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Homography-Based Loss Function for Camera Pose
Regression

Clémentin Boittiaux!»23, Ricard Marxer?, Claire Dune®, Aurélien Arnaubec! and Vincent Hugel3

Abstract—Some recent visual-based relocalization algorithms
rely on deep learning methods to perform camera pose regression
from image data. This paper focuses on the loss functions that
embed the error between two poses to perform deep learning
based camera pose regression. Existing loss functions are either
difficult-to-tune multi-objective functions or present unstable
reprojection errors that rely on ground truth 3D scene points
and require a two-step training. To deal with these issues, we
introduce a novel loss function which is based on a multiplane
homography integration. This new function does not require
prior initialization and only depends on physically interpretable
hyperparameters. Furthermore, the experiments carried out on
well established relocalization datasets show that it minimizes
best the mean square reprojection error during training when
compared with existing loss functions.

Index Terms—Localization, Deep Learning for Visual Percep-
tion.

I. INTRODUCTION

HIS paper addresses the problem of relocating a robot

in a place that it has previously visited. In many cases,
GPS localization is either not available (e.g., in an underwater
environment), very noisy (e.g., cities with high buildings),
or insufficient for the target application (e.g., relocalizing a
robot inside a building). Under these constraints, it may be
possible to estimate a more accurate position for the robot
by exploiting its visual observations. The problem, termed
visual-based localization [1]], consists in retrieving the pose of
a camera in a known 3D scene from an instantaneous image.
This problem also appears in loop closure when performing
Simultaneous Localization And Mapping (SLAM) [1]].

Until the 2010s, this was solved with classic computer
vision methods leveraging engineered descriptors like SIFT
or ORB, and PnP/RANSAC schemes [2]], [3]. With recent
advances in machine learning, some steps of these methods
were greatly outperformed by deep learning based approaches.
For instance, learned features have proven to be much more
robust and accurate than the aforementioned descriptors for
tasks like image classification and image retrieval [4], [S]. By
bootstrapping such features, end-to-end gradient-based pose
regressors emerged [6], [7], [8], [9]. When quantifying the
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Fig. 1. Set of parallel virtual planes (green) between ., and Tmqz depth
used to compute our homography loss that quantifies the pose error [5Rc, te]
between ground truth (blue) and estimated (orange) cameras. The planes’
normal n and the ground truth camera’s optical axis are co-linear. Planes are
infinite, but for the sake of visualization they are represented as rectangles.

error from a reference pose, these techniques are all confronted
with the need to embed the difference between two poses in
SE(3) into a scalar. Some more recent approaches focus on
learning robust features thanks to deep learning based algo-
rithms and solve the pose estimation with classical computer
vision methods [10], [1L1].

This paper focuses on the loss functions used in deep learn-
ing for camera pose regression. One of the main challenges in
defining an error in SE(3) is to properly weight the translation
and rotation components in the final error. Some losses rely
on a scene-agnostic linear combination of these components,
that is, they weight translation and rotation errors regardless
of what the camera observes [6], [8], [12]. Their physical
meaning is often difficult to understand because rotation and
translation do not lie on the same group. Moreover, setting the
explicit weight for each component usually requires empirical
fine-tuning and depends on the scene [[6], [8]. Other losses im-
plicitly weight the two components by minimizing the distance
between the reprojection of 3D scene points onto the cameras’
image planes. These approaches face some issues regarding
their initialization and their differentiability in SFE(3) [7].
To deal with the problems described above, this paper intro-
duces a new loss function that requires no prior initialization
and depends on intuitive parameters. This new loss function
approximates the reprojection error as poses get close. We
define planes parallel to the ground truth reference image plane
for a given range of distances covering the scene. We then
express the error in terms of the homographies between the
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Fig. 2. Effect of 5 on the PoseNet loss for a particular scene: (a) low (3 values lead to high variation of error with respect to translation and little change
with respect to rotation; (b) well-chosen (3 leads to a clear local minimum around the optimal parameters; (c) a large 3 induces a small variation of translation.

ground truth and estimated poses induced by these planes.
The experiments carried out on popular relocalization datasets
show that this new loss minimizes best the reprojection error
during training when compared with previously mentioned
losses.

