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Abstract

This paper deals with a dynamic Euler-Bernoulli beam of infinite length
subjected to a moving concentrated Dirac mass. The beam relies on a foun-
dation composed of a continuous distribution of linear elastic springs asso-
ciated in parallel with a uniform distribution of Coulomb friction elements
and viscous dampers. The problem is stated in distributional form, and the
existence and uniqueness results are established by means of a combination
of L∞–L2–L1 estimates together with a monotonicity argument. Traveling
wave solutions are studied in detail in the case without Coulomb friction,
and they are shown to be globally exponentially stable under positive viscous
damping.
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1 Introduction

The increasing demand for sustainable development allowed a comeback
of railway transport. This is a clear trend especially in Asia and Europe.
The share in passenger and freight traffic increases during the last decades
and it is accompanied with the development of high-speed railways. This
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has in parallel stimulated mathematical models trying to describe the inter-
actions between the rails and foundation which are in persistent frictional
contact. The physical properties of the foundation, the so-called ballast
composed of stones having different shapes and sizes, play a substantial role
in the problem. The ballast track structures are successfully used nowadays
all around the world in high-speed railway tracks. However, the track settle-
ment is one of main causes of track deformations leading to a considerable
maintenance effort. Thus a good understanding of this complex deteriora-
tion track mechanism is crucial to preserve the quality required by traffic
safety and passenger comfort and to reduce track maintenance costs. The
reliability of a railway track depends essentially on the limitation of the dy-
namic amplifications of the foundation behavior [17, 14]. It depends strongly
on the ability of this structure to dissipate the energy transmitted by the
transit of the moving loads. The train velocity, traffic loads, number of load
cycles and other factors increase the energy that should be dissipated. For
all these reasons, many studies are devoted to the foundation behavior (see
[18, 14] and the references therein). It is also highlighted in [18, 9] that
the properties of the foundation contribute substantially to possible defor-
mations of the rail infrastructure, while the reduced scale experiments in
[4] established that the sleepers subjected to sufficiently high accelerations
increase strongly the settlement of the ballast.

Most mathematical models treat the rails as Euler-Bernoulli beams sub-
jected to moving loads, and their properties are intensively studied. In the
linear case, dynamic stresses are identified for beams under a moving load
in [15, 19] and the transverse vibrations are investigated in [11]. Note that
an analytical solution is exhibited for the free vibrations problem of a beam
lying on an elastic foundation in [20], and [7, 8] contain some discrete approx-
imations and numerical results for the problem of a vibrating beam between
two rigid obstacles. However, the observed irreversible ballast accumulation
in railway tracks experiments indicates that the main mechanism governing
the interaction between the infrastructure constituents is driven by frictional
contact. For this reason, it makes sense to study the dynamic rail behavior
on a foundation including both frictional and visco-elastic dissipative mech-
anisms. Questions related to contact problems for Euler-Bernoulli beams
have been studied in [2, 3]. More precisely, frictional contact at each end of
the beam is treated in [3], while the distributed contact along the beam is
investigated in [2].

We consider in this paper a straight infinite linear elastic Euler-Bernoulli
beam with a constant cross sectional area A, central moment of inertia I,
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mass density %, and Young’s modulus E, in persistent visco-elasto-frictional
contact with a foundation. The mechanical properties of the foundation
are represented by a continuous distribution of linear elastic springs with
stiffness per unit length k associated in parallel with frictional and viscous
dampers with yield limit m ≥ 0 and damping coefficient c ≥ 0, respectively.
The present work is an extension of the results obtained in [13], where the
force F depends on a time variable t ∈ (0, T ) and space variable x ∈ R, and
acts on the beam moving from left to right. Here the beam is activated by
a concentrated force F moving at a constant velocity v ∈ R (see Figure 1).

by a rather standard approach. Finally, some travelling wave solutions are
exhibited which fit in our mathematical analysis of the problem.

2 The mathematical model

We focus here on a horizontal infinite linear elastic Euler–Bernoulli beam,
which is characterized by a cross sectional area A, a central moment of iner-
tia I, a mass density % and a Young’s modulus E, lying on a foundation. The
beam is connected to a fixed foundation by system of linear elastic springs,
with stiffness per unit length k associated in parallel with frictional and vis-
cous dampers, with a maximum frictional force per unit length m and with
damping coefficient c, respectively. The beam is acted by a concentrated
force F moving from left to right at a constant velocity v (see Figure 1).

+∞−∞ EI, µ

k, c,m

F

u(t, x)

x

vt

Figure 1: An infinite beam on a frictionally and viscously damped continuous elastic
foundation under a moving load.

The transverse displacement of the beam u(t, x) is governed by a partial
differential equation that can be formally written as

µutt + EIuxxxx +m sign (ut) + cut + ku = Fδ(x− vt), (2.1)

with Cauchy initial data

u(0, ·) = u0 and ut(0, ·) = u1, (2.2)

where (·)t def
= ∂(·)

∂t and (·)x def
= ∂(·)

∂x denote the partial derivatives with respect

to t and x, respectively, µ
def
= %A is the mass of the beam per unit length

of the beam, δ is the Dirac delta function. and µ,E, I, k are positive, and
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Figure 1: An infinite beam on a visco-elastic foundation subjected to frictional damping
driven by a moving load.

