose a system for real-time health
status prediction based on the Spark Big Data processing
framework. The proposed system predicts user’s health status
by applying a variety of decision tree models on streams

of data. Experiments evaluate the generalization error of
Decision Tree models based on maxDepth (tree depth) and
maxBins (ordered splits) parameter values.

In [5] the authors propose an Edge-Cloudlet-MultiResource
three-tier architecture to enable real-time processing of video
streams. The proposed system performs Deep Learning in-
ference on Cloudlets and distributes processing stages on the
available resources using an algorithm to satisfy user Quality
of Service requirements. Results show that for a 10K element
data streams, with a frame rate of 15-100 per second, the job
completion in the proposed system takes 49% less time and
saves 99% bandwidth compared to a centralized Cloud-only
based approach.

An overview on Spiking Neural Networks (SNN) for On-
line Learning scenarios is presented in [84]. According to the
authors, the use of SNN in Online Learning allows fast real-
time simulations of large networks and a low computational
cost. SNN make possible the accumulation of knowledge
as data become available without the requirement of storing
and retraining the model with past samples. The authors
also highlight research trends in the field of SNN and Online
Learning such as Lifelong Machine Learning and Deep SNN
Learning.
6.2. Combining Data Analytics and Learning on

the Edge-to-Cloud Continuum
Next, we present the recent efforts on combining state-of-

the-art Big Data Analytics and Machine Learning approaches
to enable intelligence on the Edge-to-Cloud Continuum. The
following works focus on novel systems, frameworks and
architectures.

A novel architectural design for enabling machine and
deep learning over heterogeneous data streams on hybrid
Cloud and EdgeComputing infrastructures is proposed in [74].
Named Stream to Cloud and Edge (S2CE), the platform aims
to enable mining of Big Data streams over Cloud and Edge.
It provides functionalities of scalable processing, such as
distributed processing, data fusion and preprocessing, and
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Table 6
Quantitative analysis of Learning Paradigms for learning on the Edge-to-Cloud Continuum.
Percentages refer to all papers reviewed which are discussing or exploiting in their experi-
ments these learning paradigms.

Paper Pct. Learning
Paradigm Main ideas Characteristics

[169, 77, 31,
67, 127, 67,
151, 88, 131,
96, 132, 83,
165, 114, 72,
160, 84, 164,
52, 9, 106,
119]

30%
Distributed
Machine/ Deep
Learning [130]

Exploit distributed re-
sources of a cluster
to speed up the con-
vergence of model
training.

• aims at parallelizing computing power.

• simultaneously places and processes data for
model training and testing into a number of
distributed nodes.

[60, 67, 88, 96,
132, 165, 118,
145, 101, 72,
160, 84, 60, 44,
52, 170]

21%
Online Learning
or Sequential
Learning [81]

Allow updating mod-
els upon arrival of
new data without the
need to retrain the
complete model.

• models learn one instance at a time: does not
rebuild the model every time new data arrives,
instead, it updates the existing knowledge based
on the new incoming data.

• models are frequently updated: dynamic up-
dates of the trained models are determining
factors for a reliable and efficient analytic mod-
ule.

• uses data streams for model training: can ac-
commodate bigger datasets than batch learning
and matches the need for stream analysis of IoT
data. Besides, it can be efficiently deployed in
an Edge device as they do not accumulate large
amount of data.

[151, 131, 96,
165, 72, 84,
52, 9, 119, 30,
120]

16% Reinforcement
Learning [142]

Learning is based
on feedback obtained
from interactive ac-
tions in the environ-
ment.

• does not require a training data set: it interacts
with the external environment to continuously
adapt and learn on given points as a kind of
feedback.

[77, 144, 88,
96, 165, 109,
72, 44, 85, 30]

14%

Transfer Learn-
ing [107] and
Multi-task
Learning [168]

Exploit the knowl-
edge obtained from a
task to improve gen-
eralization about an-
other.

• useful when you have lack of training data sets.

• models may be reused as a starting point for
predicting in another, but related, domain.

• compared to separated model training, it im-
proves learning efficiency and prediction accu-
racy for the task-specific models.

[86, 77, 144,
96, 165, 44, 9,
85, 30, 120]

14% Federated Learn-
ing [21]

Train a centralized
model in a dis-
tributed way without
the need to share
private data.

• aims at training on heterogeneous datasets.

• data privacy: transmits and aggregates trained
model parameters instead of training data.

• enables scalability: leverages the concurrent use
of a high number of Edge devices to be inde-
pendently trained and periodically synchronized
through a central parameter server.

[88, 165, 84,
52] 5%

Lifelong Learn-
ing or Continual
Learning [133]

Learning is continu-
ous and knowledge is
retained and used to
solve different prob-
lems.

• does not rebuild the knowledge model every time
a new piece of data arrives, but only updates
the existing knowledge with the new incoming
data.

• can accommodate bigger datasets than batch
learning.

• may be a promising solution for lack of data,
real-time processing, and concept drift.
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Cloud and Edge resource management.
In [151] the authors propose 5G Intelligent Internet of

Things (5G I-IoT). This approach is based on BigDatamining,
Deep Learning, and Reinforcement Learning to process data
intelligently and to optimize communication channels. The
framework consists of three building blocks: (1) a processing
center in the Cloud to handle real-time data for decision
making using Deep Learning and Reinforcement Learning;
(2) an object processor in the Fog to processes the raw data
from sensing regions; and (3) the sensing regions in the Edge.
Evaluations show that 5G I-IoT outperforms 4G-IoT and 5G-
IoT in terms of effectiveness of channel utilization.

Authors of [127] propose a Data Flow and Distributed
Deep Neural Network (DF-DDNN) that integrates data flow
and distributed Deep Learning in the IoT-Edge environment
to bring down the latency and increase accuracy. Exper-
imental results show that the proposed solution enables a
latency reduction of up to 33% when compared to the exist-
ing traditional IoT-Cloud model. In [60], a hybrid technique
combining batch learning, Online Learning, and stream min-
ing to predict delays of public transport vehicles is proposed.
The hybrid approach is validated by experiments with real
public transport delay data streams.

