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The "Sum-Over-Paths" formalism is a way to symbolically manipulate linear maps that describe quantum systems, and is a tool that is used in formal verification of such systems.

We give here a new set of rewrite rules for the formalism, and show that it is complete for "Toffoli-Hadamard", the simplest approximately universal fragment of quantum mechanics. We show that the rewriting is terminating, but not confluent (which is expected from the universality of the fragment). We do so using the connection between Sum-over-Paths and graphical language ZH-Calculus, and also show how the axiomatisation translates into the latter.

Finally, we show how to enrich the rewrite system to reach completeness for the dyadic fragments of quantum computation -obtained by adding phase gates with dyadic multiples of π to the Toffoli-Hadamard gate-set -used in particular in the Quantum Fourier Transform.

Introduction

Sum-Over-Paths (SOP) is a formalism used to represent and manipulate quantum processes in a symbolic way, introduced in 2018 by Amy [START_REF] Amy | Towards large-scale functional verification of universal quantum circuits[END_REF]. Its first important feature is its capacity to translate from most common descriptions of quantum processes in polynomial time and space. The formalism hence provides a intermediary view between usual (matrix) semantics and these usual process descriptions. Its second crucial feature is that it comes equipped with a rewrite system that simplifies the term, without altering its semantics. Despite its links [START_REF] Lemonnier | Relating high-level frameworks for quantum circuits[END_REF][START_REF] Lemonnier | Hypergraph simplification: Linking the path-sum approach to the ZH-calculus[END_REF] with graphical languages such as the ZH-Calculus [START_REF] Backens | ZH: A complete graphical calculus for quantum computations involving classical non-linearity[END_REF] -which will be used in the following -, it provides a different view on the quantum processes, representing them as weighted sums of Dirac kets and bras (a very familiar notation in quantum mechanics).

The formalism has seen several applications, the first of which being verification. Verification is a crucial aspect of computations in the quantum realm, where physical constraints (like no-cloning, or the fundamental probabilistic nature of quantum) make it impossible to do debugging the way we do on classical algorithms. More specifically, the SOP formalism was introduced as a solution to circuit equivalence: To check the equivalence between two circuits C 1 and C 2 , the system represents C † 2 • C 1 as an SOP term (where C † 2 can be seen as the inverse of C 2 , easy to describe from it). It then tries to reduce it to the identity. If successful, this shows C 1 and C 2 to represent the same unitary. Otherwise, the system searches for a witness that the term at hand does not represent the identity. As such, the system has been used in several different projects (e.g. [START_REF] Niel De Beaudrap | Fast and Effective Techniques for T-Count Reduction via Spider Nest Identities[END_REF][START_REF] Kissinger | Reducing the number of non-Clifford gates in quantum circuits[END_REF]) to check precisely for circuit equivalence. It was later extended to account for families of morphisms and used within environment Qbricks [START_REF] Mac | Categories for the Working Mathematician[END_REF][START_REF] Selinger | A survey of graphical languages for monoidal categories[END_REF] denoted Qubit where the objects are natural numbers (this makes the category a PROP [START_REF] Lack | Composing PROPs[END_REF][START_REF] Zanasi | Interacting Hopf Algebras -the theory of linear systems[END_REF]), where morphisms from n to m are linear maps C 2 n → C 2 m , and where (• • •) (resp. (• ⊗ •)) is the usual composition (resp. tensor product) of linear maps. The category is endowed with a symmetric braiding σ n,m : n + m → m + n, as well as a compact structure (η n : 0 → 2n, n : 2n → 0). Furthermore, there exists an inductive contravariant endofunctor (•) † , that behaves properly with the symmetric braiding and the compact structure. For more information on these structures, see [START_REF] Selinger | A survey of graphical languages for monoidal categories[END_REF].

The formalism of SOP relies heavily on the Dirac notation for quantum states and operators of Qubit. The two canonical states of a single qubit are denoted |0 and |1 . They form a basis of C 2 , and can be viewed as vectors |0 = 1 0 and |1 = 0 1 . A 1-qubit state is then merely a normalised linear combination of these two elements. Using (• ⊗ •), they can be used to build the basis states of larger systems, e.g. |010 := |0 ⊗ |1 ⊗ |0 is a basis state of a 3-qubit system. Again, the state of an arbitrary n-qubit system is a normalised linear combination of the 2 n basis states. We will use extensively the following notation x| to represent the dagger (transpose conjugate) of |x . The identity on a qubit can then be expressed in Dirac notation as I := |0 0| + |1 1|, where |x y| := |x • y|.

We give in the following the definition of Sum-Over-Paths of [START_REF] Vilmart | The structure of sum-over-paths, its consequences, and completeness for clifford[END_REF], which differs from [START_REF] Amy | Towards large-scale functional verification of universal quantum circuits[END_REF] in the way the input qubits are treated, by making them more symmetric with the outputs. This makes some concepts, like the † or the compact structure, more natural. Definition 1 (SOP). We define SOP as the collection of objects N and morphisms between them that are tuples f : n → m := (s, y, P, O, I), which we write:

s y∈V k e 2iπP ( y) O( y) I( y) where s ∈ R, y ∈ V k with V a set of variables, P ∈ R[X 1 , . . . , X k ]/(X 2 i -X i ) is called the phase polynomial of f 1 , O ∈ (F 2 [X 1 , . . . , X k ]) m and I ∈ (F 2 [X 1 , . . . , X k ])
n -F 2 being the binary field, whose only two elements are its additive and multiplicative identities, denoted 0 and 1.

Compositions are obtained as 2 :

f • g := s f sg 2 m y f , yg y∈V m e 2iπ Pg+P f + Og • y+ I f • y 2 O f I g where m = I f = O g f ⊗ g := s f s g y f , yg e 2iπ(Pg+P f ) O f O g I f I g
We distinguish particular morphisms: Identity morphisms id n :

y∈V n | y y| Symmetric braidings σ n,m = y1, y2 | y 2 , y 1 y 1 , y 2 | Morphisms for compact structure η n = y | y, y | and n = y | y, y|
We also distinguish two functors that have SOP as a domain:

The †-functor is given by: f † := s y e -2iπP I O 1 The quotient in the phase polynomial means that we consider each occurrence of the square of a variable to be equal to the variable itself X 2 i -X i = 0, since they will be evaluated over {0, 1}. We can further constrain the polynomial by taking it modulo 1, but only when considered as an element of a group, once all the products have been evaluated, as otherwise all phase polynomials would be evaluated to 0 as P = P × 1 = P × 0 = 0. 2 To avoid further clutter, we may not specify the variables of polynomials, e.g. Pg actually stands for Pg( yg), Og for Og( yg) etc...
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The functor • : SOP → Qubit is defined as:

f := s y∈{0,1} k e 2iπP ( y) O( y) I( y)
The †-functor is particularly important to characterise maps that are unitary -the pure transformations that are allowed by quantum mechanics:

f is called unitary if f † • f = id.
Example 2. The Hadamard and Toffoli gates (which justify the name of the first fragment we will consider in the following), can be represented in this formalism as:

H := 1 √ 2 y0,y1 e 2iπ y 0 y 1 2 |y 1 y 0 | Tof := y0,y1,y2 |y 0 , y 1 , y 2 ⊕ y 0 y 1 y 0 , y 1 , y 2 |
It can be checked that both operators are unitary.

