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Abstract

The average properties of the well-known Subset Sum Problem can be studied by the means
of its randomised version, where we are given a target value z, random variables X1, . . . , Xn,
and an error parameter ε > 0, and we seek a subset of the Xis whose sum approximates z up
to error ε. In this setup, it has been shown that, under mild assumptions on the distribution
of the random variables, a sample of size O(log(1/ε)) suffices to obtain, with high probability,
approximations for all values in [−1/2, 1/2]. Recently, this result has been rediscovered outside
the algorithms community, enabling meaningful progress in other fields. In this work we present
an alternative proof for this theorem, with a more direct approach and resourcing to more
elementary tools.

1 Introduction

In the Subset Sum Problem (SSP), one is given as input a set of n integers X = {x1, x2, . . . , xn}
and a target value z, and wishes to decide if there exists a subset of X that sums to z. That is, one
is to reason about a subset S ⊆ [n] such that

∑

i∈S xi = z. The special case where z is half of the
sum of X is known as the Number Partition Problem (NPP). The converse reduction is also rather
immediate.1

Be it in either of these forms, the SSP finds applications in a variety of fields, ranging from
combinatorial number theory [Sun03] to cryptography [GJ01, KG11]. In complexity theory, the
SSP is a well-known NP-complete problem, being a common base for NP-completeness proofs. In
fact, the NPP version figures among Garey and Johnson’s six basic NP-hard problems [GJ79].
Under certain circumstances, the SSP can be challenging even for heuristics that perform well for
many other NP-hard problems [JAMS91, RNMS96], and a variety of dedicated algorithms have
been proposed to solve it [HM18, BW21, JW18, JVW21, EM19]. Nonetheless, it is not hard to
solve it in polynomial time if we restrict the input integers to a fixed range [Bel66]. It suffices to
recursively list all achievable sums using the first i integers: we start with A0 = {0} and compute
Ai+1 as Ai ∪ {a+ xi+1 | a ∈ Ai}. For integers in the range [0, R], the search space has size O(nR).

1To find a subset of X summing to z, one only needs to solve the NPP for the set X ∪ {2z,
∑

i∈[n] xi}. By doing

so, one of the parts must consist of the element
∑

i∈[n] xi alongside the desired subset.
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Studying how the problem becomes hard as we consider larger ranges of integers (relative to
n) requires a randomised version of the problem, the Random Subset Sum Problem (RSSP), where
the input values are taken as independently and identically distributed random variables. In this
setup, the work [BCP01] proved that the problem experiences a phase transition in its average
complexity as the range of integers increases.

The result we approach in this work comes from related studies on the typical properties of the
problem. In [Lue98] the author proves that, under fairly general conditions, the expected minimal
distance between a subset sum and the target value is exponentially small. More specifically, they
show the following result.

Theorem 1 (Lueker, 1998). Let X1, . . . ,Xn be independent uniform random variables over [−1, 1],
and let ε ∈ (0, 1/3). There exists a universal constant C > 0 such that, if n ≥ C log(1/ε), then,
with probability at least 1− ε, for all z ∈ [−1, 1] there exists Sz ⊆ [n] for which

∣

∣

∣

∣

z −
∑

i∈Sz

Xi

∣

∣

∣

∣

≤ ε.

That is, a rather small number (of the order of log 1
ε ) of random variables suffices to have a

high probability of approximating not only a single target z, but all values in an interval.
Even though Theorem 1 is stated and proved for uniform random variables over [−1, 1], it is

not hard to extend the result to a wide class of distributions.2 With this added generality, the
theorem becomes a powerful tool for the analysis of random structures, and has recently proven to
be particularly useful in the field of Machine Learning, taking part in a proof of the Strong Lottery
Ticket Hypothesis [PRN+20] and in subsequent related works [dCNV22, FB21, BLMG22], and in
Federated Learning [WDM+21].