Recent studies have also proposed novel architectures
for collaborative Edge-Cloud learning and data analytics. A
review of existing reference architecture designs of Big Data
systems such as FAR-Edge [51] and Global Edge Computing
Architecture [135] is presented in [106]. Authors propose
a novel reference architecture design of a Big Data system
with a focus on the utilization of ML in Edge Computing
environments. In [72] the authors present an overview of
AI approaches for Autonomous Vehicle (AV) and propose
a concept architecture for integrating Artificial Intelligence
with Edge Computing. They also discuss key issues and
challenges on: data fusion, such as the reconstruction and
understanding of the environment of AV; and Big Data Ana-
lytics for training systems and real-time decision-making of
AV volumes of data.

A novel architecture that combines a data distribution
layer connecting Fog nodes with a Cloud focusing on re-
silience, near real-time communication, and a traffic model-
ing approach is proposed in [111]. The modeling approach is
an Online Machine Learning technique named Conditional
Restricted BoltzmannMachines (CRBM) to learn and predict
traffic telemetry. Experimental results show that the Cloud-
based processing approach can produce severe impact in the
accuracy of Cloud-learned models due to network connectiv-
ity outages between the Fog and the Cloud.

An Edge-Cloud collaborative computing platform for Ar-
tificial Intelligence of Things (AIoT) is proposed in [120].
Named Sophon Edge, the platform helps to build and deploy
AIoT applications efficiently. It addresses challenges related
to building AIoT applications in practice, such as heterogene-
ity (e.g., communication protocols, data format, operating
systems, among others) and accuracy of AI algorithms (e.g.,
model refinement and tuning).

Authors of [129] propose a system to detect falls lever-

aging an Edge-Fog-Cloud architecture to deploy DL mod-
els into resource-constrained devices for DL inference. The
architecture exploits Big Data Analytics resources for train-
ing DL models on the Cloud and performing inference on
devices. They also present a practical and experimental de-
ployment of DL models on Fog devices and the lightweight
virtualization technologies, such as Docker containers, to
optimize the resource usage. Their solution leverages the
RNN (LSTM/GRU) algorithms since they are appropriate
for sequential data such as IoT monitoring and they fulfill
the resource constraint requirements and provide very high
accuracy.

In summary, the systems, frameworks and architectures
proposed by the articles aim to mainly: enable Cloud and
Edge resource management; optimize network communica-
tion; provide efficient application deployments; and allow
distributed data processing. Some approaches also exploit
hybrid techniques combining batch learning, Online Learn-
ing, Reinforcement Learning, Deep Learning, among others
to improve application performance (e.g., minimize latency,
increase accuracy, etc.).
6.3. Main takeaways

This section aims to answer the following research ques-
tion: How are the existing Machine Learning and Data An-
alytics approaches combined to enable intelligence on the
Edge-to-Cloud Continuum? We organize the selected studies
in two main categories, they are: Data Analytics andMachine
Learning on the Cloud; and Data Analytics combined with
Machine Learning on the Edge-to-Cloud Continuum.

We highlight that the recent efforts (e.g. systems, frame-
works and architectures) focus on applying, combining, and
deploying Machine Learning paradigms such as Federated
Learning, Transfer Learning, Multi-task Learning, Reinforce-
ment Learning and Online Learning on distributed Edge de-
vices for collaborative Edge-to-Cloud analytics. Such efforts
focus mainly on addressing open challenges, such as: en-
abling fast and accurate predictive analytics; optimize com-
munication channels and minimize connectivity issues in
Edge data analytics; minimize the processing latency of ap-
plications to satisfy Quality of Service requirements; just to
cite a few.

7. Experimental Research and Reproducibility
In this Section we introduce the main state-of-the-art

simulation, emulation, and deployment systems supporting
experimental research on the Edge, Fog, Cloud, and Edge-
to-Cloud Continuum [143, 164]. Besides, we discuss the
relevant experimental testbeds enabling Edge-to-Cloud ex-
periments. We then analyze the previously selected articles in
terms of experimental evaluation aspects, such as the size of
the experimental testbed and the support to the reproducibility
of experiments.
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Table 9
Simulation, Emulation, and Deployment Systems for Experimental Research on the Edge-
to-Cloud Continuum.

Simulation
Systems Edge Fog Cloud Main Goal Key Features

CloudSim [28] ✓

Modeling, simulation,
and experimentation
of Cloud infrastruc-
tures and application
services.

• modeling and simulation of large scale Cloud computing
data centers.

• modeling and simulation of virtualized server hosts and
application containers.

• modeling and simulation of energy-aware computational
resources.

• modeling and simulation of data center network topolo-
gies.

SCORE [53] ✓

Simulate energy- effi-
ciency, security, and
scheduling strategies
in Cloud Computing
environments.

• allows to prototype and compare different cluster
scheduling strategies and policies.

• generates synthetic cluster workloads from empirical
parameter distributions.

• allows the analysis of scheduling performance metrics.

ElasticSim [26] ✓
Simulate autoscaling
algorithms.

• supports resource runtime auto-scaling.

• supports stochastic task execution time modeling.

iFogSim [63] ✓

Modeling and simula-
tion of resource man-
agement techniques
in IoT, Edge and Fog
Computing environ-
ments

• inherits a number of features from CloudSim.

• provides resource management techniques in IoT, Edge
and Fog.

• allows the execution of multiple applications on the
infrastructure at the same time.

• supports migration of application modules from one fog
device to another.

FogNetSim [115] ✓

Simulate distributed
fog computing envi-
ronments.

• covers the network aspects such as delay, packet error
rate, transmission range, handover, scheduling, and
heterogeneous mobile devices.

• allows to simulate a large fog network.

• allows to simulate heterogeneous devices with varying
features.

• supports handover: allows static and dynamic nodes in
the network.

FogTorch [25] ✓

QoS-aware de-
ployment of IoT
applications through
the Fog.

• allows the specification of a Fog infrastructure along
processing (e.g., CPU cores, RAM memory, storage)
and QoS (e.g., latency, bandwidth) capabilities.