The transverse displacement of the beam u(t, x) for (t, x) ∈ (0, T )×R is
governed by a partial differential equation that can be formally written as

µutt + EIuxxxx +mξ + cut + ku = Fδ(x− vt), ξ ∈ sign (ut), (1.1)

with positive constants µ,E, I, k,F. The constant µ is defined as the product
µ

def
= %A of the mass density % and the cross section area A and represents the

mass of the beam per unit length. We denote by (·)t def
= ∂(·)

∂t and (·)x def
= ∂(·)

∂x
the partial derivatives with respect to t and x, respectively. The symbol δ
represents the Dirac measure on real line centered at 0, so that δ(x − vt)
should be interpreted in distributional sense as∫ T

0

∫
R
δ(x− vt)φ(t, x)dxdt

def
=

∫ T

0
φ(t, vt)dt

for all φ ∈ L1(0, T ; C0(R)). Last, as customary, “sign” denotes the multival-
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ued sign function given by the formula

sign(z) =


{
z
|z|
}

for z 6= 0,

[−1, 1] for z = 0,

and we prescribe initial data

u(0, ·) = u0 and ut(0, ·) = u1. (1.2)

The paper is organized as follows. Section 2 is devoted to a rigorous for-
mulation of (1.1) in distributional form in Problem 2.1 below, and to the
statement of the main existence and uniqueness theorem. The first step in
the existence argument consists in choosing in Section 3 an approximation
parameter ε > 0, and replacing the singular terms in (1.1) by suitable reg-
ularizations. More specifically, we regularize the sign function by its Yosida
approximation f ε, and the Dirac measure by a smooth probability density
ψε with compact support on R, with the intention to prove sufficient esti-
mates independent of ε which will allow us to let ε tend to 0 in Section 4.
The identification of the limit in Section 5 represents the most delicate step
of the proof which consists in proving, using finer properties of the Yosida
approximation, that the limit velocity ut belongs to L1((0, T )×R) although
the sequence of its approximations uεt is not bounded in this space. Unique-
ness is proved in Section 6 by a standard monotonicity argument. Finally,
Section 7 is devoted to an explicit computation of travelling wave solutions
in the case without friction. We obtain not only complete agreement with
previous numerical experiments (see [5], [6] and the references therein), but
we prove in addition a global exponential stability result.

2 The mathematical model

We present in this section a rigorous meaning to (1.1). To this aim, we
fix a final time T > 0 and introduce the following spaces

• W def
= H2(R) ∩ L1(R) endowed with the following norm:

‖w‖W def
=

(∫
R

(
|w(x)|2 + |wxx(x)|2

)
dx

)1/2

+

∫
R
|w(x)|dx,

• V def
= L1(0, T ;W),

• K def
=

{
u ∈ C0([0, T ]× R) : ut ∈ L1((0, T )× R) ∩ L∞(0, T ; L2(R)),
u, uxx ∈ L∞(0, T ; L2(R)), utt ∈ L∞(0, T ;W ′)

}
,
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where W ′ is the dual space to W. This non-standard functional framework
allows us to reformulate (1.1) rigorously as follows:

Problem 2.1. For given initial data u0 ∈ H2(R) and u1 ∈ L2(R) find u ∈ K
and ξ ∈ L∞((0, T )×R) such that (1.2) holds, and for all τ ∈ (0, T ) and for
all φ ∈ V we have

•
∫ τ

0

(
〈µutt, φ〉+

∫
R

(EIuxxφxx +mξφ+ cutφ+ kuφ)dx
)

dt (2.1a)

= F

∫ τ

0
φ(t, vt)dt = F

(
Φ(τ, vτ)− v

∫ τ

0
Φx(t, vt)dt

)
,

• ξ(t, x) ∈ sign (ut(t, x)) a. e., (2.1b)

where we put Φ(t, x)
def
=
∫ t
0 φ(s, x) ds, and 〈·, ·〉 denotes the duality between

W and W ′.
Notice that Φ and Φx are continuous functions, so that (2.1b) is mean-

ingful. Indeed, by using Sobolev embeddings, we have, for any x ∈ R and
almost every s ∈ (0, T ): |φx(s, x)| ≤ C‖φ(s, ·)‖H2(R). We thus have

sup
(t,x)∈(0,T )×R

|Φx(t, x)| ≤ C
∫ T

0
‖φ(t, ·)‖W dt. (2.2)

Furthermore, for τ > t and x ∈ R we have

|Φx(τ, x)− Φx(t, x)| =

∫ τ

t
|φx(s, x)|ds→ 0

as t→ τ uniformly with respect to x ∈ R. Similarly, we have also that

|Φx(t, y)− Φx(t, x)| ≤
∫ t

0

∫ y

x
|φxx(s, z)|dzds ≤ |x− y|1/2

∫ T

0
‖φ(t, ·)‖W dt

uniformly with respect to t ∈ [0, T ].

The positive constants µ,E, I,F, k in (1.1) play no role in the mathemat-
ical analysis carried out in the next sections. Thus without loss of generality,
we set them equal to 1.

The main result of this paper can be stated as follows.

Theorem 2.2. Let v ∈ R, m ≥ 0, and c ≥ 0 be given constants and let
u0 ∈ H2(R) and u1 ∈ L2(R) be given. Then there exists a unique u ∈ K
and a not necessary unique ξ ∈ L∞((0, T ) × R) solving Problem 2.1 with
µ = E = I = F = k = 1.
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The proof of Theorem 2.2 is given in the next sections. We first choose
a small regularization parameter ε > 0 and solve a regularized problem.
A priori estimates independent of ε and a compactness and monotonicity
technique allow us to pass to the limit as ε→ 0 and prove that the limit is
the desired solution of the problem. Uniqueness is obtained by a standard
monotonicity argument.

3 The approximate problem

The starting point in the proof of existence result is to approximate
(1.1)–(1.2) by using the Yosida regularization for the sign function and a
convolution-type mollifier for the delta function. In other words, for ε ∈
(0, 1), the sign function in (1.1) is replaced by a stiff response represented
by the function

f ε(u)
def
=


1 for u ≥ ε,
−1 for u ≤ −ε,
u
ε for u ∈ (−ε, ε).