As is customary, we consider equality of the SOP morphisms up to α-conversion, i.e. renaming of the variables. Notice that the definition of the composition (• • •) gets somewhat involved. This is to cope with the way we deal with the inputs, which can be any boolean polynomial. The additional terms

Og• y+ I f • y 2
enforce that O gi = I f i for all 0 ≤ i < m. Indeed, when summing over the variable y i , we get (1 + e iπ(Ogi+I f i ) ) -which is non-null only when O gi = I f i -as a factor of the whole morphism. This presentation has the advantage of keeping the size of the morphism polynomial with the size of the quantum circuit -or ZH-diagram, see below -it can be built from, no matter what gate set is used. A downside, however, is that the above does not directly constitute a category, as for instance id • id = id. However, it suffices to quotient the formalism with rewrite rules to turn it into a proper category [START_REF] Vilmart | The structure of sum-over-paths, its consequences, and completeness for clifford[END_REF], hence justifying the use of the term "functor" for the last two maps.

A Rewrite System

We hence give in Figure 1 We need in the conditions of all the rules the function Var, that, given a set or list of polynomials, gives the set of all variables used in them. We call internal variable a variable that is present in the morphism t but not in its inputs/outputs, i.e. a variable y 0 such that y 0 ∈ Var(t) \ Var( O, I). It is worth noting that searching for an occurrence of, and applying any of these rules once can be done in polynomial time.

The rules (ket) and (bra) correspond to changes of variables that are necessary to get a unique normal form in the Clifford case [START_REF] Vilmart | The structure of sum-over-paths, its consequences, and completeness for clifford[END_REF], and the rule (Elim) simply gets rid of a variable that is used nowhere in the term and simply contributes to a global phase (since that variable is supposed to range over two values, it contributes to a multiplicative scalar 2).

The rules (HHgen), (HHnl) and (Z) all stem from a particular observation: In the morphism t = e 2iπ y 0 2 Q+R O I where y 0 is internal and not in R, if Q is evaluated to 1, then the whole morphism is interpreted as null. This is exactly what (Z) captures -and the conditions on R, O and I are simply here to avoid applying the rule indefinitely.

The rule (HHgen) deals with a case where the polynomial Q can be forced to 0, whilst the rule (HHnl) factorises different such polynomials Q into one. Remark 3. When performing certain rules, we have to substitute a variable by a boolean polynomial Q. We need to be able to understand Q as a phase polynomial, as the variable can occur in P . The map (•) :

F 2 [X 1 , . . . , X k ] → R[X 1 , . . . , X k ]/(X 2
i -X i ), serves this purpose. It is inductively defined as: 

Q 1 Q 2 = Q 1 Q 2 Q 1 ⊕ Q 2 = Q 1 + Q 2 -2 Q 1 Q 2 y i = y i α = α
t = e 2iπ y 0 2 (yi Q+ Q +1)+R O I -------------→ y0 / ∈Var(Q,Q ,R, O, I) yi / ∈Var(Q,Q ) QQ =Q t[y i ← 1 ⊕ Q ] (HHgen) t = e 2iπ y 0 2 Q+ y 0 2 Q +R O I ---------------→ y0,y 0 / ∈Var(Q,Q ,R, O, I) 2t[y 0 ← y 0 ⊕ y 0 Q] (HHnl) t = y e 2iπ(P ) | • • • , Oi y 0 ⊕O i , • • • I ---------------→ O i =0 y0 / ∈Var(O1,...,Oi-1,O i ) t[y 0 ←O i ] (ket) t = y e 2iπ(P ) O • • • , Ii y 0 ⊕I i , • • • | ---------------→ I i =0 y0 / ∈Var( O,I1,...,Ii-1,I i ) t[y 0 ←I i ] (bra) s y e 2iπ( y 0 2 +R) O I ---------→ R =0 or O, I = 0 y0 / ∈Var(R, O, I) y0 e 2iπ( y 0 2 ) |0, • • • , 0 0, • • • , 0| (Z) Figure 1 Rewrite system --→ TH Remark 4.
When rewriting SOP-morphisms for simplification or verification, it can be beneficial to not only reduce the number of variables -which is what all rules but (ket/bra) do -, but also to keep the size of the phase polynomial as short as possible. In that respect, the rule (HHgen) can be generalised to:

t = e 2iπ y 0 2 (yi Q+ QQ +1)+R O I -------------→ y0 / ∈Var(Q,Q ,R, O, I) yi / ∈Var(Q,Q ) t[y i ← 1 ⊕ Q ] (HHgen')
where the polynomial Q can here be smaller (in the number of terms) than the one in (HHgen). However, finding a "minimal" Q for this rule is a hard problem, as it requires the use of boolean Groebner bases [START_REF] Sato | Boolean gröbner bases[END_REF]. (HHgen) can be seen as a particular case of (HHgen'), where Q ← QQ , as Q × QQ = QQ . The rule (HHgen) is sufficient for the scope of this paper.

In [START_REF] Amy | Towards large-scale functional verification of universal quantum circuits[END_REF] was introduced a particular and important rule:

t = e 2iπ y 0 2 (yi+ Q)+R O I -----------→ y0 / ∈Var(Q,R, O, I) yi / ∈Var(Q) 2 e 2iπR[yi← Q] O I [y i ← Q] (HH)
This one is a particular case of the rule (HHgen) (with additional use of the rule (Elim)), where

Q ← 1, Q ← Q ⊕ 1.
Moreover, the rule gave enough power to the formalism to become a †-compact PROP [START_REF] Vilmart | The structure of sum-over-paths, its consequences, and completeness for clifford[END_REF]. We can extend this result here thanks to:

Proposition 5. ∀t 1 , t 2 ∈ SOP, t 1 ∼ TH t 2 =⇒    A • t 1 • B ∼ TH A • t 2 • B for all A, B composable A ⊗ t 1 ⊗ B ∼ TH A ⊗ t 2 ⊗ B for all A, B
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Proof. In appendix at page 17.