• allows the specification of applications to be deployed
along with needed IoT devices, processing and QoS
requirements.

FogExplorer [65] ✓

Simulate QoS and
cost evaluation of
fog-based IoT appli-
cations.

• simulates processing cost and processing time for indi-
vidual application modules.

• simulates transmission cost and transmission time for
individual data streams.
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Simulation
Systems Edge Fog Cloud Main Goal Key Features

IoTSim-
Edge [100] ✓

Simulate the distri-
bution and process-
ing of streaming data
generated by IoT de-
vices in Edge comput-
ing environments.

• allows to define data analytic operations and their map-
ping to different parts of the infrastructure.

• supports modeling of heterogeneous IoT protocols along
with their energy consumption profile.

• supports modeling of mobile devices and captures the
effect of handoff caused by the movement of mobile
devices.

EdgeCloud-
Sim [137] ✓

Simulate environ-
ments specific to
Edge Computing
scenarios.

• considers computing and networking resources.

• supports network modeling specific to WLAN and WAN.

• supports device mobility model and provides realistic
and tunable load generator.

YAFS [79] ✓

Analyze the design
and deployment of
applications through
customized and dy-
namical strategies.

• allows dynamic scenarios: placement, path routing,
orchestration, and workload movement.

• supports placement allocation algorithms and orches-
tration algorithms.

• provides functions to obtain metrics such as network
utilization, network delay, response time, and waiting
time.

XFogSim [90] ✓

Simulate federated
fog computing envi-
ronments.

• provides resource allocation algorithms for resource
sharing.

• supports static and mobile nodes (handover mecha-
nisms).

• supports application evaluation in terms of: energy con-
sumption, processing latency, scalability, and resource
usage.

Emulation
Systems Edge Fog Cloud Main Goal Key Features

EmuFog [91] ✓

Enable the design of
Fog Computing in-
frastructures and the
emulation of real ap-
plications and work-
loads.

• generates networks that can be emulated easily with
MaxiNet [154].

• supports topologies from BRITE [92] and Caida [27].

• places fog nodes based on user-defined constrains (e.g.,
network latency or resource constraints).

Fogbed [34] ✓

Enable the rapid pro-
totyping of Fog com-
ponents in virtualized
environments.

• allows dynamic topology changes.

• provides traffic control links such as delay, rate, loss,
and jitter.

• enables the deployment of Fog nodes as software con-
tainers under different network configurations.

RADICAL-
DREAMER
[116]

✓ ✓ ✓

Emulate resource
and task/workload
definition in Edge-to-
Cloud applications.

• allows to evaluate workload and resource management
aspects of applications.

• supports modeling task placement in Edge-to-Cloud
applications.

• allows to evaluate deployment modalities and perfor-
mance trade-offs.
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Deployment
Systems Edge Fog Cloud Main Goal Key Features

E2Clab [123] ✓ ✓ ✓

Understand and
optimize the per-
formance of Edge-
to-Cloud workflows
through reproducible
experiments on large-
scale infrastructures.

• supports reproducible experiments.

• provides a Services abstraction to support other appli-
cations.

• provides resource monitoring (e.g., CPU, GPU, memory,
network) and network emulation to define Edge-to-
Cloud constraints such as delay, loss and rate.

• maps application parts with the underlaying testbed.

• allows to optimize workflows through optimization li-
braries for hyperparameter search in Ray Tune [82].

KubeEdge [159] ✓

Deploy complex high
level applications to
the Edge.

• provides containerized application orchestration and
device management to hosts at the Edge.

• provides core infrastructure support for networking, ap-
plication deployment and metadata synchronization
between Cloud and Edge.

• supports MQTT which enables Edge devices to access
through Edge nodes.

Kubernetes [24] ✓

Manage and au-
tomate the de-
ployment, scaling,
and management
of containerized
applications across
multiple hosts.

• provides mechanisms for deployment, maintenance, and
scaling of applications.

• provides service discovery and load balancing.

• allows to automatically mount storage systems, such
as local storage and public Cloud providers.

7.1. Simulation, Emulation, and Deployment
Systems for Experimental Research

Table 9 summarizes the main open-source state-of-the-art
simulation, emulation, and deployment systems for experi-
mental research on the Edge-to-Cloud Continuum.
7.1.1. Simulation Systems

Building experimental testbed environments is expensive
and brings challenges to conduct reproducible experiments.
In this sense, simulation systems play an important role as
they allow to analyze systems behavior at very large scale
while easily tuning a myriad of configuration parameters.
Next, we present simulation systems used in the modeling of
Cloud, Fog, and Edge computing environments.
Cloud-based simulation systems. CloudSim [28] frame-
work allows modeling and simulation of Cloud computing in-
frastructures and services in a repeatable manner. CloudSim
allows users to model the behavior data centers, Virtual Ma-
chines and resource provisioning policies. ElasticSim [26] is
a workflow simulator that extends CloudSim. It focuses on
supporting resource runtime auto-scaling and stochastic task
execution time modeling. SCORE [53] allows the execution
of heterogeneous workloads for simulating energy-efficient
monolithic and parallel-scheduling models.
Fog-based simulation systems. FogExplorer [65] provides
modeling and simulation to estimate QoS and cost evaluation

of Fog-based IoT applications. FogExplorer allows users
to choose good application designs during its design phase.
FogTorch [25] aims to support the deployment of IoT appli-
cations in Fog infrastructures considering software, hardware
and QoS requirements. FogNetSim++ [115] focuses on sim-
ulating large Fog networks and differs from others mainly by
providing features that allow users to incorporate customized
mobility models, scheduling algorithms, and manage han-
dover mechanisms. XFogSim [90] extends FogNetSim++ to
simulate federated fog computing environments. xFogSim is
lightweight, configurable, scalable and introduces the concept
of fog federation for resource sharing among fog locations.
Furthermore, it allows users to evaluate applications in terms
of energy consumption, processing latency, scalability, and
resource usage. YAFS [79] aims to allow users to analyze
application designs and incorporate strategies for placement,
scheduling and routing. YAFS also supports dynamic alloca-
tion of new application modules, dynamic failures of network
nodes, and user mobility. Furthermore, it facilitates the share-
ability of experiment results by generating logs of workload
generation and computation, and link transmissions. Lastly,
iFogSim [63] focuses on resource management techniques in
IoT, Edge and Fog computing environments. iFogSim allows
users to measure, in a repeatable manner, the impact of re-
source management techniques in terms of latency, network
congestion, energy consumption, and cost.
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Edge-based simulation systems. EdgeCloudSim [137]
focuses on Edge Computing scenarios and allows one to con-
duct experiments considering computational and networking
resources. IoTSim-Edge [100] allows users to easily config-
ure their Edge infrastructures and to capture the behavior of
heterogeneous IoT and Edge devices in terms of sensing, pro-
cessing, mobility, and data rate. Both Edge systems extend
CloudSim.
7.1.2. Emulation Systems