Section [II] reviews existing loss functions [6]], [[7], (8], [12]
and discusses their theoretical and practical characteristics.
Section [II| describes the new loss function for camera pose
regression. Section |IV] details the implementation of the new
loss and the existing losses mentioned in Section [[I]in a simple
end-to-end camera relocalization pipeline using a single back-
bone architectureﬂ Section is dedicated to the performance
evaluation of all the losses on the Cambridge [6] and 7-
Scenes datasets, and to the discussion of the results.

II. EXISTING POSE REGRESSION LOSS FUNCTIONS

Previous computer vision approaches to camera pose re-
gression have focused on active search methods [3]]. They are
purely geometry-based and rely on image keypoints extraction.
With the recent renaissance of neural networks and deep
learning techniques, we have seen a paradigm shift arise:
end-to-end pose regression with convolutional neural networks
allow to directly infer a pose from training image data [6]],
[7l, [12]. These methods are often far more robust to noise
and easy to use, but less accurate [1]. Nowadays, state-of-
the-art algorithms try to keep the best of both approaches by
replacing some steps of geometry-based methods using deep
learning techniques [8]], [Ol], (10}, [11].

Visual-based relocalization aims at finding the pose (t,q) €
SE(3) of a camera expressed in a world reference frame,
where t =%, € R3 and ¢ ="q. € SO(3) are respectively the
3D position and quaternion vector representing the orientation
of the camera in the world frame.

In all end-to-end deep learning based methods, the corner-
stone is the loss function that embeds into a scalar the error
between an estimated pose (£,§) and the ground truth (¢,q)
in SE(3). We make a review of existing loss functions and
present their characteristics.

'Our code will be made publicly available at
|github.com/clementinboittiaux/homography-loss-function|

A. Loss functions

a) PoseNet [I6]]: this loss function weights the contribu-
tion of translation and rotation errors into a single quantity
using a scale factor:

q

£r =i, + 2 )a- g,

where [ is a positive scalar that weights rotation importance
over translation.

b) Homoscedastic uncertainty [[7l], [12]]: tries to reach
an optimal balance between rotation and translation errors. It
is achieved by optimizing global scalars 5; and 3, through
backpropagation of the following loss function:

s

411l
where 3; and 5, respectively represent the natural logarithm
of the translational and rotational homoscedastic task noise
variance.

¢) Geometric reprojection loss [[7]: a function derived
from the classical reprojection error. Its training needs some
3D points of the scene for each view. Let 7(¢,q,P) be the
function that projects a 3D point P into the camera view with
pose (t,q), the Geometric reprojection loss function is defined

as:

where G is the subset of 3D points observed by the current
view.

d) MaxError [8]: DSAC final pose regression relies on
the following loss function that we will refer to as MaxError:

ey

Ly = Hf—tH e 5+ e S48, (2
1

—7(t,4,P;) ?3)

Lare = maz (&(q,ﬁ), Ht‘—t”) @)

where 4£(q,§) is the measured angle in degrees between
rotations in 3D space induced by ¢ and §, t and £ are expressed
in cm in order to reduce the magnitude gap between translation
and rotation. Note that in the original paper, this loss is only
applied as a step in their full relocalization pipeline. Here,
we only evaluate the performance of the loss within a much
simpler end-to-end pose regressor.
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Fig. 3. Evolution of the Geometric reprojection loss function (blue) and our
Homographic loss (orange) when the relative pose of the ground truth and
estimated cameras varies with a rotational movement along the Y axis.

B. Loss functions characteristics

An issue with PoseNet loss is that 5 is not easily set.
The rotation error is defined as the L2 norm between §
and ¢ unit quaternions. This does not relate to any intuitive
geometric phenomena. Moreover, all poses are optimized with
the same relative weight between translational and rotational
errors, no matter what the camera observes. Furthermore,
translation and rotation errors are not comparable metrics. Fig.
shows the influence of 3 on PoseNet’s loss function. A small
value induces strong translational gradients but a flat profile
in orientation, whereas high § values assign importance to
rotation over flat translation evolution. Given a scene, a well
chosen [ allows optimizing the parameters in all dimensions.
PoseNet is a muti-objective loss and presents the common
problems encountered in such setting. The [ selection is
not obvious and needs to be determined through trial and
error. Even with a properly set 3, stochastic optimization may
converge to different optima on the Pareto front.