Thanks to this Proposition, and since SOP/ ∼ HH is a †-compact PROP by [START_REF] Vilmart | The structure of sum-over-paths, its consequences, and completeness for clifford[END_REF], we get:

Corollary 6. SOP/ ∼ TH is a †-compact PROP.
The set of rules was obviously chosen so as to preserve the semantics:

Proposition 7 (Soundness). For any two SOP morphisms t 1 and t

2 , if t 1 * --→ TH t 2 , then t 1 = t 2 .
Proof. In appendix at page 18.

Example 8. The following morphism:

y e 2iπ( y 0 y 1 y 2 2 + y 2 2 + y 2 y 3 y 4 2
) |y 4 y 0 | is irreducible using the rules of [START_REF] Amy | Towards large-scale functional verification of universal quantum circuits[END_REF] and [START_REF] Vilmart | The structure of sum-over-paths, its consequences, and completeness for clifford[END_REF]. However, here it can be reduced to:

y0,y1,y2,y3,y4 e 2iπ( y 0 y 1 y 2 2 + y 2 2 + y 2 y 3 y 4 2 ) |y 4 y 0 | (HHnl) ----------→ y3←y1⊕y0y1y2 2 y0,y1,y2,y4 e 2iπ( y 0 y 1 y 2 2 + y 2 2 + y 1 y 2 y 4 2 + y 0 y 1 y 2 y 4 2 ) |y 4 y 0 | (HHgen) ---→ y1←1 2 y0,y2,y4 e 2iπ( y 0 y 2 2 + y 2 2 + y 2 y 4 2 + y 0 y 2 y 4 2 ) |y 4 y 0 |
The first rewrite can be made clearer by writing the phase polynomial as y1 2 (y 0 y 2 )+ y3 2 (y 2 y 4 )+ y2 2 , and the second one by writing it as y2 2 (y 1 (y 0 + y 4 + y 0 y 4 ) + 0 + 1). Recall that variables are binary variables, so y 2 i = y i .

The ZH-Calculus

The graphical calculi ZX, ZW and ZH [START_REF] Backens | ZH: A complete graphical calculus for quantum computations involving classical non-linearity[END_REF][START_REF] Coecke | Interacting quantum observables: Categorical algebra and diagrammatics[END_REF][START_REF] Coecke | The compositional structure of multipartite quantum entanglement[END_REF] are calculi for quantum computing, with a tight link with the Sum-Over-Paths formalism [START_REF] Lemonnier | Relating high-level frameworks for quantum circuits[END_REF][START_REF] Lemonnier | Hypergraph simplification: Linking the path-sum approach to the ZH-calculus[END_REF][START_REF] Vilmart | The structure of sum-over-paths, its consequences, and completeness for clifford[END_REF], and whose completeness was proven in particular for the Toffoli-Hadamard fragment [START_REF] Backens | Completeness of the ZH-calculus[END_REF][START_REF] Hadzihasanovic | A diagrammatic axiomatisation for qubit entanglement[END_REF][START_REF] Van De Wetering | Completeness of the Phase-free ZH-calculus[END_REF][START_REF] Vilmart | A ZX-calculus with triangles for Toffoli-Hadamard, Clifford+T, and beyond[END_REF]. This fragment of quantum mechanics is approximately universal [START_REF] Aharonov | A simple proof that Toffoli and Hadamard are quantum universal[END_REF][START_REF] Shi | Both Toffoli and controlled-not need little help to do universal quantum computing[END_REF], and it is arguably the simplest one with this property. This is the fragment we will be interested in, in most of the following of the paper; and the associated completeness result will be paramount in the development of the following.

We choose to present here the ZH-Calculus, because of its proximity with both SOP and the Toffoli-Hadamard fragment. Notice however that there exist translations between all the aforementioned graphical calculi, so by composition, we can connect SOP to all of them.

ZH is a PROP whose morphisms -read here from top to bottom -are composed (sequentially (• • •) or in parallel (• ⊗ •)) from Z-spiders and H-spiders: It is defined by: (Z n m ) † := Z m n and (H n m (r)) † := H m n (r) where r is the complex conjugate of r. For convenience, we define two additional spiders:

Z n m : n → m :: ... ... , called Z-spider H n m (
... The language comes with a way of interpreting the morphisms as morphisms of Qubit. The standard interpretation • : ZH → Qubit is a †-compact-PROP-functor, defined as:

... ... = |0 m 0 n | + |1 m 1 n | = |0 0| + |1 1| r ... ... = j k ,i k ∈{0,1} r j1...jmi1...in |j 1 , . . . , j m i 1 , . . . , i n | ... n ... n = i k ∈{0,1} |i 1 , . . . , i n , i 1 , . . . , i n = n ... n ... † n ... m ... ... ... = i k ,j k ∈{0,1} |j 1 , . . . , j m , i 1 , . . . , i n i 1 , . . . , i n , j 1 , . . . , j m |
Notice that we used the same symbol for two different functors: the two interpretations • : SOP → Qubit and • : ZH → Qubit. It should be clear from the context which one is to be used. The language is universal: ∀f ∈ Qubit, ∃D f ∈ ZH, D f = f . In other words, the interpretation • is surjective.

The language comes with an equational theory, which in particular gives the axioms for a †-compact PROP. We will not present it here.

We can easily define a restriction of ZH that exactly captures the Toffoli-Hadamard fragment of quantum mechanics [START_REF] Backens | Completeness of the ZH-calculus[END_REF][START_REF] Van De Wetering | Completeness of the Phase-free ZH-calculus[END_REF], as the language generated by: ... .

Notice that the two black spiders can still be defined if we also define 1

√ 2 p := 1 √ 2 ⊗p
. We denote this restriction by ZH TH .

This restriction is provided with an equational theory, given in Figure 2 3 , that makes it complete.

Theorem 9 ([23] Completeness of ZH

TH / ZH TH ). ∀D 1 , D 2 ∈ ZH TH , D 1 = D 2 ⇐⇒ ZH TH D 1 = D 2 3
The axiomatisation provided here is that of [START_REF] Van De Wetering | Completeness of the Phase-free ZH-calculus[END_REF]. It was later simplified in [START_REF] Backens | Completeness of the ZH-calculus[END_REF] in a fragment that is very close to the one we consider, but does not contain the scalar 1 √ 2 . As we would rather have this scalar in the language (to properly represent the Hadamard gate), instead of giving a mix of the two axiomatisation, we decided to stick to the first one. ZH : SOP → ZH was defined in [START_REF] Lemonnier | Relating high-level frameworks for quantum circuits[END_REF][START_REF] Lemonnier | Hypergraph simplification: Linking the path-sum approach to the ZH-calculus[END_REF] and in [START_REF] Vilmart | The structure of sum-over-paths, its consequences, and completeness for clifford[END_REF]. We choose the latter definition as it fits our definition of SOP. The boolean polynomials as defined above are given in their (unique) expanded form. These can easily be shown to be copied through the white node:



Lemma 11. Q ... ... = Q ... ... Q Proof. In appendix at page 19.
This translation preserves the semantics: The functor furthermore maps the symmetric braiding (resp. the compact structure) of ZH to the symmetric braiding (resp. the compact structure) of SOP.