Compared to simulation, the emulation approach provides
more realistic results. While simulators mimic the behavior
and configurations of a real device, emulation systems dupli-
cate the hardware and software features of a real device [139].
Emulation systems are also a less expensive solution when
compared to real deployments.

Fogbed [34] allows resource provisioning emulation in
Fog environments. It combines Containernet [112] and Max-
inet [154] (both are extensions of the Mininet [69] network
emulator) to allow the use of virtual instances for resource
provisioning emulation.

EmuFog [91] focuses on the design of Fog Computing
infrastructures and the emulation of real applications and
workloads. In EmuFog, users can: design the network topol-
ogy; embed Fog nodes in the topology; and run Docker-based
applications on those nodes connected by an emulated net-
work.

RADICAL-DREAMER [116] provides the concepts of
Task andWorkload to model the characteristics of an appli-
cation according to heterogeneous tasks. Besides, it provides
the concept of Resource to model distributed infrastructures.
RADICAL-DREAMER allows users to evaluate deployment
configurations, performance trade-offs, and workload place-
ment strategies for Edge-to-Cloud applications [87].
7.1.3. Deployment Systems

Deploying real-life applications on large-scale testbeds
provides the most realistic results compared to simulation or
emulation approaches. In this direction, a few systems have
been proposed in the past few years.

E2Clab [123] is a framework that implements a rigor-
ous methodology for designing experiments with real-world
workloads on the Edge-to-Cloud Continuum. E2Clab pro-
vides guidelines to move from real-world use cases to the
design of relevant testbed setups for reproducible experiments
enabling researchers to understand and optimize [121] the
performance of applications. The key features provided by
E2Clab are [122]: (1) reproducible experiments; (2) the map-
ping of applications parts executed across the computing
continuum with the physical testbed; (3) the support for ex-
periment variation and transparent scaling of the scenario;
(4) network emulation to define Edge-to-Cloud communica-
tion constraints; (5) experiment deployment, monitoring and
backup of results; and (6) the application optimization.

Kubernetes [24] aims to simplify the deployment and
management of services that compose an application by pro-
vidingmechanisms for deployment, maintenance, and scaling.

Using Kubernetes, users can manage containerized applica-
tions across multiple hosts. KubeEdge [159] builds on top
of Kubernetes to extend Cloud capabilities to the Edge and
allows containerized application orchestration and device
management to hosts at the Edge. KubeEdge key features
are: core infrastructure support for networking; application
deployment; and metadata synchronization between Cloud
and Edge.
7.2. Large-Scale Experimental Testbeds for

Edge-to-Cloud Experiments
Several experimental testbeds allow researchers to eval-

uate their proposals in real-life settings by providing access
to a large amount of resources (grouped in homogeneous or
heterogeneous clusters, upon convenience) and, more impor-
tantly, supported by some vibrant communities of users and
solid technical teams. We cite here just a few.

Grid5000 [20] is a large-scale French testbed for experi-
mental research with a focus on parallel and distributed com-
puting including Cloud, HPC, Big Data, and AI. Grid5000
is merging with FIT IoT-Lab to enable Edge-to-Cloud ex-
periments. FIT IoT-Lab [2] is a large-scale multi-radio (e.g.,
IEEE 802.15.4, Bluetooth Low Energy, LoRa, etc.) and
multi-platform (e.g., Arduino Zero, nRF52840-MDK, LoRa
gateway, and many others) infrastructure for the Internet
of Things. FIT IoT-Lab consists of more than 1.5K nodes
and provides tools for monitoring energy consumption and
network-related metrics, such as end-to-end delay, throughput
and overhead. A recent effort on supporting experiments com-
bining Grid5000 and FIT IoT-Lab testbeds is EnOSlib [32].
EnOSlib is a library which brings reusable building blocks
for configuring the infrastructure, provisioning software on
remote hosts as well as organizing the experimental workflow.

Chameleon [70] is a large-scale US experimental plat-
form that aims to support Computer Science research in many
areas, such as: systems, storage, networking, GPU, secu-
rity, Artificial Intelligence, and High Performance Comput-
ing. CHI@Edge is an extension of Chameleon testbed that
aims to support Edge Computing experiments. Combining
Chameleon and CHI@Edge testbeds allows more realistic
Edge-to-Cloud experiments since it provides access to real-
life IoT/Edge devices such as Raspberry Pis, Jetson Nanos,
among others.

ORBIT [105] (Open-Access Research Testbed for Next-
Generation Wireless Networks) is based on a 20x20 two-
dimensional grid of programmable radio nodes which can be
interconnected into different topologies. ORBIT provides ac-
cess to: radio resources, including WiFi 802.11a/b/g 802.11n
802.11ac, Bluetooth (BLE), ZigBee, and Software Defined
Radio platforms; Software defined networking (SDN) re-
sources; LTE and WiMAX base stations and clients; and
Cloud resources such as nodes with Tesla-based GPUs.

SmartSantander [126] is a large scale testbed composed
of around 2000 IEEE 802.15.4 devices deployed in a 3-tiered
architecture (IoT node, repeaters, and gateway node) deploy-
ment in the Spanish city of Santander. The testbed allows IoT
native experimentation (e.g. wireless sensor network experi-
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Figure 6: Support to the reproducibility of experiments provided
by the selected studies.