(3.1)

The Dirac measure is approximated by a probability density ψε of the form
ψε(x) = 1

εψ(x/ε), where ψ : R → [0, 1] is an even function of class C2 such
that suppψ ⊂ [−1, 1] and

∫
R ψ(x)dx = 1. We then replace (1.1)–(1.2) with

the equation for a new unknown function uε∫ τ

0

∫
R

(uεttφ+ uεxxφxx +mf ε(uεt )φ+ cuεtφ+ uεφ) dxdt

=
1

ε

∫ τ

0

∫
R
ψ
(x− vt

ε

)
φ(t, x)dxdt

(3.2)

for every φ ∈ L2(0, T ; H2(R)), coupled with initial conditions

uε(0, x) = u0,ε(x) and uεt (0, x) = u1,ε(x), (3.3)

where u0,ε ∈ H4(R) and u1,ε ∈ H2(R) satisfy the conditions

lim
ε→0

∫
R

(
|u0,ε − u0|2 + |u0,εxx − u0xx|2

)
(x)dx = 0, (3.4a)

lim
ε→0

∫
R
|u1,ε − u1|2(x)dx = 0. (3.4b)

The existence and uniqueness of solutions to (3.2)–(3.3) have been estab-
lished in [13, Thm 3.2] in a more general setting using the classical semigroup
theory. For our purposes, we recall the result in the following special form.
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Theorem 3.1. Let T > 0. Let α ∈ C1([0, T ]; L2(R)), u0 ∈ H4(R), and
u1 ∈ H2(R) be given, and let β : R→ R be a bounded nondecreasing Lipschitz
continuous function such that β(0) = 0. Then there exists a unique solution
u ∈ ∩2i=0C

2−i([0, T ]; H2i(R)) to the system{
utt + uxxxx + β(ut) + cut + u = α,

u(0, ·) = u0 and ut(0, ·) = u1.

(3.5a)

(3.5b)

Remark 3.2. We can deduce from Theorem 3.1 that for the solution u of
(3.5) we have u ∈ C0([0, T ]× R) and ux ∈ C0([0, T ]× R).

As an immediate consequence of Theorem 3.1 we see that Problem (3.2)–
(3.3) has for every ε ∈ (0, 1) a unique solution uε with the regularity as in
Theorem 3.1. The convergence as ε → 0 and the identification of the limit
will be established in the next sections.

4 Limit as ε→ 0

We first derive some estimates independent of ε for solutions to (3.2)–
(3.3) which will be subsequently used for passing to the limit in the approx-
imate system and for proving that the limit is a solution to (2.1). Let us
summarize the estimates in the following statement.

Lemma 4.1. The solution uε to (3.2)–(3.3) satisfies the estimate

•
∫ T

0

∫
R
mf ε(uεt )u

ε
t dxdt (4.1)

+ sup
τ∈(0,T )

∫
R

(
|uεt |2 + |uεxx|2 + |uε|2

)
(τ, x)dx ≤ C,

•
∫ T

0

∫
R
uεtt(t, x)φ(t, x)dxdt ≤ C

∫ T

0
‖φ(t, ·)‖W dt (4.2)

with a constant C > 0 independent of ε.

Proof. We test (3.2) with φ(x, t) = uεt (x, t). For every τ ∈ (0, T ) we get

1

2

∫
R

(
|uεt |2+|uεxx|2+|uε|2

)
(τ, x)dx

− 1

2

∫
R

(
|u1,ε|2+|u0,εxx |2+|u0,ε|2

)
(x)dx

+

∫ τ

0

∫
R

(
mf ε(uεt )u

ε
t + c|uεt |2

)
dxdt =

1

ε

∫ τ

0

∫
R
ψ
(x− vt

ε

)
uεt dxdt.

(4.3)
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We rewrite the right-hand side of (4.3) as

1

ε

∫ τ

0

∫
R
ψ
(x− vt

ε

)
uεt (t, x)dxdt

=
1

ε

∫ τ

0

d

dt

∫
R
ψ
(x− vt

ε

)
uε(t, x)dxdt

+
v

ε2

∫ τ

0

∫
R
ψ′
(x− vt

ε

)
uε(t, x)dxdt

=
1

ε

∫
R

(
ψ
(x− vτ

ε

)
uε(τ, x)− ψ

(x
ε

)
u0,ε(x)

)
dx

− v

ε

∫ τ

0

∫
R
ψ
(x− vt

ε

)
uεx(t, x)dxdt,

(4.4)

which implies that there exists a constant C > 0 independent of ε such that∣∣∣1
ε

∫ τ

0

∫
R
ψ
(x− vt

ε

)
uεt (t, x)dxdt

∣∣∣
≤ C

(
sup
x∈R
|u0,ε(x)|+ sup

x∈R
|uε(τ, x)|+

∫ τ

0
sup
x∈R
|uεx(t, x)|dt

)
.