MaxError solves the compromise between translational and
rotational errors by fixing a heuristically chosen scale between
them (i.e., translation in cm and rotation in degrees). While
the scale is physically interpretable, it shares the other issues
with PoseNet related to the multi-objective optimization. In
this case, the problem is tackled by minimizing the highest
error at each step. Like PoseNet, it also shares the same
global weighting between translation and rotation errors for
all frames.

The Homoscedastic loss [7], [12]] reveals characteristics
similar to PoseNet and MaxError losses. However, its pa-
rameters are more robust to the initialization, since they are
optimized during training.

Geometric reprojection loss implicitly solves the translation
and rotation weighting problem by directly computing the
reprojection error of the observed 3D points in each image.
Furthermore, the contributions of rotations and translations
can be found automatically and locally in each viewpoint.
However, this loss is often unstable. As it will be detailed
in the next section, it highly depends on the initialization
of the estimated poses and on the scene points visible from
the ground truth camera. Poor pose estimates and outlier
points will easily lead to divergence in the case of stochastic
optimization. Heuristic procedures such as pre-training initial-
ization (using a different technique) or clipping of the error
are required to stabilize training. Moreover, the loss presents
a wide undesirable local minimum when points are projected

on the backside of the image plane (see Fig. [3).

III. THE PROPOSED HOMOGRAPHY-BASED LOSS FUNCTION

This section introduces a novel loss function for pose
regression based on homographies between ground truth and
estimated poses. Through this formulation, we aim to ap-
proximate the reprojection error while avoiding some of its
drawbacks.

A. Motivations for approximating the reprojection error

The reprojection error consists in measuring the 2D distance
between the projection of a set of 3D points into two camera
views. If the poses are identical, then the points are super-
imposed. It has been widely used to solve computer vision
problems such as mosaicking or 3D reconstruction [14]. Its
physical meaning is easy to understand because it can be
represented graphically in the image plane. Furthermore, under
the commonly used Gaussian assumption on the reprojection
noise, the least square minimization of this error is equivalent
to the maximum likelihood estimator which is asymptotically
efficient [[15]].

Its use in deep learning models is more cumbersome for
multiple reasons. It relies on the choice of the 3D points that
are projected on the image plane. Depending on the method
used to estimate the camera ground truth poses, 3D points
of the scene may already be available. However, if the scene
geometry is not available, one might have to triangulate 3D
points from the camera poses and 2D-2D matches. Moreover,
in the initial state of the neural network, pose predictions are
initialized around an arbitrary value that is often far from
the ground truth. Some points can be projected to infinity if
they are in the camera (x,y) plane (see Fig. E]) Reprojection

Fig. 4. Top view representation of the ground truth (blue) and estimated
(orange) camera views and the scene point cloud. The grey points are outside
the field of view of the ground truth. The green points are in front of the
image planes of the two cameras. The dashed red line represents the z,y
plane of the estimated camera frame. The red dots that are close to this plane
are projected to infinity through the pinhole projection model. The black dots
project backward from the image plane of the estimated camera.
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error may also lead to a local minimum when 3D points are
projected onto the backside of the image plane (see Fig. [3). To
overcome these problems, the network is usually initialized by
first training it with another loss function for a few epochs [[7]].
In addition, if a point is projected to infinity during the
optimization, it results in an infinite loss, causing the model
to diverge. In practice, this problem is often addressed by
clipping reprojection error distances that exceed a threshold.
However, in doing so, all clipped points lay on a flat maximum
with a zero-valued gradient, therefore not contributing to the
optimization.

Alternatively, the homography-based loss function we de-
sign tackles this issue by relying on the integration of homo-
graphies computed for a set of virtual parallel planes. It offers
a competitive accuracy and a high numerical stability making
a simple single step learning possible.

B. Homography-based loss function

The idea behind this work is that the 3D points used to
express a pose error such as a reprojection error do not
need to be real points, but can well be a set of designated
virtual (or hypothetical) points. To eliminate the infinite error
problem, we could, for instance, regularly sample virtual 3D
points located in front of the image planes of both cameras.
Nevertheless, as the poses become more distant from each
other, shared 3D observations become scarce and virtual point
sampling becomes increasingly difficult.

Following this rationale, but eliminating the problems re-
lated to the choice of points, we can cut the scene into planes
containing an infinity of these points. We can then calculate
our error directly in the homographies induced by these planes.
The homography being defined as the transformation of the
same 3D plane from one projective view to another. That is,
given a plane in the 3D scene and its projected points in a
camera view, the homography maps these points into another
camera view.