Generalisations of the RSSP have played important roles in the study of random Knapsack
problems [BV03, BV04], and to random binary integer programs [BDHT22, BDHK22]. In particu-
lar, the works [BdCC+22], [BDHK22], and [BDHT22] recently provided an extension of Theorem 1
to multiple dimensions. As for the equivalent Random Number Partitioning Problem, [CJRS22]
recently generalised [BCP01] and the integer version of the RSSP to non-binary integer coefficients.

The simplicity and ubiquity of the SSP has granted the related results a special didactic place.
Be it as a first example of NP-complete problem [GJ79], a path to science communication [Hay02],
or simply as a frame for the demonstration of advanced techniques [Mer01], it has been a tool to
make important, but sometimes complicated, ideas easier to communicate.

This work offers a substantially simpler alternative to the original proof of Theorem 1 by
following a general framework introduced in the context of the analysis of Rumour Spreading
algorithms [DK17]. Originally, the work [Lue98] approaches Theorem 1 by considering the random
variable associated to the proportion of the values in the interval [−1, 1] that can be approximated
up to error ε by the sum of some subset of the first t variables, X1, . . . ,Xt.

After restricting to some specific types of subsets, they proceed to evaluate the expected per-
round growth of this proportion, conditioned on the outcomes of X1, . . . ,Xt. Their strategy is to
analyse this expected increase by martingale theory, which only becomes possible after a non-linear
transformation of the variables of interest. Those operations hinder any intuition for the obtained
martingale. Nonetheless, a subsequent application of the Azuma-Hoeffding bound [Azu67] followed
by a case analysis leads to the result.

2Distributions whose probability density function f satisfies f(x) ≥ b for all x ∈ [−a, a], for some constants a, b > 0
(see Corollary 3.3 from [Lue98]).
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The argument presented here starts in the same direction as the original one, tracking the mass
of values with suitable approximations as we reveal the values of the random variables X1, . . . ,Xn

one by one. However, we quickly diverge from [Lue98], managing to obtain an estimation of
the expected growth of this mass without discarding any subset-sum. We eventually restrict the
argument to some types of subsets, but we do so at a point where the need for such restriction is
clear.

We proceed to directly analyse the estimation obtained, without any transformations. Following
[DK17], this estimation reveals two expected behaviours in expectation, which can be analysed in
a similar way: as we consider the first variables, the proportion of approximated values grows very
fast; then, after a certain point, the proportion of non-approximable values decreases very fast.

We remark that, while Theorem 1 crucially relies on tools from martingale theory such as
Azuma-Hoeffding’s inequality, which are not part of standard Computer Science curricula, our
argument makes use of much more elementary results3 which should make it accessible enough for
an undergraduate course on randomised algorithms.

2 Our argument

In this section, we provide an alternative argument for proving Theorem 1. It takes shape much
like the pseudo-polynomial algorithm we described in the introduction. Leveraging the recursive
nature of the problem, we construct a process which, at time t, describes the proportion of the
interval [−1, 1] that can be approximated by some subset of the first t variables.

We will show that with a suitable number of uniform variables (proportional to log(1/ε)) a
factor of 1− ε/2 of the values in [−1, 1] can be approximated up to error ε. This implies that any
z ∈ [−1, 1] which cannot be approximated within error ε is at most ε away from a value that can.
Therefore it is possible to approximate z up to error 2ε.

2.1 Preliminaries

Let X1, . . . ,Xn be realisations of random variables as in Theorem 1, and, without loss of generality,
fix ε > 0. We say a value z ∈ R is ε-approximated at time t if and only if there exists S ⊆ [t] such
that |z−

∑

i∈S Xi| < ε. For 0 ≤ t ≤ n, let ft : R → {0, 1} be the indicator function for the event “z
is ε-approximated at time t”. Therefore, we have f0 = 1(−ε,ε), since only the interval (−ε, ε) can
be approximated by an empty set of values. From there, we can exploit the recurrent nature of the
problem: a value z can be ε-approximated at time t + 1 if and only if either z or z −Xt+1 could
already be approximated at time t. This implies that for all z ∈ R we have that

ft+1(z) = ft(z) +
(

1− ft(z)
)

ft(z −Xt+1). (1)

To keep track of the proportion of values in [−1, 1] that can be ε-approximated at each step,
we define, for each 0 ≤ t ≤ n, the random variable

vt =
1

2

∫ 1

−1
ft(z) dz.