(4.5)

Using the L1-L∞ convolution inequality and Sobolev embedding H1(R) ↪→
L∞(R), we get

sup
x∈R
|u0,ε(x)| ≤ C‖u0‖H1(R) (4.6)

The same embedding provides

sup
x∈R

(
|uε(t, x)| + |uεx(t, x)|

)
≤ C‖uε(t, ·)‖H2(R) (4.7)

for almost every t ∈ (0, T ) and a constant C > 0 independent of ε. According
to (4.4)–(4.7), we may deduce from (4.3) that

1

2

∫
R

(
|uεt |2 + |uεxx|2 + |uε|2

)
(τ, x)dx+

∫ τ

0

∫
R

(
mf ε(uεt )u

ε
t + c|uεt |2

)
dxdt

≤ C
(

1 +

∫ τ

0

∫
R

(
|uεxx|2 + |uε|2

)
dxdt

)1/2
with a constant C > 0 independent of ε. This is an inequality of the form

ẇ(τ) + a(τ) ≤ C(1 + w(τ))1/2, (4.8)

where (˙) denotes the derivative with respect to τ . Note that (4.8) can easily
be integrated and we get supτ∈[0,T ](w(τ) + ẇ(τ) + a(τ)) ≤ C, which yields
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in particular that∫ τ

0

∫
R

(mf ε(uεt )u
ε
t + c|uεt |2)dxdt

+ sup
τ∈[0,T ]

∫
R

(
|uεt |2 + |uεxx|2 + |uε|2

)
(τ, x)dx ≤ C,

(4.9)

and (4.1) follows.

To prove the inequality (4.2), we first notice that (3.2) holds for all φ ∈ V
as a consequence of (4.1) and of the identity

1

ε

∫ τ

0

∫
R
ψ
(x− vt

ε

)
φ(t, x)dxdt =

1

ε

∫
R
ψ
(x− vτ

ε

)
Φ(τ, x)dx

− v

ε

∫ τ

0

∫
R
ψ
(x− vt

ε

)
Φx(t, x)dxdt

(4.10)

with Φ as in (2.1a). Inequality (4.2) now follows from (3.2), (2.2), (4.1), and
(4.10) by comparison. �

Due to the fact that the beam is assumed to be infinite, we cannot expect
that the estimates in Lemma 4.1 would imply any compactness on the whole
real axis. Instead, for any R > 0, we denote IR

def
= [−R,R] and consider the

restrictions of uε to (0, T ) × IR. We first notice that (uε)ε>0 are bounded
in L∞(0, T ; H2(IR)) and (uεt )ε>0 are bounded in L∞(0, T ; L2(IR)). Using
the Aubin-Lions lemma ([16, Theorem 5.1]), we can extract a subsequence
(εi)i∈N such that limi→∞ εi = 0 and

lim
i→∞
‖uεi − u‖L∞(0,T ;L2(IR)) = 0 (4.11)

for some u ∈ L∞(0, T ; H2(R)) and for every R > 0. We need in the sequel
the following stronger convergence result.

Lemma 4.2. Let u and εi be as in (4.11), and let R > 0 be arbitrarily
chosen. Then (uεi)i∈N and (uεix )i∈N converge strongly in C0([0, T ] × IR) to
u and ux, respectively.

Proof. Using the embedding H5/3(IR) ↪→ W1,∞(IR) and the interpolation
inequality, we deduce that there exists a constant C > 0 such that for all
i, j ∈ N we have

‖uεi − uεj‖L∞((0,T )×IR) + ‖uεix − u
εj
x ‖L∞((0,T )×IR)

≤ C‖uεi − uεj‖L∞(0,T ;H5/3(IR))

≤ C‖uεi − uεj‖1/6
L∞(0,T ;L2(IR))

‖uεi − uεj‖5/6
L∞(0,T ;H2(IR))

.

(4.12)
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Since (uεi −uεj )(i,j)∈N2 are bounded in L∞(0, T ; H2(IR)), we conclude using
(4.11) that (uεi)i∈N, (uεix )i∈N are Cauchy sequences in C0([0, T ] × IR), and
the assertion follows. �

As a direct consequence of Lemma 4.1 and Lemma 4.2, we have the
following result.

Lemma 4.3. There exist u ∈ K, ξ ∈ L∞((0, T )×R), and a sequence εi → 0
as i→∞ such that uεi, uεix converge for i→∞ locally uniformly to u, ux,
respectively, and

• uεit
∗
⇀ ut in L∞(0, T ; L2(R)),

• uεixx
∗
⇀ uxx in L∞(0, T ; L2(R)),

• f εi(uεit )
∗
⇀ ξ in L∞((0, T )× R),

where the symbol
∗
⇀ denotes the weak-star convergence.

Indeed, the identification of ξ represents a major problem. Note that the
argument of [13] cannot be applied for lack of pointwise convergence, and
we have to proceed instead in several consecutive steps. The first one is the
L1 bound for ut established in Lemma 4.4 below.

Lemma 4.4. Under the hypotheses of Lemma 4.3 we have

• uεitt
∗
⇀ utt in V ′, (4.13)

•
∫ T

0

∫
R
|ut|dxdt ≤ lim inf

i→∞

∫ T

0

∫
R
f εi(uεit )uεit dxdt ≤ C, (4.14)

• 1

2

∫
R

(
|ut|2 + |uxx|2 + |u|2

)
(τ, x)dx+ c

∫ τ

0

∫
R
|ut|2dxdt (4.15)

+ lim inf
ε→0

∫ τ

0

∫
R
mf ε(uεt )u

ε
t dxdt ≤ u(τ, vτ)− u(0, 0)

− v
∫ τ

0
ux(t, vt)dt+

1

2

∫
R

(
|u1|2 + |u0xx|2 + |u0|2

)
(x)dx.

Proof. The convergence (4.13) follows from (4.2). To prove (4.14), we notice
that for each η ∈ (0, 1) and R > 0 we have∫ T

0

∫ R

−R
fη(ut)utdxdt = lim

i→∞

∫ T

0

∫ R

−R
fη(ut)u

εi
t dxdt

≤ lim inf
i→∞

∫ T

0

∫ R

−R
|uεit |dxdt.
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We have ∫ T

0

∫ R

−R
|uεit |dxdt ≤

∫ T

0

∫
R
f εi(uεit )uεit dxdt+ 2εiRT.