Figure 7: Testbed size used in the experimental evaluations:
small scale [169, 77, 31, 86, 167, 67, 151, 39, 128, 37, 60, 170,
97, 5, 57, 3, 161, 62, 80, 50, 76, 43, 12, 99], medium scale [38,
111, 127, 129, 36, 56, 157], and large scale [66, 123, 121]

ments) and service provision experiments (e.g. applications
using real-time real-world sensor data).

Fed4FIRE+ [41] is a project offering the largest federa-
tion worldwide of Next Generation Internet (NGI) testbeds.
Fed4FIRE aims to provide open, accessible and reliable ex-
perimental infrastructures supporting a wide variety of re-
search, such as 5G, IoT, Cloud Computing, Wired and Wire-
less Computer Networking. The list of testbeds [103] fed-
erated with Fed4FIRE are: CityLab [141], PlanetLab [55],
ExoGENI [15], Tengu [146], NITOS [110], w-iLab [22],
among others.
7.3. Support to Experimental Reproducibility

A desired feature of any experimental research is that its
scientific claims are verifiable by others in order to build upon
them. This can be achieved through Repeatability, Replica-
bility, and Reproducibility [16, 140]. Find in Table 10 the
terminology proposed by the ACM Digital Library.

We evaluate the support to the reproducibility of experi-
ments for each selected article. This evaluation is based on
the following three main relevant aspects:

Access to artifacts: if authors provide access to a public
repository with the artifacts used to run the experiments, such
as: datasets, codes, applications, systems, configuration files,
among others.

Experimental setup: if authors provide a description
of the experimental setup, such as: hardware configuration

Table 10
ACM Digital Library Terminology [54]

R
ep
ea
ta
bi
lit
y Same team, same experimental setup: the measurement can

be obtained with stated precision by the same team using
the same measurement procedure, the same measuring system,
under the same operating conditions, in the same location
on multiple trials. For computational experiments, this means
that a researcher can reliably repeat their own computation.

R
ep
lic
ab
ili
ty

Different team, same experimental setup: the measurement can
be obtained with stated precision by a different team using
the same measurement procedure, the same measuring system,
under the same operating conditions, in the same or a different
location on multiple trials. For computational experiments, this
means that an independent group can obtain the same result
using the author’s own artifacts.

R
ep
ro
du

ci
bi
lit
y Different team, different experimental setup: the measurement

can be obtained with stated precision by a different team, a
different measuring system, in a different location on multiple
trials. For computational experiments, this means that an inde-
pendent group can obtain the same result using artifacts which
they develop completely independently.

of physical machines, software or systems used, network
configurations, among others.

Access to results: if the computed experimental results
are available in a public repository, such as: log files, files
metric collected during runtime, monitoring data, code to
plot charts, among others.

Figure 6 summarizes the support to the reproducibility of
experiments provided by the selected studies. Regarding the
access to artifacts, 68% of papers do not provide access to
them, and just 24% partially provide (a few artifacts, but not
all). Analyzing the description of the experimental setup,
76% of papers describe it in detail in a dedicated section of the
paper, while 21% only partially describe it and just 3% do not
provide enough information. Lastly, regarding the access to
results, 95% of the articles do not provide access and just 5%
provide a public repository with the results. In general, we
notice a lack of support to the experimental reproducibility
in the domain of Edge-to-Cloud experimental research.

Lastly, Figure 7 presents the size of the testbeds used in
the experimental evaluations. As one may note, 70% of pa-
pers use small scale setups, composed by at most 5 machines
or devices, while 20% of them use testbed setups composed
by 6 to 19 nodes, and just 10% experiment in large scale
setups with 20 nodes or more.
7.4. Main takeaways

This section aims to answer the following research ques-
tion: What are the existing solutions for experimental re-
search and how do the selected studies support the repro-
ducibility of the experiments? We identify and summarize the
key characteristics of the main state-of-the-art simulation, em-
ulation, and deployment systems. Furthermore, we discuss
the recent efforts and initiatives merging large scale testbeds
for enabling more realistic setups for Edge-to-Cloud experi-
ments, such as: Grid’5000 and FIT IoT-Lab; Chameleon and
CHI@Edge; and the Fed4FIRE project.

We also analyze the selected studies regarding their sup-
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Table 11
Machine Learning frameworks/libraries designed for the Cloud.
Marked with a ⋆ are the mostly exploited in the experiments.

Framework/Library Qty. Paper

⋆ Tensorflow 24

[169, 31, 86, 167, 144, 67, 88,
96, 83, 165, 114, 109, 101,
128, 75, 162, 164, 129, 106,
119, 30, 62, 120, 43]

⋆ PyTorch 10 [167, 96, 83, 165, 101, 75,
162, 164, 170, 30]

Caffe 7 [96, 165, 101, 75, 162, 30, 43]
SAMOA 6 [4, 88, 118, 145, 84, 74]
Mahout 6 [4, 88, 163, 114, 118, 145]
⋆ Scikit-Learn 5 [86, 101, 84, 127, 129]
CNTK 5 [167, 67, 96, 101, 162]
MOA 5 [4, 88, 84, 60, 74]
Spark MLlib 5 [4, 118, 73, 145, 101]
⋆ Keras 4 [86, 101, 128, 129]
Chainer 4 [96, 101, 162, 80]
R 3 [4, 88, 111]
Vowpal Wabbit 3 [88, 101, 74]
Theano 3 [96, 165, 101]
Gaia 2 [67, 165]
Flink ML 2 [118, 101]
Mistify 1 [62]
CLONE 1 [86]
DLion 1 [67]
Ako 1 [67]
TUX2 1 [165]
Weka 1 [12]

port to the reproducibility of experiments. As a conclusion,
the results presented in Figure 6 reinforce the need for rig-
orous experimental methodologies that provide guidelines
to the reproducibility of experiments in the Edge-to-Cloud
research domain. At the same time, Figure 7 highlights the
need for methodologies and deployment systems guiding re-
searchers to evaluate and validate their proposed approaches
in large-scale environments.