For better readability, throughout the text we will refer to vt simply as “the volume.”
As we mentioned, it suffices to show that, with high probability, at time n, enough of the

interval is ε-approximated (more precisely, that vn ≥ 1− ε/2) to conclude that the entire interval
is 2ε-approximated.

3Namely, the intermediate value theorem, Markov’s inequality, and standard Hoeffding bounds.
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2.1.1 Expected behaviour

Our first lemma provides a lower bound on the expected value of vt.

Lemma 1. For all 0 ≤ t < n, it holds that

E
[

vt+1

∣

∣X1, . . . ,Xt

]

≥ vt

[

1 +
1

4
(1− vt)

]

.

Proof. The definition of vt and the recurrence in Eq. (1) give us that

E
[

vt+1

∣

∣X1, . . . ,Xt

]

= E





1

2

∫ 1

−1
ft+1(z) dz

∣

∣

∣

∣

∣

X1, . . . ,Xt





=

∫ 1

−1

1

2

(

1

2

∫ 1

−1
ft(z) +

(

1− ft(z)
)

ft(z − x) dz

)

dx

=
1

2

∫ 1

−1
ft(z) dz

∫ 1

−1

1

2
dx+

1

2

∫ 1

−1

1

2

∫ 1

−1

(

1− ft(z)
)

ft(z − x) dz dx

= vt +
1

4

∫ 1

−1

(

1− ft(z)
)

∫ 1

−1
ft(z − x) dxdz

= vt +
1

4

∫ 1

−1

(

1− ft(z)
)

∫ z+1

z−1
ft(y) dy dz,

where the last equality holds by substituting y = z − x. For the previous ones we apply basic
properties of integrals and Fubini’s theorem to change the order of integration.

We now look for a lower bound for the last integral in terms of vt. To this end, we exploit that,
since all integrands are non-negative, for all u ∈ [−1/2, 1/2] we have that

∫ 1

−1

(

1− ft(z)
)

∫ z+1

z−1
ft(y) dy dz ≥

∫ u+ 1
2

u− 1
2

(

1− ft(z)
)

∫ z+1

z−1
ft(y) dy dz

≥

∫ u+ 1
2

u− 1
2

(

1− ft(z)
)

∫ u+ 1
2

u− 1
2

ft(y) dy dz.

Both inequalities come from range restrictions: in the first we use that u ∈ [−1/2, 1/2] implies
[u − 1/2, u + 1/2] ⊆ [−1, 1]; for the second, we have that [u − 1/2, u + 1/2] ⊆ [z − 1, z + 1] for all
z ∈ [u− 1/2, u + 1/2].

To relate the expression to vt explicitly, we choose u in a way that the window [u−1/2, u+1/2]
entails exactly half of vt. The existence of such u may become clear by recalling the definition of
vt. To make it formal, consider the function given by

h(u) =
1

2

∫ u+ 1
2

u− 1
2

ft(y) dy,

and observe that

min {h(−1/2), h(1/2)} ≤
vt
2
, and max {h(−1/2), h(1/2)} ≥

vt
2
.

Thus, by the intermediate value theorem, there exists u∗ ∈ [−1/2, 1/2] for which h(u∗) = vt/2, that
is, for which

1

2

∫ u∗+ 1
2

u∗−
1
2

ft(y) dy =
vt
2
.
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Altogether, we can conclude that

E
[

vt+1

∣

∣X1, . . . ,Xt

]

= vt +
1

4

∫ 1

−1

(

1− ft(z)
)

∫ z+1

z−1
ft(y) dy dz

≥ vt +
1

2

∫ u∗+ 1
2

u∗− 1
2

(

1− ft(z)
)

(

1

2

∫ u∗+ 1
2

u∗− 1
2

ft(y) dy

)

dz

= vt +

(

1

2
−

vt
2

)

vt
2

= vt

[

1 +
1

4
(1− vt)

]

.