When the poses are superimposed, their homography in-
duced by any plane not containing the center of the cameras
is equal to the identity matrix. In Appendix [A] we extend this
property by demonstrating that, given a specific “n, poses are
superimposed if and only if their homography is equal to the
identity matrix. Thus, for a given plane, we may quantify the
error as the difference between the identity matrix and the
homography induced by that plane between the ground truth
and the estimated poses. We define the error for that plane as
the squared Frobenius norm of the resulting difference matrix.
We then integrate these errors for all possible planes between
two given boundaries (see Fig. [I).

Let us define the homography [14]:

‘H.=‘R.—‘t.n" |z (5)

where “n is the normal to the considered plane expressed in
the ground truth camera frame, x is the distance to that plane
and ¢R,, °t, are the rotation and translation of the ground truth
camera expressed in the estimated camera frame. For the sake
of clarity, we will further use the notation H = °H .

Next, we show how the homographic error, defined as the
squared Frobenius norm of its difference with the identity

matrix, is related to the reprojection error. Let P be a 3D
point observed by two cameras. Let p = (py,py,1)T and
Y = (v, p;,l)T be the 2D homogeneous representations
of the projection of P in two different camera views. The
reprojection error of p is defined as:

e(@) = (pe — Pi)* + (py — 1)° (6)

=@-9)" (-7 (7

We now assume that P is in a plane that induces a homography
H between the two camera views. We want to retrieve the

reprojection error by expressing p’ in terms of Hp. Let us
explicit H components:

hit hiz his
H = | hor hoy hos ®)
hai hzz 1

We note p” the 2D homogeneous point resulting from Hp:
p" = Hp = (p},p},s)" ©)

where s = hzi1p; + haapy + 1.
By the definition of the homography, Hp ~ p’ in homoge-
neous coordinates. Thus, in the euclidean space:

1/

A (10)

s S
When replacing (T0) into (7)) we can express the reprojection
error in terms of H:

o) ()

where I is the identity matrix.

As the estimated pose tends towards the ground truth pose,
s tends towards 1. We will use the approximation s ~ 1 to
simplify (T2). This way, our homographic error will tend to the
reprojection error when poses are close. Then, (IZ) becomes:

elp)=p"(I-H)"(I-H)p (13)

While we have now expressed e(p) in terms of H, this error
still relies on specific 2D points in the camera view. As we do
not want our loss to rely on any specific 3D point, it should
not rely either on their 2D projection. Working around this,
we could consider that p could be any point on the sensor. To
cover all possibilities, we integrate the error over the entire
sensor. To facilitate this task, we will take the trace of our
error to use the trace cyclic property. Since our error is a
scalar, it is equal to its trace:

ep) = Tr (p" (I — H)"(I - H)p)

Then, we can use the cyclic property of the trace to isolate p:

e(p) = Tr (" (I - H)"(I - H))

(1)

12)

(14)

5)

with
P2 Paby Do
" = |pype D5 py (16)
Dz Dy 1
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Let w and h be the respective width and height of our sensor,
we can integrate the error over all points of our sensor:

w/2  ph/2
/ Tr(ppT(I—H)T(I—H)>dpxdpy (17)
—w/2J—h/2
N
=Te|| o = o |U-H)'I-H| (8
0 0 wh

This results in a diagonal matrix simply weighting the dimen-
sions of the reprojection according to the size of the sensor.
As we want our loss to be generic to the size of the sensor,
we will simply drop this matrix.

We finally have our homographic error which, by definition,
because (I — H) is real, is equivalent to a Frobenius norm:

T (- H)"(I - H)) = I - H|} (19)
We further extend the definition of the single plane homo-
graphic error to a slalﬂ We integrate the expression
over the planes within a given range of distances and along a
particular direction. Let x,,,;, and x,,4, be the minimum and
maximum distances of the planes containing our observations.
We introduce the analytic form of our homography-based loss

function:
1 Tmax
|- A
xr

Tmaz — Tmin

Ly = (20)

Note that we normalize the loss by the region of the considered
scene dimension (42 — Tmin). Lhis is because every frame
has its own distance range of observations. By normalizing,
we ensure that each frame cost is on the same scale. We can
then solve the integral by substitution of (®) in (20) resulting
in our final loss function:

Zaas ) c
+ 21

Tmin * Tmazx

ln(
Ly=Tr|A+B

Tmaz — Tmin

where
A=(I-°R)I—R)" (22)
) A X . T
N T
X . T
C=°n th“ (cn ctg“) (24)

C. Parameterization

By looking at (2I), we can isolate the 5 parameters our
loss relies on. °R,. and °t,. are directly computed from ground
truth and estimated poses. We set n = (0,0, —1)T, so that
all homographies are induced by planes parallel to the ground
truth sensor, as if they faced the camera. This leaves us with
2 parameters, i, and T,,q., representing the minimum and
maximum distances of these planes to the ground truth sensor.
We introduce two different ways to set these parameters,

2defined as the set between two parallel planes as in [16]

Lo Tmae = 71.80 (97.5th percentile)

o
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=
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Fig. 5. Cumulative histogram of the depths of the points in the scene. Zin
and Tmaez depth values can be selected as the 2.5th and 97.5th percentile.

inspired by different uses of the loss, and leading to different
implementations.

The first method best approximates the reprojection error,
but requires 3D data of the scene. Given this data, the two
parameters can be computed for each frame. For every frame,
we compute a depth histogram of its 3D observations. We then
set itS Xyipn and .4, parameters as a given percentile of the
distribution of the depths (see Fig. [5). We refer to this method
as Local homography loss function.

The other way of setting these parameters does not require
any 3D information of the scene. If no 3D data is available, it
is possible to manually set global x,,;, and x,,4, intuitively
according to the images in the dataset, by estimating mini-
mum and maximum scene limits. Unlike the aforementioned
method, these parameters will be shared by every frame.
We refer to this manner of configuring the loss as Global
homography loss function. Note that if 3D data is available,
it is also possible to set global x,,;, and ,,4, from a global
depth histogram.

IV. EXPERIMENTS

We implemented PoseNet [6], Homoscedastic [7], [12],
Geometric [7] and MaxError [8]] losses. We tested all losses
on Cambridge [6] and 7-Scenes [13|] datasets with a Mo-
bileNetV2 [3] architecture. We compared the results between
them and with previously published ones.

A. Datasets

In [17], Brachmann et al. show that the performance of a
relocalization method on a given dataset is greatly impacted
by the method used to build the “ground truth” of this dataset.
Very popular methods for estimating the camera poses, and the
scene geometry are Structure-from-Motion (SfM) and depth-
based SLAM. In our case, some losses might be advantaged
by one method or the other. To try to alleviate this issue
when benchmarking the different losses, we evaluated them on
two datasets whose ground truth poses were estimated using
different methods. Cambridge dataset was built using SfM and
consists of 6 outdoor scenes of Cambridge city while 7-Scenes
was built using depth-based SLAM and provides 7 different
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TABLE I

POSES MEAN REPROJECTION DISTANCE ON TRAIN AND TEST SETS, PERCENTAGE OF POSES LOCALIZED WITHIN A GIVEN THRESHOLD

Scene

Existing

Ours

PoseNet
(8 = 500)

Homoscedastic

MaxError

Geometric
reprojection loss

Global
he I

Local
homography

Great Court
King’s College
Old Hospital
Shop Fagade

St Mary’s Church
Street

10.5px, 117.7px, 13%, 36.4%
7.18px, 33.93px, 64.4%, 92.7%
9.02px, 97.5px, 23.6%, 56%
17.19px, 135.4px, 15.5%, 68%
16.34px, 161.5px, 13.4%, 50.8%
36.29px, 790.2px, 0.4%, 2.1%

9.469px, 148.1px, 7.6%, 26.6%
5.18px, 24.67px, 60.1%, 92.1%
8.19px, 80.63px, 18.7%, 56.6%
12.18px, 125px, 14.6%, 49.5%
13.08px, 125px, 16.8%, 56.6%
32.04px, 758.2px, 0.2%, 1.8%

220.9p%, 623.9px, 04%, 2.8%
215.9px, 204.3px, 6.1%, 26.8%
98.23px, 177.2px, 9.3%, 34.6%
194.8px, 218.9px, 3.9%, 31.1%
109.1px, 260.1px, 2.6%, 20.6%
224.4px, 768.5px, 0.1%, 0.4%