Hence, we find∫ T

0

∫ R

−R
fη(ut)utdxdt ≤ lim inf

i→∞

∫ T

0

∫
R
f εi(uεit )uεit dxdt

for every R > 0 and η > 0. Passing to the limit as η → 0, and by monotone
convergence for R→∞ we obtain (4.14).

To prove (4.15), we use the weak-star convergences in Lemma 4.3 to get
for all τ ∈ (0, T ) that

1

2

∫
R

(
|ut|2 + |uxx|2 + |u|2

)
(τ, x)dx+ c

∫ τ

0

∫
R
|ut(t, x)|2dxdt

≤ lim inf
i→∞

(1

2

∫
R

(
|uεit |2 + |uεixx|2 + |uεi |2

)
(τ, x)dx

+ c

∫ τ

0

∫
R
|uεit (t, x)|2dxdt

)
.

(4.16)

The next goal is to pass to the limit in (4.3) as ε = εi → 0. It remains to
prove convergence of the last term on the right-hand side of (4.3) rewritten
in the form (4.4). Note that the support of ψ is contained in [−1, 1]. Hence,
assuming that εi < 1 for all i ∈ N we have

v

εi

∫ τ

0

∫
R
ψ
(x− vt

εi

)
uεix (t, x)dxdt

=
v

εi

∫ τ

0

∫ |v|T+1

−|v|T−1
ψ
(x− vt

εi

)
uεix (t, x)dxdt

=
v

εi

∫ τ

0

∫ |v|T+1

−|v|T−1
ψ
(x− vt

εi

)
(uεix − ux)(t, x)dxdt

+
v

εi

∫ τ

0

∫ |v|T+1

−|v|T−1
ψ
(x− vt

εi

)
ux(t, x)dxdt.

(4.17)

Let us estimate the right-hand side of (4.17). First, by using Lemma 4.2 we
observe that∣∣∣ v

εi

∫ τ

0

∫ |v|T+1

−|v|T−1
ψ
(x− vt

εi

)
(uεix − ux)(t, x)dxdt

∣∣∣
≤ C‖uεix − ux‖L∞((0,T )×(−|v|T−1,|v|T+1)) → 0

(4.18)
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as i → ∞. The fact that uεixx are bounded in L∞(0, T ; L2(R)) yields that
there exists a constant C > 0 such that

|ux(t, x)− ux(t, vt)| =
∣∣∣∫ x

vt
uxx(t, y)dy

∣∣∣ ≤ C|x− vt|1/2, (4.19)

which implies that

lim
i→+∞

v

εi

∫ τ

0

∫ |v|T+1

−|v|T−1
ψ
(x− vt

εi

)
ux(t, x)dxdt

= v

∫ τ

0
ux(t, vt)dt.

(4.20)

By using (4.18) and (4.20), we may conclude that

lim
i→+∞

1

εi

∫ τ

0

∫
R
ψ
(x− vt

εi

)
uεit (t, x)dxdt

= u(τ, vτ)− u(0, 0)− v
∫ τ

0
ux(t, vt)dt.

(4.21)

Combining (4.3) with (3.4), (4.16), and (4.21), we obtain (4.15). �

5 Identification of the limit

There is nothing to prove if m = 0. Indeed, using the convergences in
Lemmas 4.3 and 4.4 we can directly pass to the limit as ε→ 0 in (3.2) and
(4.10) and check that the limit is a solution to (2.1a). Hence, assume in the
sequel that m > 0. We can still pass to the limit as ε→ 0 in (3.2) and (4.10)
and obtain (2.1a). However, (2.1b) is not a direct consequence of the weak
convergence results, and a monotonicity argument will be necessary.

A natural idea would be to choose φ = ut in (2.1a). This is, however,
not possible, as ut is not sufficiently regular. Instead, we take the function
ψ as in (3.2) and for α > 0 put

uα(t, x) =
1

α2

∫∫
R2

ψ
(x− y

α

)
ψ
(z − y

α

)
u(t, z)dzdy, (5.1a)

ûα(t, x) =
1

α

∫
R
ψ
(x− y

α

)
u(t, y)dy, (5.1b)
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and choose φ = uαt in (2.1a). We claim that we obtain

1

2

∫
R

(
|ûαt |2 + |ûαxx|2 + |ûα|2

)
(τ, x)dx

+

∫ τ

0

∫
R

(
mξuαt + c|ûαt |2

)
(t, x)dxdt

=
1

2

∫
R

(
|ûαt |2 + |ûαxx|2 + |ûα|2

)
(0, x)dx+

∫ τ

0
uαt (t, vt)dt.

(5.2)

The only term which may perhaps need some explanation is the identity∫ τ

0
〈utt, uαt 〉 (t) =

∫ τ

0

∫
R

(ûαttû
α
t )(t, x)dxdt.

This follows from the general identity

〈w,ψ ∗ (ψ ∗ φ)〉 =

∫
R

(ψ ∗ w)(x)(ψ ∗ φ)(x)dx, (5.3)

where ψ ∗ φ is the convolution product (ψ ∗ φ)(x) =
∫
R ψ(x − y)φ(y) dy.

Formula (5.3) holds for all w, φ ∈ L2(R) ∩ L1(R) and by density of L2(R) ∩
L1(R) in W ′ it can be extended to all elements w ∈ W ′.