Proposition 12 ([25]). [•] ZH = • .
This does not give a full description of [•] sop , as we did not describe the interpretation of the H-spider for all parameters, but only for phases and 0. However, any H-spider can be decomposed using the previous ones: 

Restrictions of SOP

Recall that ZH TH exactly captures the Toffoli-Hadamard fragment of quantum mechanics. We can then use the two interpretations to define the Toffoli-Hadamard fragment of SOP. We actually go a step beyond and define a family of fragments indexed by n:

Definition 16 (SOP[ 1 2 n ]
). We define SOP[ The Toffoli-Hadamard fragment is then the first such restriction (n = 1):

Proposition 17. SOP[ 1 2 ] captures exactly the Toffoli-Hadamard fragment of quantum mechanics.

Proof. We can prove this by showing that [ZH TH ]

sop ⊆ SOP[ 1 2 ] and that SOP[ 1 2 ] ZH ⊆ ZH TH . The two claims are straightforward verifications, and use the fact that compositions of SOP[ 1 2 ]-morphisms give SOP[ 1 2 ]-morphisms. Then,

ZH TH = [ZH TH ] sop ⊆ SOP[ 1 2 ] = SOP[ 1 2 ]
ZH ⊆ ZH TH , so:

SOP[ 1 2 ] = ZH TH
Notice in particular that the Hadamard and Toffoli gates given in Example 2 lie in this fragment. Not all of SOP[ 1 2 ] can be generated by these two gates however, as SOP[ 1 2 ] comprises linear maps that are not unitary, i.e. such that t † • t = id.

Completeness for Toffoli-Hadamard

In this section, we aim to show that the set of rules --→ TH captures the whole Toffoli-Hadamard fragment of quantum mechanics. We do so by transporting the similar result from ZH TH to SOP[ 1 2 ]. First, we show:

Proposition 18. ∀D 1 , D 2 ∈ ZH TH , ZH TH D 1 = D 2 =⇒ [D 1 ] sop ∼ TH [D 2 ] sop
Proof. In appendix at page 20.

We can then use the previous proposition to show the main result of this paper: 

Theorem 19. SOP[
t 1 ∼ TH [t 1 ] ZH sop ∼ TH [t 2 ] ZH sop ∼ TH t 2
The rewrite system is however not sufficient to get to a unique normal form, as: Lemma 20 (Non-Confluence). The rewrite system --→ TH is not confluent.

Proof. The SOP[ 1 2 ]-morphism: t = e 2iπ( 1 2 y0y6+ 1 2 y8y9y6+ 1 2 y4y5y6+ 1 2 y8y9y12) |y 0 can be reduced to (at least) three different non-reducible morphisms:

• t ---------------→ HH(y6,[y0←y4y5⊕y8y9]) 2 e 2iπ( 1 2 
y8y9y12) |y 4 y 5 ⊕y 8 y 9

• t --------→ HHnl(y4,y8)

2 e 2iπ( 1 2 y9y4y5y6+ 1 2 y0y6+ 1 2 y9y4y6+ 1 2 y9y12y4+ 1 2 y4y5y6y9y12+ 1 2 y4y5y6) |y 0 ----------------------------→ HH(y6,[y0←y9y12y4y5⊕y9y4⊕y9y4y5⊕y4y5]) 4 e 2iπ( 1 2 
y9y12y4) |y 9 y 12 y 4 y 5 ⊕y 9 y 4 ⊕y 9 y 4 y 5 ⊕y 4 y 5

• t --------→ Another important downside is the potential explosion of the size of the phase polynomial:

HHnl(y6,y12) 2 e 2iπ( 1 2 y0y8y9y6+ 1 2 y0y6+ 1 2 y8y9y6+ 1 2 y4y5y6y8y9+ 1 2 y4y5y6) |y 0 -------------------------→ HHgen(y6,[y0←y4y5⊕y8y9⊕y4y5y8y9]) 2 e 2iπ(

Lemma 21. Applying (HHnl) k times in a row on an SOP morphism with phase polynomial of size O(k) may give a morphism with phase polynomial of size O(2 k ).

Proof. For any k ≥ 1 we can define the following term:

t k := e 2iπ k i=0 y i0 2 (yi1+yi2+1)
on which we can apply (HHnl) k times in a row. In that case we end up with:

t k - → k 2 k e 2iπ( y 0 2 k i=0 (yi1+yi2)+1)
While t k has only 3(k + 1) terms (each of degree at most 2) in its phase polynomial, it can rewrite into a morphism with 2 k+1 + 1 terms (each of degree at most 3).

Hence, if one were to perform simplifications with this rewrite system, they ought to give special attention as to where and in which order to apply the rules.

Completeness for the Dyadic Fragment

We show here how we can turn an SOP[ 1 2 n+1 ]-morphism into an SOP[ 1 2 n ]-morphism in a "reversible" manner. This will allow us to extend the completeness result to all the restrictions SOP[ 1 2 n ]. This is particularly interesting as the phase gates with dyadic multiples of π, used in particular in the quantum Fourier transform, belong in these fragments:

R Z p π 2 k := y0 e 2iπ• p 2 k-1 |y 0 y 0 |

Ascending the Dyadic Levels

These transformations between restrictions of SOP are more easily defined on SOPmorphisms of a particular shape, namely, when their phase polynomial is reduced to a single monomial. Because of this, we show how a SOP-morphism can be turned into a composition of these. We can now define the family of maps that will link the different levels of the "dyadic levels": Definition 25. For any k ≥ 1, we define the functor

Lemma 22. Let P = m i ∈ R[X 1 , . . . , X k ]/(X 2 i -X i ),
• k : SOP[ 1 2 k+1 ] → SOP[ 1 2 k ]
, first for morphisms t = s e 2iπ 2 k+1 yi 1 ...yi q O I with phase polynomial of size 0 or 1:

t →    s e 2iπ /2 2 k yi 1 ...yi q O, y I, y = t ⊗ id if mod 2 = 0 s e 2iπ y i 1 ...y iq 2 k (( -1)/2+y ) O, y I, y ⊕y i1 ...y iq if mod 2 = 1
The functor is then extended to any SOP[ 1 2 k+1 ] -morphism by the decomposition of Lemma 22 (and given a particular ordering on the monomials of the phase polynomial).