67.46px, 182.9px, 1.1%, 8.4%
4.53px, 16.16px, 71.7%, 94.2%
6.56px, 63.84px, 28.6%, 71.4%
10.91px, 117.4px, 18.4%, 56.3%
33.51px, 104.6px, 13.6%, 52.6%

390.5px, 505.2px, 0%, 1.1%

92.9px, 235px, 0.7%, 6.2%
4.8px, 23.2px, 61.2%, 92.7%
6.76px, 100.2px, 15.9%, 51.6%
10.82px, 149px, 11.7%, 47.6%
10.94px, 114.7px, 17.0%, 56.2%
25.02px, 733.6px, 0.5%, 2.4%

143px, 261.3px, 0.4%, 1.1%
4.52px, 23.07px, 61.5%, 91.8%
6px, 92.8px, 23.1%, 61%
10.27px, 130.6px, 12.6%, 58.3%
10.15px, 108.5px, 18.1%, 57.5%
23.32px, 683px, 0.6%, 3.5%

chess

fire

heads
office
pumpkin
redkitchen
stairs

4.36px, 40.49px, 78.4%, 91.5%
4.59px, 80.03px, 34.8%, 61.3%
7.56px, 96.01px, 32.1%, 57%
4.97px, 55.03px, . 90.1%
3.38px, 121.1px, 59%, 74.4%
4.59px, 70.71px, 45.1%, 74.6%
4.24px, 123.4px, 12.7%, 36.6%

T.92px, 30.73px, 80.4%, 94%
2.09px, 88.35px, 32.5%, 66%
3.3dpx, 90.13px, 30.8%, 53%
2.65px, 59.25px, 54.7%, 86.6%
1.66px, 80.3px, 51.7%, 73.2%
2.24px, 89.24px, 45.8%, 73.8%
1.87px, 127px, 13.5%, 58.6%

2.43px, 34.76px, 80.8%, 96.4%
2.23px, 86.92px, 35.4%, 68.8%
3.53px, 71.75px, 31.6%, 62.4%
3.06px, 59.68px, 62.3%, 87.6%
2px, 89.6px, 51.9%, 77.2%
3px, 79.38px, 54.9%, 79.8%
2.26px, 133.1px, 22.2%, 59%

T.51px, 26.46px, 80.9%, 95.1%
1.67px, 89.16px, 30.5%, 65.1%
2.46px, 75.13px, 31.7%, 55%
2.22px, 50.3px, 59.5%, 90.3%
1.35px, 87.5px, 50.9%, 71.9%
1.9px, 83.71px, 48.4%, 77%
1.65px, 153.9px, 4%, 28.1%

1.94px, 30.27px, 82%, 96.5%
2px, 83.89px, 32.3%, 66.3
2.93px, 76.22px, 3
2.31px, 55.2px, 5 X
1.63px, 97.3px, 50.1%, 71.5%
2.85px, 78.69px, 50.5%, 75.4%
1.75px, 144.9px, 18.4%, 57.9%

1.5px, 28.85px, 82.3%, 96.2%
1.59px, 79.05px, 31.8%, 64.3%
2.34px, 69.85px. 33.9%, 58.3%
2.05px, 46px, 62.3%, 86.1%
1.2px, 69.1px, 53.5%, 73.9%
2.11px, 66.31px, 57.1%, 81.7%
1.49px, 120.9px, 17%, 55.8%

TABLE 11
COMPARING OUR IMPLEMENTATION WITH [7]] oN KING’S COLLEGE
PoseNet . .
8 =500 Homoscedastic Geometric
Kendall et al. [7] | 1.66m, 4.86° 0.99m, 1.06° 0.88m, 1.04°
Ours 0.76m, 0.90° 0.87m, 1.15° 0.64m, 0.89°

indoor scenes. All scenes in both datasets are visited several
times, and train and test sequences consist of different visits.