In the identity (5.2), the convergences ûαt (t, ·) → ut(t, ·), ûαxx(t, ·) →
uxx(t, ·), ûα(t, ·) → u(t, ·), uαt (t, ·) → ut(t, ·) as α tends to 0 are strong in
L2(R) for almost all t ∈ (0, T ), and uαt → ut strongly in L1((0, T ) × R).
The right-hand side of (5.2) can be rewritten similarly as in (4.4), more
specifically,∫ τ

0
uαt (t, vt)dt

= uα(τ, vτ)− uα(0, 0)− v

α3

∫ τ

0

∫∫
R2

ψ′
(vt− y

α

)
ψ
(z − y

α

)
u(t, z)dzdydt

= uα(τ, vτ)− uα(0, 0) +
v

α3

∫ τ

0

∫∫
R2

ψ
(vt− y

α

)
ψ′
(z − y

α

)
u(t, z)dzdydt

= uα(τ, vτ)− uα(0, 0)− v

α2

∫ τ

0

∫∫
R2

ψ
(vt− y

α

)
ψ
(z − y

α

)
ux(t, z)dzdydt.

We now argue as in Section 4 and pass to the limit in (5.2) as α tends to 0
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to get the identity

1

2

∫
R

(
|ut|2 + |uxx|2 + |u|2

)
(τ, x)dx+

∫ τ

0

∫
R

(
mξut + c|ut|2

)
dxdt

= u(τ, vτ)− u(0, 0)− v
∫ τ

0
ux(t, vt)dt

+
1

2

∫
R

(
|u1|2 + |u0xx|2 + |u0|2

)
(x)dx.

(5.4)

From (4.15), (5.4) it follows that

lim inf
ε→0

∫ τ

0

∫
R
f ε(uεt )u

ε
t dxdt ≤

∫ τ

0

∫
R
ξutdxdt (5.5)

for all τ ∈ (0, T ). Hence, by (4.14) and (5.5) we have the inequality∫ T

0

∫
R
|ut|dxdt ≤ lim inf

i→∞

∫ T

0

∫
R
f εi(uεit )uεit dxdt ≤

∫ T

0

∫
R
ξutdxdt,

which implies that ξ(x, t) ∈ sign (ut(x, t)) almost everywhere. We have thus
proved the following existence statement of Theorem 2.2.

Proposition 5.1. Under the hypotheses of Theorem 2.2, there exists a so-
lution to Problem 2.1.

We conclude this section by proving the following higher regularity result.

Proposition 5.2. Under the additional hypothesis

u0 ∈ H4(R) and u1 ∈ H2(R)

the solution to Problem 2.1 has the regularity utt ∈ L∞(0, T,L2(R)), and
(2.1a) can be stated in the form∫ τ

0

∫
R

(uttφ+ uxxφxx +mξφ+ cutφ+ uφ) dxdt =

∫ τ

0
φ(t, vt)dt (5.6)

for all φ ∈ V and τ ∈ (0, T ).

Proof of Proposition 5.2. We consider (3.2) in the form (3.5a), that is,

uεtt − uεxxxx +mf ε(uεt ) + cuεt + uε =
1

ε
ψ
(x− vt

ε

)
(5.7)
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with initial conditions uε(0, x) = u0(x), uεt (0, x) = u1(x). By virtue of
Theorem 3.1, the identity (5.7) is satisfied in the sense of L2((0, T ) × R).
For (t, x) ∈ (0, T )×R and σ > 0 sufficiently small we introduce the functions

uε,σ(t, x)
def
=

1

σ

(
uε(t+ σ, x+ vσ)− uε(t, x)

)
. (5.8)

It follows from (5.7) that the functions uε,σ satisfy the equation

uε,σtt −uε,σxxxx+
m

σ
(f ε(uεt (t+ σ, x+ vσ))−f ε(uεt (t, x)))+cuε,σt +uε,σ = 0 (5.9)

in the sense of L2((0, T )×R). We now multiply (5.9) by uε,σt , integrate over
(0, t)×R for an arbitrary t ∈ (0, T ), and using integration by parts and the
monotonicity of f ε we obtain∫

R
(|uε,σt |2 + |uε,σxx |2 + |uε,σ|2)(t, x)dx

≤
∫
R

(|uε,σt |2 + |uε,σxx |2 + |uε,σ|2)(0, x)dx.

(5.10)

Still keeping ε > 0 fixed, we pass to the limit as σ → 0 using the regularity
of uε, which yields∫

R
(|uεtt + vuεxt|2 + |uεxxt + vuεxxx|2 + |uεt + vuεx|2)(t, x)dx

≤
∫
R

(|uεtt + vuεxt|2 + |uεxxt + vuεxxx|2 + |uεt + vuεx|2)(0, x)dx

≤ C
(
‖u0‖H4(R) + ‖u1‖H2(R)

)2
(5.11)

with a constant C > 0 independent of ε. Taking into account the fact that∫
R
|uεxt + vuεxx|2(t, x)dx ≤

∫
R

(|uεxxt + vuεxxx|2 + |uεt + vuεx|2)(t, x)dx

and (4.1) we obtain that

sup
t∈(0,T )

∫
R

(
|uεtt + vuεxt|2 + |uεxt + vuεxx|2 + |uεxx|2

)
(t, x)dx ≤ C

with a constant C > 0 depending only on the initial data, hence,

sup
t∈(0,T )

∫
R

(
|uεtt|2 + |uεxt|2 + |uεxx|2

)
(t, x)dx ≤ C. (5.12)

The regularity (5.12) is preserved in the limit as ε → 0, which proves that
utt ∈ L∞(0, T,L2(R)). Notice also that this implies compactness of uεt in
C0([0, T ]× [−R,R]) for every R > 0, which would thus simplify the conver-
gence argument. �
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6 Uniqueness

We establish in this section the uniqueness result by using a classical
approach. Namely, let u1 and u2 be two solutions of Problem 2.1, and let
ū

def
= u1 − u2 and ξ̄

def
= ξ1 − ξ2. Then for every test function φ as in Theorem

2.2 the function ū satisfies the identity∫ τ

0

(
〈ūtt, φ〉+

∫
R
ūxxφxx +mξ̄φ+ cūtφ+ ūφdx

)
dt = 0. (6.1)