Since • k is defined to be a functor, we have

• • • k = • k • • k .
We can show that the ordering of the monomials has no real importance. Indeed, suppose t 1 = e 2iπ 1 2 k+1 yi 1 ...yi q | y y| and t 2 = e 2iπ 2 2 k+1 yj 1 ...yj r | y y|. Then: t 1 • t 2 k = t 2 • t 1 k quite obviously when either 1 mod 2 = 0 or 2 mod 2 = 0, but also when 1 mod 2 = 2 mod 2 = 1: Notice however that • k adds an input and an output, so necessarily

t 1 • t 2 k --
• ⊗ • k = • k ⊗ • k .
The functors • k map terms with the same semantics to terms with the same semantics:

Proposition 26. ∀t 1 , t 2 ∈ SOP[ 1 2 k+1 ] , t 1 = t 2 =⇒ t 1 k = t 2 k
Proof. In appendix at page 21.

Going Back

We now show how to reverse the functors • k .

Definition 27. For any k ≥ 1, we define the (partial) map

• k : SOP[ 1 2 k ] → SOP[ 1 2 k+1 ] as: ∀t : n + 1 → m + 1 ∈ SOP[ 1 2 k ] , t k := (id m ⊗ 0|) • t • (id n ⊗ e 2iπ y 0 2 k+1 |y 0 )
Notice that • k can only be applied on morphisms that have at least one input and one output.

• k reverses the action of • k (up to some rewrites): Proof. In appendix at page 22.

Proposition 28. • k k ∼ TH (•)

Completeness

We may now show completeness first for SOP[ 1 2 k+1 ] and then tweak the equational theory to extend the result to SOP[ 1 2 k+1 ].

Theorem 29 

(Completeness of SOP[ 1 2 k+1 ] / ∼ TH ). ∀t 1 , t 2 ∈ SOP[ 1 2 k+1 ] , t 1 = t 2 ⇐⇒ t 1 ∼ TH t 2 Proof. Let t 1 , t 2 ∈ SOP[
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This is not entirely satisfactory, as we would like to relate any two morphisms of the same interpretation. However:

Lemma 30. If t 1 ∈ SOP[ 1 2 k+1 ] and t 2 ∈ SOP[ 1 2 k+1 ] \ SOP[ 1 2 k+1 ] , then t 1 TH t 2 .
Proof. There is no rule in --→ TH that changes the overall scalar from an odd power of 1 √ 2 to an even one, or vice-versa.

However, adding a single rule:

y e 2iπ( 1 8 + 3 4 y0+R) O I ---------→ y0 / ∈Var(R, O, I) √ 2 y\{y0} e 2iπR O I ( √ 2)
fixes this caveat. This rule can also be recovered from the more general one:

y e 2iπ y 0 4 + y 0 2 Q+R O I -----------→ y0 / ∈Var(Q,R, O, I) √ 2 y\{y0} e 2iπ 1 8 -1 4 Q+R O I (ω)
which was already used in [START_REF] Amy | Towards large-scale functional verification of universal quantum circuits[END_REF][START_REF] Lemonnier | Hypergraph simplification: Linking the path-sum approach to the ZH-calculus[END_REF][START_REF] Vilmart | The structure of sum-over-paths, its consequences, and completeness for clifford[END_REF] to deal with the Clifford fragment of quantum mechanics. With this additional rule at hand, we can derive the general completeness theorem:

Theorem 31 (Completeness of SOP[ 1 2 k+1 ]/ ∼ TH'
). Let us write --→

TH' := --→ TH +{( √ 2)}. Then: ∀t 1 , t 2 ∈ SOP[ 1 2 k+1 ], t 1 = t 2 ⇐⇒ t 1 ∼ TH' t 2 Proof. Let t 1 , t 2 ∈ SOP[ 1 2 k+1 ] such that t 1 = t 2 .
Let us also write:

t √ 2 := 1 √ 2 e 2iπ( 1 8 + 3 4 y0)
We define t i as:

t i := t i if t i ∈ SOP[ 1 2 k+1 ] t i ⊗ t √ 2 if t i / ∈ SOP[ 1 2 k+1 ]
.

It is easy to check that t i ∈ SOP[ 1 2 max(3,k+1) ] and that t i ∼ TH' t i . By Theorem 29:

t 1 ∼ TH' t 1 ∼ TH' t 2 ∼ TH' t 2
We hence have completeness for all dyadic fragments of quantum computation. By taking their union, we can get completeness for the "whole dyadic fragment". 1 2 k ] be the whole dyadic fragment of quantum computation.

Definition 32. Let SOP[D] := ∞ k=1 SOP[

Corollary 33 (Completeness of SOP[D]/ ∼ TH'

).

∀t 1 , t 2 ∈ SOP[D], t 1 = t 2 ⇐⇒ t 1 ∼ TH' t 2 7

Conclusion and Discussion

We have given a new rewrite system for the Toffoli-Hadamard fragment of Sums-Over-Paths, and showed the induced equational theory to be complete. We then extended this rewrite strategy by adding a single new rewrite, which we then proved to be complete for the whole dyadic fragment. As expected from the universality of the fragments at hand, we do not get
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all the nice properties of the rewriting in the Clifford fragment. In particular, we showed that the rewrite strategies given above are not confluent, and that the size of the terms may grow exponentially when rules are applied carelessly. Whether one of the above two drawbacks can be removed by a different rewrite system remains an open question.

Using the translation from SOP to ZH, this time, we can make sense of the SOP rewrite rules as graphical ones. We will focus on the two rules that were not present in the previous works on SOP, namely (HHgen) and (HHnl). Let us start with the latter.

(HHnl) turns an occurrence of y0

2 Q + y 0 2 Q into y0 2 ( Q + Q + Q Q ),
when the two variables are linked to nothing else than their respective polynomials Q and Q . The induced ZH identity can be derived using its rules:

= Q Q Q Q = Q Q Q Q = Q QQ Q = Q+Q + QQ ... ... ... ... ... = Q QQ Q ...
(where the first equality uses Lemma 34 (in appendix), the second, third and last use Lemma 11, and the fourth uses (ZS1), (HS2) and the definition of the black node).

Although the overall number of nodes usually increases, the number of white nodes that amount to SOP-variables (i.e. white nodes that are not part of a polynomial) decreases. Rule (HHgen) is a bit more tricky to deal with in particular as it involves a non-trivial side condition. Hence, we do not provide a derivation of the equality, but only state it. With the pattern y0 2 (y i Q + Q + 1) we get y0 2 (y i Q + 1) with all other occurrences of y i replaced by

Q ⊕ 1: = Q Q ... Q Q ... ¬ = Q Q ... ¬ Q ¬ if Q Q = Q ... ... ... ... ... 1 2
This paper, together with the above small study of how the rewrites translate as ZH transformations, really shows how the two formalisms (SOP and ZH) give different and complementary approaches to rewriting and simplifying representations of quantum processes.