B. Network

Kendall et al. used GoogLeNet [4] as a regression backbone.
They then replaced the classification head with 2 dense layers
with respective feature sizes of 2048 and 7 (3 for translation
and 4 for the quaternion). In this paper, we use the Mo-
bileNetV2 [35]] backbone provided by PyTorch and proceed to
the same replacement. We chose the MobileNetV2 backbone
for its versatility. Similarly to Kendall et al., we load weights
from MobileNetV2 pre-trained on ImageNet which are avail-
able from the PyTorch Hub. Note that we normalize our input
images, as suggested by PyTorch. However, we do not crop our
resized image to stay consistent with [7]. In PoseNet [6]], the
network is reportedly trained on random crops of the resized
images. We tested this approach and found that it greatly
deteriorates the results. We suggest that by applying a random
crop to the image, it artificially moves the optical center of
the camera, which might not be ideal when trying to estimate
its pose. We deliberately chose to test our loss function on a
simple and unique end-to-end network rather than on a more
complete pipeline like DSAC [8] or DSAC++ [9]. Our aim is
to provide an alternative to the existing pose regression loss
functions, not to provide a complete pose regression system.
Therefore, this study compares the loss functions on a single
regression model, to easily compare and reproduce results. The
use of this loss in the full pipeline of existing state-of-the-art
relocalization systems remains in the scope of future work.

C. Losses specifications

We train the model in a common mini-batch setting, where
each optimization step is based on the average loss over all
camera poses of the batch. For the PoseNet loss, we fix
B =500 to compare our results with those reported in [7].
For the Homoscedastic loss, we initialize its parameters as

suggested by Kendall e al., 5; = 0.0 and 5, = —3.0. As
discussed earlier, when implementing the Geometric reprojec-
tion loss, we clip the reprojection error of each point at 100 to
avoid divergence. As for MaxError loss, estimated quaternions
always ended up converging towards the null vector on the
Cambridge dataset. We fixed this by adding a regularization
term, M SE (||¢l|2,1), to the final loss. Nevertheless, we only
reached ~ 1.2k —3.5k epochs before the loss diverges. For our
homographic losses, we chose Z,,;, and z,,4, as a percentile
of the depth distribution of 3D points in the scene, as discussed
in section (UI-C). ;s and x,,., Were set to the 2.5th and
97.5th percentiles, respectively.

D. Training

We train all models with an Adam optimizer [18]], [19]
with a learning rate of 10~*. We train for 5k epochs with
a batch size of 64, dropping the last batch if smaller. During
our experiments, we found that for the homography losses, an
Adam’s epsilon of 1071 instead of the default 108 leads to
better results. This is because at the end of the optimization,
our losses reach very low values ~ 10~%. For the Geometric
reprojection loss, we initialize the network by training for 500
epochs on the Homoscedastic loss.

V. RESULTS AND DISCUSSION

In Table [II] we report median translation and rotation er-
rors on different losses and compare them with previously
published ones. We show that our implementation’s results
are consistent with PoseNet [6], [7]. Small differences may
be due to the use of MobileNetV2 instead of GoogLeNet
as a backbone. PoseNet differences can be explained by the
cropping done in the original implementation [6] which is no
longer performed in more recent studies [7].

Table [[] presents the results we obtained on Cambridge and
7-Scenes datasets. We report two different types of metrics.
The first criterion is the mean reprojection distance. For a
given camera, we select the 3D points that it observes as given
by our ground truth. We then compute the L2 norm between
the projection of these points on the ground truth and the
estimated camera view. We clip the reprojection distance of
each point at 1000px to reduce the impact of outliers on the
metric. Finally, we compute the mean of all these distances.
The second criterion is the percentage of poses localized
within a given threshold in meters and in degrees. For each loss
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function and for each scene, we report i) the mean reprojection
distance on the train set, ii) the mean reprojection distance
on the test set, iii) & iv) the second criterion with different
threshold values on the test set. We use different threshold
values for Cambridge and 7-Scenes datasets because the ratio
between average translation and rotation errors is not the same.
For Cambridge, thresholds are 2m/2° and 3m/5°. For 7-Scenes,
thresholds are 0.25m/10° and 0.5m/15°.

We argue that the different metrics may be more favorable to
different losses. When evaluating poses independently of what
the camera observes, the percentage of poses localized within
a given threshold might be a better indicator of performance
than the mean reprojection distance. On the other hand, when
evaluating poses based on their shared observations, the mean
reprojection distance is a better indicator of whether images
captured from estimated and ground truth cameras poses result
in the same view. Both evaluation methods are more or less
important depending on the application, e.g., for ego-motion
we might need to perform best on the percentage criterion,
while in augmented reality we may seek to improve the mean
reprojection distance. This is why, in addition to the percentage
of poses localized within a given threshold classically reported
in previous work [10], [L1], [20], we also report mean square
reprojection distance on the train and test sets. We choose
to report this error on the train dataset because this way we
directly monitor how the losses optimize it.