We define for α > 0 similarly as in (5.1)

ūα(t, x)
def
=

1

α2

∫∫
R2

ψ
(x− y

α

)
ψ
(z − y

α

)
ū(t, z)dzdy, (6.2a)

ũα(t, x)
def
=

1

α

∫
R
ψ
(x− y

α

)
ū(t, y)dy, (6.2b)

and choose φ = ūαt in (6.1). Repeating the argument of (5.2)–(5.4) we pass
to the limit as α tends to 0 and get

1

2

∫
R

(
|ūt|2 + |ūxx|2 + |ū|2

)
(τ, x)dx

+

∫ τ

0

∫
R

(
mξ̄ūt + c|ūt|2

)
dxdt = 0.

(6.3)

We have indeed ξ̄(t, x)ūt(t, x) ≥ 0 a. e., hence ū = 0 and u1 = u2.

More generally, we can consider different initial conditions u0i , u
1
i for

i = 1, 2. Putting ū0 = u01 − u02, ū
1 = u11 − u12 we obtain by the same

argument the inequality∫
R

(
|ūt|2+|ūxx|2+|ū|2

)
(τ, x)dx ≤

∫
R

(
|ū1|2+|ū0xx|2+|ū0|2

)
(x)dx, (6.4)

which implies continuous dependence of the solution on the initial data.

7 Traveling wave solutions

In order to make a link between the theory developed in the previous
sections and the classical approach to (2.1a), we first notice that if the non-
linearity ξ does not appear in (2.1a), then for some special initial conditions
there may exist traveling wave solutions of the form u(t, x) = w(x−vt). Let
us first consider one special case of (1.1) with m = c = 0, that is,

µutt + EIuxxxx + ku = δ(x− vt). (7.1)
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In terms of the new unknown function w, this equation reads

µv2wii(z) + EIwiv(z) + kw(z) = δ(z), (7.2)

where wii and wiv denote the second and fourth derivatives with respect to
z. The solution can be constructed in such a way that we solve the linear
autonomous equations

µv2wii−(z) + EIwiv− (z) + kw−(z) = 0 for z < 0, (7.3)

µv2wii+(z) + EIwiv+ (z) + kw+(z) = 0 for z > 0, (7.4)

and prescribe at z = 0 the transition conditions

w+(0+) = w−(0−),

wi+(0+) = wi−(0−),

wii+(0+) = wii−(0−),

wiii+ (0+) = wiii− (0−) + 1,

(7.5)

where wi and wiii denote the first and third derivatives with respect to z.
The characteristic equation of both (7.3) and (7.4) reads

EIλ4 + µv2λ2 + k = 0, (7.6)

hence

λ2 =
−µv2 ±

√
µ2v4 − 4EIk

2EI
. (7.7)

The condition that u(t, ·) belongs to L2(R) requires that w−(x) → 0 as
x→ −∞ and w+(x)→ 0 as x→ +∞. If µ2v4 ≥ 4EIk, then the right-hand
side of (7.7) is real and negative for both choices of the sign, so that the
characteristic equation (7.6) has four roots on the imaginary axis, and no
solution of (7.3)–(7.4) can asymptotically vanish at ±∞. The situation is
different if µ2v4 < 4EIk. Then (7.7) is of the form λ2 = −p± ri with p > 0,
r > 0, so that λ = ±a± bi with

a =

√
1

2

(√
p2 + r2 − p

)
and b =

r

2a
.

The condition that w− has to vanish at −∞ and w+ has to vanish at +∞
implies that we search for solutions of the form

w−(z)
def
= eaz(α cos(bz) + β sin(bz)), (7.8a)

w+(z)
def
= e−az(α̂ cos(bz) + β̂ sin(bz)), (7.8b)
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where (α, α̂, β, β̂) ∈ R4. Conditions (7.5) read

α̂ = α, (7.9a)

−aα̂+ bβ̂ = aα+ bβ, (7.9b)

(a2 − b2)α̂− 2abβ̂ = (a2 − b2)α+ 2abβ, (7.9c)

(−a3 + 3ab2)α̂+ (3a2b− b3)β̂ = (a3 − 3ab2)α+ (3a2b− b3)β + 1, (7.9d)

which is equivalent to

α̂ = α =
1

4a(a2 + b2)
,

β̂ = −β =
1

4b(a2 + b2)
.

(7.10)

The above computations show that a traveling wave solution in L2(R) exists
if and only if |v| stays below the critical velocity

vc
def
= (4EIk/µ2)1/4. (7.11)

A similar formula to (7.11) for the critical velocity of load travelling on
finite and infinite beams was exhibited in [6] and it is in accordance with
experimental and numerical results (see, for instance, [4, 5]). The critical
velocity is defined as the load velocity inducing the highest upward and/or
downward deflections of the rail. In particular, upward displacements of
the rail may have a negative impact on the stability and the lifetime of the
system. In practice, however, the theoretical critical speed is still far from
standard train velocities.

Note also that the nonexistence of traveling wave solutions for supercriti-
cal velocities is not in contradiction with the existence statement in Theorem
2.2. The point is that initial conditions of the traveling wave solution in the
“bad case” µ2v4 ≥ 4EIk do not belong to L2(R), so that we can only con-
clude that the solution constructed in Theorem 2.2 does not have the form
of traveling wave. On the other hand, in the “good case” µ2v4 < 4EIk, a
traveling wave solution exists in L2(R) only for one particular choice of the
initial condition, namely

u0(x)
def
=

{
w−(x) for x < 0

w+(x) for x > 0
and u1(x)

def
=

{
wi−(x) for x < 0

wi+(x) for x > 0
,

which satisfies the hypotheses of Theorem 2.2.
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If the damping coefficient c > 0 is present in the equation, the counter-
part of the equation (7.2) for the traveling wave solution w is of the form

µv2wii(z) + EIwiv(z)− cvwi(z) + kw(z) = δ(z). (7.12)

As a first observation, we see that only the sign of the product cv has an
influence in the solution, that is, we get the same solution for negative
damping (which physically makes no sense) when the train goes backward
in space.