We provided new rewrites that allow simplification in the terms -in that they decrease the number of variables -with the aim of completeness. A next important step for verification, simulation and simplification using SOP is to determine which rewrites, or which variants, are the most relevant to the task at hand.

O A I B ----→ HHgen e 2iπ P A +P B + y 0 2 ( Q+1)+R[yi← 1⊕Q ]+ O[y i ← 1⊕Q ]• x+ I A • x+ I[y i ← 1⊕Q ]• x + O B • x 2 O A I B = A • t 1 [y i ← 1⊕Q ] • B = A • t 2 • B • (HHnl): A • t 1 • B = e 2iπ P A +P B + y 0 2 Q+ y 0 2 Q +R+ O• x+ I A • x+ I• x + O B • x 2 O A I B ---→ HHnl 2 e 2iπ P A +P B + y 0 2 ( Q+ Q + QQ )+R+ O• x+ I A • x+ I• x + O B • x 2 O A I B
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= A • (2t 1 [y 0 ← y 0 ⊕y 0 Q]) • B = A • t 2 • B • (ket): A • t 1 • B = e 2iπ P A +P B +P + ( O 1 + I A1 )x 1 +...+(y 0 + O i + I Ai )x i +...+( Om+ I Am )xm+ I• x + O B • x 2 O A I B --→ HH 2 e 2iπ P A +P B +P [y0← O i ⊕I Ai ]+ O[y 0 ← O i ⊕I Ai ]• x+ I A • x+ I[y 0 ← O i ⊕I Ai ]• x + O B • x 2 O A I B ←- HH e 2iπ P A +P B +P [y0← y0⊕O i ]+ O[y 0 ← y 0 ⊕O i ]• x+ I A • x+ I[y 0 ← y 0 ⊕O i ]• x + O B • x 2 O A I B = A • t 1 [y 0 ← y 0 ⊕O i ] • B = A • t 2 • B
• (bra): Similar to (ket).

• (Z):

A • t 1 • B = e 2iπ P A +P B + 0 2 +R+ O• x+ I A • x+ I• x + O B • x 2 O A I B -→ Z e 2iπ( y 0 2 ) 0 0 ←- Z e 2iπ P A +P B + y 0 2 + 0• x+ I A • x+ 0• x + O B • x 2 O A I B = A • t 2 • B
Proof of Proposition 7. 

(1 + e iπ(yi Q+ Q +1) )e 2iπR O I = y∈{0,1} k-2 (1 + e iπ( Q Q+ Q +1) )e 2iπR[yi← Q ] ( O I )[y i ← Q ] + y∈{0,1} k-2 (1 + e iπ( 1⊕Q Q+ Q +1) )e 2iπR[yi← 1⊕Q ] ( O I )[y i ← 1 ⊕ Q ] = 0 + y∈{0,1} k-2 (1 + e iπ( 1⊕Q Q+ Q +1) )e 2iπR[yi← 1⊕Q ] ( O I )[y i ← 1 ⊕ Q ] = t[y i ← 1 ⊕ Q ] (HHnl) : If t = e 2iπ y 0 2 Q+ y 0 2 Q +R O I : t = y∈{0,1} k e 2iπ y 0 2 Q+ y 0 2 Q +R O I = y∈{0,1} k-2 1 + e iπ Q + e iπ Q + e iπ Q⊕Q e 2iπR O I = y∈{0,1} k-2 2 1 + e iπ Q⊕Q ⊕QQ e 2iπR O I R. Vilmart XX:19 = 2 y∈{0,1} k-1 e 2iπ y 0 2 ( Q+ Q + QQ )+R O I = 2t[y 0 ← y 0 ⊕ y 0 Q]
The third equality is obtained by checking that the equality is true for all values of Q and Q : . Then, we have:

Q Q 1 + e iπ Q + e iπ Q + e iπ Q⊕Q
r 1 2 = 1 2 1 + r 1 -r = 1 + r 2 1 1-r 1+r and e iα s e iβ = 2se i α 2 cos α 2 -ie iβ sin α 2 = 2se i α 2 cos α 2 1 e i(β-π 2 ) tan α 2
Hence, when |r| / ∈ {0, 1}, we have equality between the two with α := 2 arctan 1-r 1+r , β = arg 1-r 1+r + π 2 and s := 1+r 4e i α 2 cos α 2 (since r = 1, α is well defined and α = π mod 2π so s is also well-defined). From this, we get: We show that all the rules of ZH TH hold in SOP[ 1 2 ]. Checking the rules (ZS1), (ZS2), (HS1), (HS2) and (M) is straightforward using the rule (HH). We give for instance a check of the rule (ZS1): We give derivations to prove the remaining rules of ZH TH . Recall that equality is up to α-conversion.

(IV):

1 2 sop = 1 2 y | | ---→ Elim 1 = sop (Z): 1 √ 2 sop --→ HH 1 √ 2 e 2iπ y 2 | | -→ Z e 2iπ y 2 | | ←- HH sop
The two rules (BA1) and (BA2) are fairly easy to check, once one realises that 

   ¬    sop --→ HH 2 e 2iπ( 1 2 y0y2y3+ 1 2 y0y3+ 1 2 y1y2y3) |y 0 , y 1 y 2 | R. Vilmart XX:21    ¬    sop --→ HH e 2iπ( 1 2 y0y1+ 1 2 y2y3y4+ 1 2 y0y1y4) |y 0 , y 3 y 4 | --------→ HHnl(y1,y2) 2 e 2iπ( 1 2 y0y1+ 1 2 y0y1y4+ 1 2 y1y3y4) |y 0 , y 3 y 4 | (&):       sop --→ HH e 2iπ( 1 2 y0y1+ 1 2 y0y2y3) |y 1 y 2 , y 3 | ------------→ HH(y0,[y1←y2y3]) 2 |y 2 y 3 y 2 , y 3 |           ¬ ¬ ¬ 1 4           sop --→ HH 1 4 e 2iπ( 1 2 y0+ 1 2 y8y1y7+ 1 2 y1+ 1 2 y1y3y4+ 1 2 y0y1y2+ 1 2 y0y2) |y 0 1⊕y 4 , 1⊕y 7 | --------→ HHnl(y8,y2) 1 2 e 2iπ( 1 2 y0y1y8+ 1 2 y0+ 1 2 y8y1y7+ 1 2 y1+ 1 2 y1y3y4+ 1 2 y0y8) |y 0 1⊕y 4 , 1⊕y 7 | -------------→ ket/bra([y4←y4⊕1]) ket/bra([y7←y7⊕1]) 1 2 e 2iπ( 1 2 y0y1y8+ 1 2 y0+ 1 2 y8y1y7+ 1 2 y8y1+ 1 2 y1+ 1 2 y1y3y4+ 1 2 y1y3+ 1 2 y0y8) |y 0 y 4 , y 7 | --------→ HHnl(y8,y3) e 2iπ( 1 2 y0y1y8+ 1 2 y0+ 1 2 y8y1y4y7+ 1 2 y1+ 1 2 y8y1+ 1 2 y0y8) |y 0 y 4 , y 7 | -------------------→ HHgen(y1,[y0←y4y7y8⊕y8⊕1]) e 2iπ(
. SOP[ 1 2 k+1 ] ⊆ M(Z[ 1 2 , e i π 2 k ]) 2. For each element x ∈ Z[ 1 2 , e i π 2 k ],
there exists a unique decomposition as