Overall, we notice that the Geometric reprojection loss
performs better on the Cambridge dataset, while our homog-
raphy loss shows the best results on the 7-Scenes dataset. As
argued by Brachmann er al. [17], this could be explained
by the relation between the method used to estimate the
“ground truth” poses and the cost minimized by the loss
function. As Cambridge ground truth poses were obtained
using SfM, the Geometric reprojection loss minimizes the
same quantities using the exact same data as the ones used
to estimate the ground truth. Conversely, 7-Scenes poses were
obtained using depth-based SLAM. While our loss does not
minimize the same quantities as depth-based SLAM, it might
greatly benefit from the access to dense depth maps since its
parameters can be directly deduced from them. Interestingly,
the proposed homography-based loss shows the best results
with regard to the reprojection distance on the training set,
which is by definition what the Geometric reprojection loss
minimizes. This could be explained by the improved stability
and convexity of our proposed losses in a mini-batch stochastic
gradient descent training setting.

VI. CONCLUSION

We introduced a new loss function for camera pose re-
gression, which is based on the integration of homographies’
virtual planes between the minimum and maximum scene
distances to the sensor. It relies on two physically interpretable
parameters that can either be tuned manually or computed
from 3D data. Moreover, it requires no prior initialization to
converge. The obtained results show that it optimizes best the
mean reprojection distance on the train set than any other loss.
Depending on the application, it provides a competitive drop-
in alternative to existing pose regression losses. Our loss might

also be a good replacement to the Geometric reprojection loss
if 3D data is not available or if the target application needs to
regress a pose with regard to the camera observations without
relying on specific 3D points, e.g., learning features. Future
work will concentrate in testing the proposed loss in more
complete relocalization pipelines like DSAC [8], DSAC++ [9]]
or PixLoc [11].

APPENDIX A

For ease of reading, we will use the following notations in
the appendix: t =%,, R =°R., H =°H_ and n =°n.

In this appendix, we demonstrate that our loss function only
reaches its minimum when poses are superimposed. That is,
when R = I and t = 03. Note that our loss considers planes
parallel to our sensor image plane. Therefore, our proof is only
valid for n = (0,0, —1)7.

Given any 3 x 3 matrix M € R3*3, its squared Frobenius
norm is

(25)

3 3
M7= mi;

i=1 j=1

where m;; is the ith row, jth column element of M. Because
the squared Frobenius norm of such a matrix is the sum of the
square of all its elements, it is clear that ||[I — H||% can only
be positive. It is also clear that its integration over a positive
interval can only be positive and therefore, Lz > 0 (20). We
also know that the homography between two superimposed
views is the identity matrix

Because Ly > 0, that means that its minimum is 0.
From (23)), we can deduce that
Lgy=0H=1I 27

which means that our loss reaches its minimum only when
the homography is the identity matrix. It remains to prove
that H =1 = [R,t] = [I,03].

By injecting (3) in
tn”

R=1+4+—

] (28)

And because R € SO(3) it has the property RRT = I. We
can use this property to constrain .

T
tnT tnT
I+ — I+ — =171

tnTntT
g = 033

(29)

stnl +nt? + (30)
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We fix n = (0,0,—1)7
decompose (30)

and note t = (ty,1,,t,)7. We can

0 0 —t,
tn” =0 0 —t, @31
0 0 —t,
0 0
n"=(0 0 0 (32)
—ty —t, —t,
2 tyty  tit.
tn"nt” = [tyt, 12yt (33)
toty tity, 2
From (30), (1), (32) and (33) we deduce
ty =0 (34)
ty =0 (35)
And two possibilities for ¢,
t,=20
{55 &

We can further constrain ¢ by using another property of SO(3),
that is, det(R) = 1. From and with t, =0, t, =0
and d # 0

0
det(R) = det 0 =1- % 37

S O =
o = O

t,
Sl-==1t,=0
d

We have just shown that H = I =t = 03. From (28) we find
that

(38)

R:I+03:;T -1 (39)
Which means that
H=1= [R,t] = [I,05] (40)
By putting (26), and (#0) together we find
Ly =0 [Rt] = 1,05 1)

Our loss minimum is only reached when poses are superim-
posed.
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