Lemma 1 tells us that, if vt were to behave as expected, it should grow exponentially up to 1/2,
at which point 1−vt starts to decrease exponentially. The rest of the proof follows accordingly, with
Section 2.2 analysing the progress of vt up to one half, and Section 2.3 analogously following the
complementary value, 1 − vt, starting from one half. By building on the results from Section 2.2,
we obtain fairly straightforward proofs in Section 2.3. Thus, the following subsection comprises the
core of our argument.

2.2 Growth of the volume up to 1/2

Arguably, the main challenge in analysing the RSSP is the existence of over-time dependencies and
deciding how to overcome it sets much of the course the proof will take. Our strategy consists in
constructing another process which dominates the original one while being free of dependencies.

Let τ1 be the first time at which the volume exceeds 1/2, that is, let

τ1 = min{t ≥ 0 : vt > 1/2}.

We just proved that up to time τ1 the process vt enjoys exponential growth in expectation. In the
following lemma we apply a basic concentration inequality to translate this property into a constant
probability of exponential growth for vt itself.

Lemma 2. Given β ∈ (0, 1/8), let pβ = 1− 7
8(1−β) . For all integers 0 ≤ t < τ1 it holds that

Pr
[

vt+1 ≥ vt(1 + β)
∣

∣X1, . . . ,Xt, t < τ1
]

≥ pβ.

Proof. The result shall follow easily from reverse Markov’s inequality [BGPS06, Lemma 4] and the
bound from Lemma 1. However, doing so requires a suitable upper bound on vt+1 and, while 2vt
would serve the purpose, such bound does not hold in general.

We overcome this limitation by fixing t and considering how much vt would grow in the next
step if we were to consider only values ε-approximated at time t that happen to lie in [−1, 1] after
being translated by Xt+1. Making it precise by the means of the recurrence in Eq. (1), we define

ṽ =
1

2

∫ 1

−1

[

ft(z) +
(

1− ft(z)
)

ft(z −Xt+1) · 1[−1,1](z −Xt+1)
]

dz.

This expression differs from the one for vt+1 only by the inclusion of the characteristic function
of [−1, 1]. This not only implies that ṽ ≤ vt+1, but also that ṽ can replace vt+1 in the bound from
Lemma 1, since the argument provided there eventually restricts itself to integrals within [−1, 1],
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trivialising 1[−1,1]. Moreover, as we obtain ṽ without the influence of values from outside [−1, 1],
we must have ṽ ≤ 2vt. Finally, using that t < τ1 implies vt < 1/2 and chaining the previous
conclusions in respective order, we conclude that

Pr
[

vt+1 ≥ vt(1 + β)
∣

∣X1, . . . ,Xt, t < τ1
]

≥ Pr
[

ṽ ≥ vt(1 + β)
∣

∣X1, . . . ,Xt, t < τ1
]

≥
E[ṽ |X1, . . . ,Xt, t < τ1]− vt(1 + β)

2vt − vt(1 + β)

≥
9
8vt − vt(1 + β)

2vt − vt(1 + β)

= 1−
7

8(1 − β)
,

where we applied the reverse Markov’s inequality in the second step.

The previous lemma naturally leads us to look for bounds on τ1, that is, to estimate the time
needed for the process to reach volume 1/2. As expected, the exponential nature of the process
yields a logarithmic bound.

Lemma 3. Let t be an integer and given β ∈ (0, 1/8), let pβ = 1 − 7
8(1−β) and i∗ =

⌈

log 1
2ε

log(1+β)

⌉

.

If t ≥ i∗/pβ , then

Pr [τ1 ≤ t] ≥ 1− exp



−
2p2β
t

(

t−
i∗

pβ

)2


 .