x = x 1 + e i π 2 k x 2 where x 1 , x 2 ∈ Z[ 1 2 , e i π 2 k-1 ] 3. There exists a map ψ k : M(Z[ 1 2 , e i π 2 k ]) → M(Z[ 1 2 , e i π 2 k-1 ]
), based on the decomposition, and such that t k = ψ k ( t ) In this case, given t 1 , t 2 ∈ SOP[ 1 2 k+1 ] such that t 1 = t 2 , by 1. we can apply ψ k to their interpretation. By uniqueness of the decomposition 2., ψ k ( t 1 ) = ψ k ( t 2 ). Finally, by 3., t 1 k = t 2 k . Let us now prove the previous claims: 1. This point is a simple verification.

Let

x = 2 k -1 =0 α e i π 2 k ∈ Z[ 1 2 , e i π 2 k ].
Obviously, x can be decomposed as 

x = 2 k-1 -1 =0 α 2 e i π 2 k-1 + e i π 2 k 2 k-1 -1 =0 α 2 +1 e i π 2 k-1 = x 1 + e i π
Q[e i π 2 k ] : Q[e i π 2 k-1 ] = Q[e i 2π 2 k+1 ] : Q[e i 2π 2 k ] = Q[e i 2π 2 k+1 ] : Q Q[e i 2π 2 k ] : Q = ϕ(2 k+1 ) ϕ(2 k ) = 2 k 2 k-1 = 2
where ϕ is Euler's totient function. The vector space has (1, e i π 2 k ) as a basis. Hence, the above decomposition is unique. We then naturally extend this definition to any matrix over these elements. Formally: ψ k : A + Be i π 2 k → A ⊗ I 2 + B ⊗ X k where A + Be i π 2 k is the aforementioned decomposition extended to matrices. One can check that ψ k is a homomorphism, i.e. ψ k (. + .) = ψ k (.) + ψ k (.) and ψ k (. • .) = ψ k (.) • ψ k (.). It remains to show that . k = ψ k ( . ). Since ψ k is a homomorphism, it is enough to show the result on the terms in the decomposed form of Lemma 22. Let t = s e 2iπ 2 k+1 yi 1 ...yi q O I be such a term. If mod 2 = 0, then t ∈ M(Z[ 1 2 , e i π 2 k-1 ]) so ψ k ( t ) = t ⊗ I 2 and: The second result in the Proposition simply comes from the fact that t i is built by composition from t i , so Proposition 5 gives the desired result. 

t k = s e 2iπ

  a set of rewrite rules denoted --→ TH that induces an equational theory ∼ TH (the symmetric and transitive closure of --→ TH ).
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1 √ 2 ⊗pFigure 2 4 . 1 From

 12241 Figure 2Set of rules ZH TH[START_REF] Van De Wetering | Completeness of the Phase-free ZH-calculus[END_REF].

4. 2 From

 2 ZH to SOP Any ZH-diagram can be understood as a SOP-morphism. To do so, we use the PROP-functor [•] sop : ZH → SOP defined as: 2π x1...xny1...ym |y 1 , . . . , y m x 1 , . . . , x n | [ s ] sop := s | | for s ∈ R .

Lemma 13 .sop•

 13 For any r ∈ C such that |r| / ∈ {0, 1}, there exist s ∈ C, α, β ∈ R such that: In appendix, at page 19. As a consequence, we extend the definition of [•] sop by: This interpretation of ZH-diagrams as SOP-morphisms preserves the semantics: XX:10 Completeness of SOP for Tof-H and Dyadic Fragments of Quantum Computation Proposition 14 ([25]). [•] sop = • . In other words, the following diagram commutes: The composition of the two interpretations is the identity up to small rewrites: Proposition 15 ([25]). [•] ZH sop ∼ TH (•)

(HHgen): If t = y∈V k e 2iπ y 0 2 (

 2 yi Q+ Q +1)+R O I such that QQ = Q : Q+ Q +1)+R O I = y∈{0,1} k-1

  Proof of Lemma 13. . First, thanks to rule (HS1), have r

  of SOP for Tof-H and Dyadic Fragments of Quantum Computation Proof of Proposition 18.

e 2iπ y 0 +y 1 2 y

 2 |y 1 , ..., y 1 y 0 , ..., y 0 | ----------→ HH(y ,[y1←y0]) |y 0 , ..., y 0 y 0 , ..., y 0 | =

  sop

2 y 2 y 2 +...+ y 1 ...ym xn 2 )

 22212 |y 1 , ..., y n y 0 , ..., y 0 | ---------------→ HH(y ,[y0←y1⊕...⊕yn]) |y 1 , ..., y n y 1 ⊕...⊕y n , ..., y 1 ⊕...⊕y n | ←-|y 1 , ..., y m x 1 , ...x n | ---------------→ HH(y ,[y ←x1⊕...⊕xn]) e 2iπ( y 1 ...ym x 1 |y 1 , ..., y m x 1 , ...x n

3 . 1 , e i π 2 0

 312 We now need to define ψ k . We are going to define it first on scalars, and on the basis (By linearity, ψ k is defined on all elements of Z[ 1 2 , e i π 2 k ].