The development of novel systems, frameworks, or li-
braries abstracting the complexities of deploying Edge-to-
Cloud workflows on large scale testbeds in addition with the
management of the whole experimental cycle such asmonitor-
ing, gathering of results, and provenance of the experimental
setup are extremely relevant. Recent advances in this direc-
tion exist, like the EnOSlib [32] library or the E2Clab [123]
framework, but further advances are still needed.

8. Major Findings
Wegained the following insights and learned some lessons

from this systematic review:
1. The most common AI frameworks and libraries ex-

ploited in the articles are: Tensorflow and PyTorch
for the Cloud; and MXNet and Caffe2 (now part of
PyTorch) for Deep Learning on the Edge. In turn,
the most common Data Analytics frameworks used
in the articles are: Apache Spark, Apache Flink, and

Table 12
Machine Learning frameworks/libraries designed for the Edge.
Marked with a ⋆ are the mostly exploited in the experiments.

Framework/Library Qty. Paper

⋆ MXNet 11 [167, 67, 96, 83, 165, 101,
102, 162, 164, 170, 30]

⋆ Caffe2 7 [167, 83, 165, 101, 162, 164,
30]

TF Lite 5 [167, 83, 162, 164, 85]
CoreML 4 [83, 165, 162, 97]
TF Federated 2 [77, 85]
Neurosurgeon 2 [77, 83]
MOCHA 1 [77]
FedProx 1 [77]
TensorRT 1 [77]

Table 13
Data Analytics frameworks designed for the Cloud. Marked
with a ⋆ are the mostly exploited in the experiments.

Framework/Library Qty. Paper

⋆ Spark 22

[144, 4, 88, 148, 131, 96, 163,
83, 114, 118, 73, 145, 109,
101, 84, 129, 74, 120, 12, 99,
157]

⋆ Flink 15
[144, 148, 131, 96, 83, 118,
145, 101, 39, 68, 84, 60, 74,
161, 123]

⋆ Kafka 15
[4, 163, 118, 73, 145, 109,
101, 68, 60, 127, 129, 74, 3,
123]

Storm 11 [4, 88, 148, 131, 96, 145, 84,
127, 56, 74, 157]

Hadoop 8 [88, 96, 114, 118, 145, 109,
101, 157]

Samza 4 [4, 118, 84, 74]
Flume 3 [118, 145, 60]
Cameo 1 [161]
Druid 1 [148]

Table 14
Data Analytics frameworks designed for the Edge. Marked with
a ⋆ is the mostly exploited in the experiments.

Framework/Library Qty. Paper
⋆ Nifi 5 [38, 37, 127, 36, 74]
Edgent 3 [83, 3, 123]
EdgeWise 1 [56]

Apache Kafka for the Cloud; and Apache Nifi for the
Edge. Very few open source Data Analytics frame-
works designed for the Edge were identified.

2. The most cited AI learning paradigms are respectively:
Distributed ML/DL, Online Learning, Reinforce-
ment Learning, Transfer/Multi-task Learning, and
Federated Learning. Although widely used, very few
articles are exploring their performance trade-offs at
scale and their potential jointly utilization across the
Edge-to-Cloud Continuum.
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3. The hardware heterogeneity, regarding Edge devices,
is not sufficiently analyzed in the validation phase of
the proposed systems, frameworks and architectures
designed to enable intelligence on the Edge-to-Cloud
Continuum. Evaluations mainly rely on Raspberry Pi’s
or emulate resource-limited devices. Given the highly
heterogeneity characteristic of the Edge-to-Cloud Con-
tinuum, it is strongly recommended that future works
exploit GPUs and TPUs enabled devices, in addition
to CPUs.

4. Themajority of the articles proposing novel approaches
or exploring existing solutions to enable distributed
intelligence on the Edge-to-Cloud Continuum are per-
forming evaluations on small-scale testbeds (e.g., with
less than 6 machines or devices, in average). It is
strongly recommended that the proposed distributed
approaches for ML and DL training/inference or data
stream processing be validated in larger-scale environ-
ments, to assess the issues of real-life Edge-to-Cloud
applications.

5. We observed that the articles do not follow system-
atic experimental methodologies. Hence, most of
them do not provide enough support to enable the re-
producibility of the experiments by other researches.
Despite most of the articles describing the experimen-
tal setup in a dedicated section of the paper, most of
them do not provide access to public repositories shar-
ing the artifacts used neither the results obtained. It
is strongly recommended that future works consider
adopting rigorous methodologies in their experimental
evaluations. We highlight that relevant conferences
and journals on Computer Science are adopting the
Reproducibility Initiative [108], which consists in as-
signing reproducibility badges to articles submitting
their artifacts for post-publication peer review.

9. Open Challenges and Research
Opportunities
As presented in the previous sections, distributed digital

infrastructures for Data Analytics and learning are now evolv-
ing towards an interconnected ecosystem allowing complex
applications to be executed from IoT Edge devices to the HPC
Cloud. Therefore, new challenging application scenarios are
emerging from a variety of domains such as healthcare, asset
monitoring in industry, precision agriculture and smart cities,
where processing can no longer rely only on traditional ap-
proaches that send all data to centralized datacenters for Data
Analytics and Machine Learning. Next, we present some
of the relevant challenges and research opportunities to be
addressed to enable the Computing Continuum vision.
9.1. Understanding Performance of Application

Workflows on the Edge-to-Cloud Continuum
Understanding end-to-end performance on the complex

Edge-to-Cloud heterogeneous ecosystem is challenging. De-

ploying large-scale real-life applications on such infrastruc-
tures requires configuring a myriad of system-specific pa-
rameters and reconciling many requirements or constraints
in terms of hardware capacity, mobility, network efficiency,
energy, and data privacy, with low-level infrastructure design
choices. One important challenge is to accurately reproduce
relevant behaviors of a given application workflow and rep-
resentative settings of the physical infrastructure underlying
this complex continuum.