Proof. The main idea behind the proof is to define a new random variable which stochastically
dominates τ1 while being simpler to analyse. We begin by discretising the domain (0, 1/2] of the
volume into sub-intervals {Ii}0≤i≤i∗ defined as follows:



























I0 = (0, ε],

Ii =
(

ε(1 + β)i−1, ε(1 + β)i
]

for 1 ≤ i < i∗,

Ii∗ =

(

ε(1 + β)i
∗−1,

1

2

]

,

where i∗ is the smallest integer for which ε (1 + β)i
∗

≥ 1/2, that is, i∗ =

⌈

log 1
2ε

log(1+β)

⌉

.

Now, for each i ≥ 0, we direct our interest to the number of steps required for vt to exit the
sub-interval Ii after first entering it. By Lemma 2, this number is majorised by a geometric random
variable Yi ∼ Geom(pβ). Therefore, we can conclude that τ1 is stochastically dominated by the
sum of such variables, that is, for t ∈ N, we have that

Pr [τ1 ≥ t] ≤ Pr





i∗
∑

i=1

Yi ≥ t



 . (2)

Let Bt ∼ Bin(t, pβ) be a binomial random variable. For the sum of geometric random variables,

it holds that Pr
[

∑i∗

i=1 Yi ≤ t
]

= Pr [Bt ≥ i∗] . Since E[Bt] = tpβ, the Hoeffding bound for binomial
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random variables [DP09, Theorem 1.1] implies that, for all λ ≥ 0, we have that Pr[Bt ≤ tpβ − λ] ≤
exp(−2λ2/t). Setting t such that tpβ − λ = i∗, we obtain that

Pr





i∗
∑

i=1

Yi ≥ t



 ≤ Pr
[

Bt ≤ i∗
]

≤ exp

[

−
2

t

(

tpβ − i∗
)2
]

= exp



−
2p2β
t

(

t−
i∗

pβ

)2


 ,

which holds as long as λ = tpβ − i∗ ≥ 0, that is, for all t ≥ 1
pβ

⌈

log 1
2ε

log(1+β)

⌉

.

The thesis follows by applying this to Eq. (2) and passing to complementary events.

2.3 Growth of the volume from 1/2

Here we study the second half of the process: from the moment the volume reaches 1/2 up to
the time it gets to 1 − ε/2. We do so by analysing the complementary stochastic process, i.e.,
by tracking, from time τ1 onwards, the proportion of the interval [−1, 1] that does not admit an
ε-approximation. More precisely, we consider the process {wt}t≥0, defined by wt = 1− vτ1+t.

We shall obtain results for wt similar to those we have proved for vt. Fortunately, building on
the previous results makes those proofs quite straightforward. We start by noting that a statement
analogous to Lemma 1 follows immediately from the definition of wt+1 and Lemma 1.

Corollary 4. For all t ≥ 0, it holds that

E
[

wt+1

∣

∣X1, . . . ,Xτ1+t

]

≤ wt

[

1−
1

4
(1− wt)

]

.

Let τ2 the first time that wt gets smaller than or equal to ε/2, that is, let

τ2 = min
{

t ≥ 0 : wt ≤ ε/2
}

.

The following lemma bounds this quantity, in analogy to Lemma 3.

Lemma 5. For all t > 0, it holds that

Pr [τ2 ≤ t] ≥ 1−
1

ε

(

7

8

)t

.

Proof. Applying that 1− wt = vτ1+t > 1/2 to Lemma 4 gives the bound

E
[

wt+1

∣

∣X1, . . . ,Xτ1+t

]

≤
7

8
wt. (3)

Moreover, from the conditional expectation theory, for any two random variables X and Y , we
have E

[

E[X |Y ]
]

= E[X]. From this and Eq. (3), we can conclude that

E[wt] = E

[

E
[

wt

∣

∣X1, . . . ,Xτ1+t−1

]

]

≤
7

8
E
[

wt−1

]

,

which, by recursion, yields that

E[wt] ≤

(

7

8

)t

E[w0] ≤
1

2

(

7

8

)t

.