The characteristic equation has the form

EIλ4 + µv2λ2 − cvλ+ k = 0. (7.13)

Consider for example the case cv > 0. The intersection of the straight line
ω = cvλ with the “parabola” ω = EIλ4 + µv2λ2 + k for λ ∈ R is either
empty, or consists of one or two points with positive values of λ. Moreover,
the sum of the four complex roots is zero. Hence, for the roots of (7.13),
only one of the following three cases can occur:

(1) complex roots a± bi, p± ri, p > 0, a+ p = 0;

(2) complex roots a± bi, two real roots 0 < p1 < p2, 2a+ p1 + p2 = 0;

(3) complex roots a± bi, one double real root p > 0, a+ p = 0.

Then (note that a < 0) the counterpart of (7.8) reads

w+(z) = eaz(α cos(bz) + β sin(bz)),

w−(z) =


epz(α̂ cos(rz) + β̂ sin(rz)) in case (1),

α̂ep1z + β̂ep2z in case (2),

epz(α̂+ β̂z) in case (3).

(7.14)

System (7.5) is a linear system of four equations for four unknowns α, β, α̂, β̂,
and the matrix of the system is nonsingular, hence it has a unique solution.
The same conclusion holds if cv < 0 with the difference that p and pi are
negative and a is positive, so that we can only simply interchange w+ and
w−. We conclude that even negative dissipation may give a “good” traveling
wave solution. The difference is that while for c ≥ 0 the traveling wave
solution is stable with respect to perturbations of the initial condition by
virtue of (6.4), for c < 0 the traveling wave solution is unstable. In fact, in
the case c > 0, the traveling wave solution is globally exponentially stable,
and the result can be stated as follows.
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Proposition 7.1. There exist constants κ > 0 and M > 0 such that if
u1, u2 ∈ K are two solutions to (2.1) with µ = E = I = F = k = 1, m = 0,
and c > 0, corresponding to initial conditions u0i , u

1
i for i = 1, 2, then the

function

E(t) =

∫
R

(|ūt|2 + |ūxx|2 + |ū|2)(t, x)dx, (7.15)

where ū = u1 − u2, satisfies the estimate

E(t) ≤Me−κt. (7.16)

Proof. The argument of Section 6 yields for every τ > t ≥ 0 the following
counterpart of (6.3) with m = 0

1

2

∫
R

(
|ūt|2 + |ūxx|2 + |ū|2

)
(τ, x)dx+ c

∫ τ

t

∫
R
|ūt|2(s, x)dxds

=
1

2

∫
R

(
|ūt|2 + |ūxx|2 + |ū|2

)
(t, x)dx.

(7.17)

Furthermore, we can test (6.1) with m = 0 by φ = ū, which is an admissible
test function, and obtain

d

ds

∫
R

( c
2
|ū|2 + ūtū

)
(s, x)dx+

∫
R

(
|ūxx|2 + |ū|2

)
(s, x)dx

=

∫
R
|ūt|2(s, x)dx.

(7.18)

Integrating (7.18) from t to τ yields that∫
R

( c
2
|ū|2 + ūtū

)
(τ, x)dx+

∫ τ

t

∫
R

(
|ūxx|2 + |ū|2

)
(s, x)dx

=

∫ τ

t

∫
R
|ūt|2(s, x)dx+

∫
R

( c
2
|ū|2 + ūtū

)
(t, x)dx.

(7.19)

We now multiply (7.19) by c/2, add the result to (7.17), denote

E0(t) def
=

1

2

∫
R

(
|ūt|2 + |ūxx|2 +

(
1 +

c2

2

)
|ū|2 + cūtū

)
(τ, x)dx,

and obtain the inequality

E0(τ)− E0(t) +
c

2

∫ τ

t
E(s)ds ≤ 0 (7.20)
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for all τ > t ≥ 0. There exists a constant η ∈ (0, 1) such that

ηE0(t) ≤ E(t) ≤ 1

η
E0(t) (7.21)

for all t ≥ 0. Hence, it follows from (7.20) that

E0(τ)− E0(t) +
cη

2

∫ τ

t
E0(s)ds ≤ 0 (7.22)

for all τ > t ≥ 0. The function

G(t)
def
= E0(t) +

cη

2

∫ t

0
E0(s)ds

is therefore nonincreasing in (0,+∞), hence the Stieltjes integral inequality

0 ≥
∫ T

0
q(t)dG(t) =

[
q(t)G(t)

]T
0
−
∫ T

0
q′(t)G(t)dt (7.23)

holds for every positive absolutely continuous function q. Choosing in par-
ticular

q(t) = e(cη/2)t

we have

q′(t)G(t) =
cη

2

d

dt

(
e(cη/2)t

∫ t

0
E0(s)ds

)
,

and we obtain from (7.23) that

e(cη/2)T
(
E0(T ) +

cη

2

∫ T

0
E0(s)ds

)
− E0(0) ≤ cη

2
e(cη/2)T

∫ T

0
E0(s)ds.

We conclude that the inequality

E0(T ) ≤ e−(cη/2)TE0(0)

holds for all T > 0, and the assertion follows from (7.21). �
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