A first step towards reducing this complexity and enabling
the Computing Continuum vision is to enable a holistic un-
derstanding of performance in such environments. That is,
finding a rigorous approach to answering questions like: (1)
How to identify infrastructure bottlenecks across the whole
Edge-to-Cloud Continuum? (2) Which system parameters
and network configurations impact on the application per-
formance and how? (3) How Edge-to-Cloud hardware con-
figurations impact on the energy consumption and on the
processing latency of the application?

Approaches based on workflowmodeling [124] and simu-
lation or emulation, as presented in Table 9, raise some impor-
tant challenges in terms of specification, modeling, and vali-
dation in the context of the Computing Continuum [1, 143].
For example, it is increasingly difficult to model the hetero-
geneity and volatility of Edge devices or to assess the impact
of the inherent complexity of hybrid Edge-Cloud deploy-
ments on performance. At this stage, experimental evalua-
tion remains the main approach to gain accurate insights on
performance metrics and to build precise approximations
of the expected behavior of large-scale applications on the
Computing Continuum, as a first step prior to modeling.

A key challenge in this context is to be able to repro-
duce in a representative way the application behavior in
a controlled environment, for extensive experiments in a
large-enough spectrum of potential configurations of the un-
derlying hybrid Edge-Cloud infrastructure. However, this
process is non-trivial due to the multiple combination possi-
bilities of heterogeneous hardware and software resources, as
well as, system components for Data Analytics and Machine
Learning. Therefore, the Computing Continuum vision calls
for novel approaches tomap the real-world application com-
ponents and dependencies to infrastructure resources.

Further research efforts shall necessarily focus on the de-
sign and implementation of novel methodologies and systems
for large-scale experimental evaluation covering the charac-
teristics of hybrid Edge-Cloud infrastructure deployments.
Novel systems allowing the combination of simulation and
emulation systems in addition to supporting the deployment
of state-of-the-art systems for Data Analytics and Machine
Learning on real-world large-scale testbeds, considering
the same experimental evaluation package, would be relevant
to accurately reproduce complex application behaviors.
9.2. Optimizing the Performance of Edge-to-Cloud

Application Workflows
The optimization of application workflows on highly dis-

tributed and heterogeneous resources is challenging. Real-
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world applications deployed on hybrid Edge-to-Cloud infras-
tructures (e.g., smart factory [152], autonomous vehicles [93],
among others) typically need to comply with many conflict-
ing constraints related to hardware resource consumption
(e.g., GPU memory, CPU power, main memory size, stor-
age size and bandwidth), software components composing
the application and requirements such as QoS, security, and
privacy [156].

Furthermore, Edge-to-Cloud deployment optimization
problems aim at optimizing metrics [17, 11] related to per-
formance (e.g., execution time, latency, and throughput), re-
source usage, energy consumption, financial costs, and qual-
ity attributes (e.g., reliability, security, and privacy). There-
fore, the parameter settings of the applications and the under-
lying infrastructure result in a complex multi-infrastructure
configuration search space [117].

Therefore, one important challenge is to accurately and
efficiently answer questions like: (1) How to configure the
hardware and system components to minimize processing
latency and energy consumption? (2) Where should the
workflow components be executed across the Edge-to-Cloud
Continuum to minimize communication costs and end-to-end
latency? (3) How to efficiently autoscale the application re-
sources concerning workload fluctuations and infrastructure
changes?

Such optimization problems are of NP-hard complexity
and multi-objective. Furthermore, the environment settings
and configuration parameters are extremely vast and their
combination of possibilities virtually unlimited [132, 160].
Hence, the process of searching the ideal deployment and
configuration of those real-life applications is challenging
given the search space complexity: bad choices may result in
increased financial expenses during deployment and produc-
tion phases, decreased processing efficiency and poor user
experience [147].

Given these complexities, future research should focus on
proposing novel optimization methodologies supporting the
parallel deployment and evaluation of such complex applica-
tion workflows on real-life large scale testbeds. The objective
is two fold: speeding up the optimization computations, as
well as obtaining more accurate results.

Novel approaches should also rely on the development
of fully automated surrogate model building to mimic
and approximate the complex behavior of Edge-to-Cloud
workflows and then perform optimization and sensitivity
analysis. These new solutions may combine computation-
ally tractable optimization techniques [113] such as Bayesian
Optimization [136] methods (e.g., Gaussian process (Krig-
ing) [134], Decision Trees [153], Random Forest [23], among
others) to build surrogate models; and then combine with
techniques such as evolutionary algorithms and swarm intelli-
gence based algorithms (e.g., Genetic Algorithm [95], Differ-
ential Evolution [35], Particle Swarm Optimization [45], etc.)
to perform and speed up the optimization (e.g., to find the
optimal deployment configuration using the built surrogate
model).

Novel contributions are required for workload characteri-

zation and prediction, for autoscaling strategies to enable the
efficient scaling of distributed application resources across
the Edge-to-Cloud continuum, in response to workload fluc-
tuations and infrastructure changes. Contributions in this
context, should be aligned to the complex heterogeneous
characteristics of the Computing Continuum paradigm, in
terms of: computing resources; network constraints; and
application requirements.
9.3. Enabling Intelligence on the Highly

Heterogeneous Edge-to-Cloud Continuum
The right selection of Machine Learning techniques for

fast and accurate decision making on the highly heteroge-
neous (in terms of hardware and software) Edge-to-Cloud
Continuum requires extensive experiments and evaluations
on real-life hybrid infrastructures combining HPC, Cloud,
and Edge systems.

The goal is to understand how: (a) infrastructure design
choices, (b) optimized learning algorithms with tunable pa-
rameters, and (c) the combination of learning paradigms im-
pact on performance metrics such as memory usage, energy
consumption, model accuracy, training time, network over-
head, application processing latency, among others [119].

This comes down to answering questions like: (1) How
to efficiently deploy complex AI workflows on heterogeneous
and distributed infrastructures to reduce training time and
improve model accuracy? (2) How to combine Machine
Learning paradigms to leverage the massively distributed
resources for training across the Edge-to-Cloud Continuum?