Finally, by Markov’s inequality,

Pr [τ2 ≥ t] ≤ Pr

[

wt ≥
ε

2

]

≤
2E[wt]

ε
≤

1

ε

(

7

8

)t

,

and the thesis follows from considering the complementary event.
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2.4 Putting everything together

In this section we conclude our argument, finally proving Theorem 1. We first prove a more general
statement and then detail how it implies the theorem.

Let τ = τ1 + τ2, the first time at which the process {vt}t≥0 reaches at least 1− ε/2.

Lemma 6. Let ε ∈ (0, 1/3). There exist constants C ′ > 0 and κ > 0 such that for every t ≥ C ′ log 1
ε ,

it holds that

Pr [τ ≤ t] ≥ 1− 2 exp

[

−
1

κt

(

t−C ′ log
1

ε

)2
]

.

Proof. Let β = 1
16 and pβ = 1 − 7

8(1−β) = 1
15 . The definition of τ allows us to apply Lemmas 3

and 5 quite directly. Indeed if, for the sake of Lemma 3, we assume t ≥ 2
pβ

⌈

log 1
2ε

log(1+β)

⌉

, we have that

Pr [τ ≤ t] = Pr [τ1 + τ2 ≤ t]

≥ Pr
[

τ1 ≤ t/2, τ2 ≤ t/2
]

≥ Pr
[

τ1 ≤ t/2
]

+ Pr
[

τ2 ≤ t/2
]

− 1

≥ 1− exp






−
p2β
t



t−
2

pβ

⌈

log 1
2ε

log(1 + β)

⌉





2





−

1

ε

(

7

8

)t/2

= 1− exp






−

1

152t



t− 30

⌈

log 1
2ε

log 17
16

⌉





2





−

1

ε

(

7

8

)t/2

, (4)

where the second inequality holds by the union bound. The remaining of the proof consists in
computations to connect this expression to the one in the statement.

Consider the first exponential term in Eq. (4). Taking t ≥ 60
log 17

16

· log 1
ε , since ε < 1/3, it follows

that

exp






−

1

152t



t− 30

⌈

log 1
2ε

log 17
16

⌉





2





≤ exp



−
1

152t

(

t−
60

log 17
16

· log
1

ε

)2


 .

Now, consider the second exponential term in Eq. (4). It holds that

1

ε

(

7

8

) t
2

= exp

[

log
1

ε
−

t

2
log

8

7

]

≤ exp

[

log
1

ε
−

t

15

]

= exp

[

−
1

15
·

1

t− 15 · log 1
ε

·

(

t− 15 · log
1

ε

)2
]

.

Moreover, for t ≥ 15 · log 1
ε ,

exp

[

−
1

15
·

1

t− 15 · log 1
ε

·

(

t− 15 · log
1

ε

)2
]

≤ exp

[

−
1

15t

(

t− 15 · log
1

ε

)2
]

≤ exp



−
1

152t

(

t−
60

log 17
16

· log
1

ε

)2


 .

8



Altogether, we have that

exp






−
p2β
t



t−
2

pβ

⌈

log 1
2ε

log(1 + β)

⌉





2





+

1

ε
·

(

7

8

)t/2

≤ 2 exp



−
1

152t

(

t−
60

log 17
16

· log
1

ε

)2


 ,

and the thesis follows by setting κ = 152 and C ′ = 60/ log(17/16).

The expression in the claim of Lemma 6 can be reformulated as

Pr

[

vt ≥ 1−
ε

2

]

≥ 1− 2 exp

[

−
1

κt

(

t− C ′ log
1

ε

)2
]

;

hence, Theorem 1 follows by taking C ≥ 3C ′ and observing that once we can approximate all but
an ε/2 proportion of the interval [−1, 1], any z ∈ [−1, 1] either is ε-approximated itself, or is at
most ε away from a value that is, which implies that z is 2ε-approximated.
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