/2 2 k 2 .t = se i π 2 kOI 2 == t ⊗ e 2iπ y 0 2 k+1 |y 0

 22220 yi 1 ...yi q O, y I, y = t ⊗ I If mod 2 = 1, then:yi 1 ...yi q =1 e 2iπ ( 2+y ) O, y I, y ⊕y i1 ...y iq = s yi 1 ...yi q =1 e 2iπ ( -1)/2+y 2 k O, y I, y ⊕1 + s yi 1 ...yi q =0 ψ k ( t )Proof of Proposition 28. Again, we can use the decomposition given in Lemma 22. We can show that if t = s e 2iπ 2 k+1 yi 1 ...yi q O I , then t k • (id n ⊗ e 2iπ y 0 2 k+1 |y 0 ) ∼ TH t ⊗ e 2iπ y 0 2 k+1 |y 0 : If mod 2 = 0, then t k = t ⊗ id so t k • (id n ⊗ e 2iπ y 0 2 k+1 |y 0 ) ∼ TH t ⊗ e 2iπ y 0 2 k+1 |y 0 . If mod 2 = 1, then:t k • (id n ⊗ e 2iπ y 0 2 k+1 |y 0 ) --------------→ HH(y ,[y0←y ⊕yi 1 ...yi q ])Now, for an arbitrary t ∈ SOP[ 1 2 k+1 ] , we can do the above inductively on each term in its decomposition, resulting in t k • (id n ⊗ e 2iπ y 0 2 k+1 |y 0 ) ∼ TH t ⊗ e 2iπ y 0 2 k+1 |y 0 . Finally: t k k = (id m ⊗ 0|) • t k • (id n ⊗ e 2iπ y 0 2 k+1 |y 0 ) ∼ TH (id m ⊗ 0|) • t ⊗ e 2iπ y 0 2 k+1 |y 0 ∼ TH t

  We have the following, where the numbering refers to lemmas in[START_REF] Backens | Completeness of the ZH-calculus[END_REF]

  2π and connected to the Z-spiders that represent y i1 ,...,y is each monomial y i1 ...y is in O i is represented by

	R. Vilmart				XX:9
					y4		y1
			e	iπ 2	e	iπ 4	e	3iπ 2
	is mapped to	y0		y2	y3
				1 √ 4	2	¬	y5
							y1	y k
							O1	Om
							...
							1 2	where the inputs are connected to
	the Z-spiders that represent y i1 ,...,y is . Notice that the only (non-zero) constant monomial
	is	1 2	=	¬	
							...
	these monomials are then added to form O i thanks to
	the nodes I i are defined similarly, but upside-down
	For more details, see [25].
	Example 10. The SOP morphism:
	2	1 √	2 y	e 2iπ( 1 4 y0+ 1 2 y4y0+ 1 8 y5y0y1+ 3 4 y1y2y3+ 1

 s y e 2iπP |O 1 , . . . , O m I 1 , . . . , I n |   ZH := P ... ... s ... I1 Im where the row of Z-spiders represents the variables y 1 , . . . , y k . Informally: each monomial αy i1 ...y is in P gives a single H-spider with parameter e i α 2 y0y3) |0, 1⊕y 0 ⊕y 4 y 2 , y 5 y 4 , y 5 ⊕y 2 ⊕y 3 |

  Let t 1 and t 2 be two SOP[ 1 2 ]-morphisms such that t 1 = t 2 . By Proposition 12: [t 1 ] ZH = [t 2 ] ZH . By completeness of ZH TH / ZH TH (Theorem 9): ZH TH [t 1 ] ZH = [t 2 ] ZH Thanks to Proposition 18: [t 1 ] ZH sop ∼ TH [t 2 ] ZH sop . Finally, by Proposition 15:

	R. Vilmart	XX:11
	TH	t 2

1 2 ]/ ∼ TH is complete, i.e.: ∀t 1 , t 2 ∈ SOP[ 1 2 ], t 1 = t 2 ⇐⇒ t 1 ∼

Proof.

  1 2 y8y9y6) |y 4 y 5 ⊕y 8 y 9 ⊕y 4 y 5 y 8 y 9

  and t = s e 2iπP O I . Then:Notice that this decomposed form is not unique, as different orderings on the monomials of P define different orderings of the compositions. However, this will not matter.A particular care is sadly needed for the overall scalar. Because of this, we will first focus on a slightly different notion of restriction of SOP.

		s	O y 0 , ..., y k | •			
	   	e 2iπm1 |y 0 , ..., y k y 0 , ..., y k | • . . . •	e 2iπm |y 0 , ..., y k y 0 , ..., y k | • |y 0 , ..., y k I	   	* --→
	Definition 23 (SOP[ 1 2 Lemma 24. 1 √ 2 y0∈V e 2iπ( 1 8 + 3 4 y0) = 1. Hence:
	∀t ∈ SOP[ 1 2 n ], ∃t ∈ SOP[	1 2 max(3,n) ] , t = t	
	Proof. If t ∈ SOP[ 1 2 n ] and t / ∈ SOP[ 1 2 n ] , then:	
	t := t ⊗ 1 √ 2	e 2iπ( 1 8 + 3 4 y0) ∈ SOP[	

HH

t n ] ). We define SOP[

1 2 

n ] as the restriction of SOP to morphisms of the form: t = 1 2 p e 2iπ P 2 n O I where P has integer coefficients.

The only difference with SOP[

1 2 

n ] is that the overall scalar is now a power of 1 2 and not of 1 √ 2 . There always exists a SOP[

1 

2 n ] -morphism that represents the same linear map as any SOP[

1 

2 n ]-morphism. 1 2 max(3,n) ] and t = t .

  →

	HH	e	2iπ	y i 1	...y iq 2 k	(( 1 -1)/2+y )+ + y i 1 ...y iq y j 1 ...y jr y j 1 ...y jr 2 k 2 k (1-2y ) (( 2-1)/2+y ) | y, y y, y ⊕y i1 ...y iq ⊕y j1 ...y jr
						←-

HH t 2 • t 1 k

  1 2 k+1 ] such that t 1 = t 2 . By Proposition 26:... t 1 k ... 1 = ... t 2 k ... 1

	Since ... t i k ... 1 ∈ SOP[ 1 2 ] ⊂ SOP[ 1 2 ], by completeness of this fragment (Theorem 19):
	... t 1 k ... 1 ∼

TH ... t 2 k ... 1 Finally, by Proposition 28: t 1 ∼ TH ... ... t 1 k ... 1 1 ... k ∼ TH ... ... t 2 k ... 1 1 ... k ∼ TH t 2 .

Proof of Proposition 26. We

  

	1 2 y1+ 1 2 y8y1+ 1 2 y8+ 1 2 ) |y 4 y 7 y 8 ⊕y 8 ⊕1 y 4 , y 7 |
	---------→ HH(y1,[y8←1])	2	|y 4 y 7 y 4 , y 7 |

demonstrate this proposition by showing that: 1

  2 k x 2 where x 1 , x 2 ∈ Z[ 1 2 , e i π 2 k-1 ]. We now need to show that this decomposition is unique. To do so, let us considerQ[e i π 2 k ] and Q[e i π 2 k-1 ]. These are two fields such that Q[e i π 2 k-1 ] ⊂ Q[e i π 2 k ]. Q[e i π 2 k] can hence be seen as a vector space over Q[e i π 2 k-1 ]. This vector space is of dimension:

Appendix

Proof of Proposition 5. The result is obvious for the tensor product (. ⊗ .). For the composition, we show that if

In other words, we have to show it for every rule in --→ TH :

• (Elim): Obvious. • (HHgen):