A relevant challenge, worthy of further consideration,
is to understand the performance trade-offs at scale of
combining a variety of learning paradigms such as Re-
inforcement Learning [155], Deep Learning [59], Online
Learning [44], Stream Learning [84], Lifelong Learning [52],
Transfer Learning [44], Federated Learning [9], Distributed
Learning [164, 166], Multi-task Learning [168], and others.

Approaches leveraging the incremental evolution of
models over time (e.g., instead of reconstructing newmodels
from scratch) should be considered for streaming data (e.g.,
instead of batch learning, where the whole training data set
should be available for training). They are useful for applica-
tions that require high speed processing and analysis of data,
and also to avoid the concept drift problem, where predictions
become less accurate as time passes, or in cases where the
accumulation of large volumes of data is impractical (e.g.,
due to memory, storage, and processing limitations of Edge
devices) [160].

Novel approaches should also leverage the transfer of
knowledge to/from different domains (e.g., useful when
data for training is scarce) and also take advantage of the
parallelism and scalability provided by state-of-the-art dis-
tributed stream processing systems (e.g., Flink, Spark, etc.)
combined with Machine Learning paradigms [52] in order to
speed up the training and inference time.

Other open challenges [102, 85, 114] include: exploring
the massively distributed Edge devices for AI training to
achieve scalable and distributed deployment of models on
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Edge-to-Cloud infrastructures; applying Neural Architecture
Search [47] and Hyperparameter Search [33] to obtain Deep
Learning networks that require less resource without losing
accuracy; and exploring Knowledge Distillation [30] (i.e.,
transferring knowledge from a large model to a smaller model
without loss of validity) to leverage model deployment on
resource-limited devices.

Lastly, further research is needed on novel approaches
proposing rigorous methodologies and systems for repro-
ducible experimental evaluations to enable the performance
comparison of AI models and learning paradigms de-
ployed on large scale and heterogeneous Edge-to-Cloud in-
frastructures. Such approaches should publish the experimen-
tal artifacts on public repositories to allow their reproducibil-
ity [30].

These directions are still ongoing and active research
areas in the Big Data and AI communities, and as presented
in this systematic review, we have not seen reported studies
exploring such challenges at large scale on hybrid Edge-to-
Cloud infrastructures.
9.4. Supporting Reproducible Analysis of Complex

Edge-to-Cloud Workflows
Given the relevance of experimental reproducibility in

scientific research to allow the verification of the scientific
claims and also to evolve the studies, in addition to the lack
of support to the reproducibility of experiments identified in
recent articles, as presented in Subsection 7.3, future research
efforts should focus on the design and implementation of
rigorous methodologies for experimental reproducibility.

Supporting reproducibility of experiments carried out
on large scale distributed and heterogeneous infrastructures
is non-trivial. The experimental methodology, the artifacts
used, and the data captured should provide additional context
that more accurately explains the experiment execution and
results.

One relevant challenge is to provide mechanisms to allow
researchers to repeat, replicate, and reproduce the scien-
tific claims and to help them answer questions like: (1) What
machines/devices were used to execute the entire workflow?
(2) What steps were invoked during the workflow execution?
(3) Which infrastructure configurations and application pa-
rameters produced these results?

Therefore, novel approaches should focus on enabling the
repeatability, replicability and reproducibility of experiments.
This requires the definition of rigorous experimentation
methodologies (e.g. well-defined description of: hardware
and software resources required to run the experiments and
their configurations, network setups, resource interconnec-
tions, and workflow execution logic); the access to the ex-
perimental artifacts (e.g. datasets, scripts, libraries, ap-
plications, systems, configuration files, among others); and
the development of mechanisms to automatically manage
the data derived from experiments, including: the data
provenance capture (e.g. runtime configuration of physical
machines, software and systems setups, network configura-
tions, etc.) and the access to results (e.g. log files, metrics

collected during execution, monitoring data, code to plot
results, among others).

In particular, an important challenge is the data prove-
nance capture on such highly heterogeneous and distributed
infrastructures. It requires the design and development of
novel provenance systems to efficiently capture data from
heterogeneous hardware resources ranging from HPC/Cloud
servers to resource constrained Edge devices (e.g. requires
smart data capture strategies to reduce capture overhead) in-
terconnected by different network capabilities (e.g. requires
provenance data transmission balancing to mitigate the net-
work overhead).

10. Conclusions
In this paper, we did a systematic review of the current

state-of-the-art methods to enable intelligence on the Edge-
to-Cloud Continuum. First, we discussed the main libraries
and frameworks for Machine Learning and Deep Learning
inference, centralized training, and distributed training with
a focus on the Edge and Cloud. We also presented the main
methods for data processing on the Edge, as well as the meth-
ods for Big Data stream analytics across the Edge-to-Cloud
Continuum.

We reviewed the recent systems, frameworks and archi-
tectures that combine Machine Learning and Data Analytics
through the main state-of-the-art learning paradigms such
as Online Learning, Transfer Learning, Federated Learning,
among others, for collaborative Edge-to-Cloud training and
decisionmaking. Finally, we discussed experimental research
that covers the whole Edge-to-Cloud Continuum with a fo-
cus on simulation, emulation, and deployment systems, as
well as large-scale experimental testbeds and how the stud-
ies included in our systematic review provide support for
experiment reproducibility.

There are several open challenges left to realize the Com-
puting Continuum vision. We highlighted the complexity
of a holistic understanding of performance of application
workflows deployed on the Continuum, as well as the perfor-
mance optimization of such applications on highly distributed
and heterogeneous environments. Many advances are yet re-
quired to enable intelligence across the Edge-to-Cloud Con-
tinuum in an efficient way. In particular, there is a need for
approaches that allow the optimized deployment of complex
AI workflows to reduce training time and improvemodel accu-
racy, and novel ideas that leverage the massively distributed
Edge-to-Cloud resources for fast decision making. Given
the lack of support for reproducibility, there is also a need
for approaches that help scientists to repeat, replicate, and
reproduce the analysis of complex Edge-to-Cloud workflows
in a large scale. These challenges can be addressed through
novel methodologies, algorithms, systems and frameworks.
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