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Abstract. The “Sum-Over-Paths” formalism is a way to symbolically manipulate linear
maps that describe quantum systems, and is a tool that is used in formal verification.

We give here a new set of rewrite rules for the formalism, and show that it is complete for
“Toffoli-Hadamard”, the simplest approximately universal fragment of quantum mechanics.
We show that the rewriting is terminating, but not confluent (which is expected from the
universality of the fragment). We do so using the connection between Sum-over-Paths and
graphical language ZH-Calculus, and also show how the axiomatisation translates into the
latter.

Finally, we show how to enrich the rewrite system to reach completeness for the whole
Clifford hierarchy.

1 Introduction

Sum-Over-Paths (SOP) is a formalism used to represent and manipulate quantum processes in
a symbolic way, introduced in 2018 by Amy [3]. Its first important feature is its capacity to
translate from most common descriptions of quantum processes in polynomial time and space.
The formalism hence provides a intermediary view between usual (matrix) semantics and these
usual process descriptions. Its second crucial feature is that it comes equipped with a rewrite
system that simplifies the term, without altering its semantics.

Despite its links [15,16] with graphical languages such as the ZH-Calculus [4] – which will be
used in the following –, it provides a different view on the quantum processes, representing them
as weighted sums of Dirac kets and bras (a very familiar notation in quantum mechanics).

The formalism has seen several applications, the first of which being verification. Verification is
a crucial aspect of computations in the quantum realm, where physical constraints (like no-cloning,
or the fundamental probabilistic nature quantum) make it impossible to do debugging the way we
do on classical algorithms. More specifically, the SOP formalism was introduced as a solution to
circuit equivalence: Provided two circuits C1 and C2, the system represents C†2 ◦ C1 as a SOP term

(where C†2 can be seen as the inverse of C2, easy to describe from it). It then tries to reduce it to the
identity. If successful, this showed C1 and C2 to represent the same unitary. Otherwise, the system
searches for a witness that the term at hand does not represent the identity. As such, the system
has been used in several different projects (e.g. [10,13]) to check precisely for circuit equivalence.
It was later extended to account for families of morphisms and used within environment Qbricks
[6,7] together with automated solvers to verify algorithms and routines such as quantum phase
estimation, Grover’s search and Shor’s algorithm.

Amongst other applications of the Sum-Over-Paths, we may cite noiseless simulation of quan-
tum processes, where the rewrite strategy is used to reduce the number of variables in the term,
effectively decreasing the number of summands when expanding the term to actually compute its
semantics. It is for instance one of the simulators implemented in the supercomputer Atos QLM.

While the initial suggestion for Sum-Over-Paths focussed on the Clifford+T fragment – a
universal fragment of quantum computing, i.e. a restriction still capable of approximating with
arbitrary precision any quantum process –, it also provided some interesting result for the Clifford
fragment. It is known that this fragment is not universal [1], and actually efficiently simulable
with a classical computer, so it is a good test for the relevance of an formalism to check how it
handles them. And indeed, it was shown [3] a “weak” form of confluence of the rewrite system in



the Clifford fragment. More precisely, in this fragment, C†2 ◦ C1 reduces (in polynomial time) to the
identity if and only if C2 and C1 represent the same unitary operator.

However, SOP terms may represent more than unitary operator, but actually any linear map.
With those, it is still possible to define the above restrictions, and the rewrite system was extended
in [23] to get confluence for the – not necessarily unitary – Clifford fragment. When moving to
a universal fragment – like Clifford+T – it is expected that we cannot provide a rewrite system
with all the good properties of the Clifford case: either reduction is not polynomial, or their is no
confluence, or we need an infinite number of rewrites, ... The reason for this is that if we could
provide such a system, circuit equivalence would become polynomial, while we know that it is
QMA-complete – a quantum variant of NP-complete – [5,12]. A weaker notion of confluence we
can ask for is that of completeness: the question here is to know whether two equivalent terms can
be turned into one another, with the assumption that rewrites can be used in both directions (in
that case, we rather speak of an equational theory, or axiomatisation, than a rewrite system).

In this paper, we address the problem of completeness first for arguably the simplest universal
fragment of quantum computing, which is Toffoli-Hadamard. After reviewing the Sum-Over-Paths
formalism in section 2, the ZH-Calculus in section 3 and the links between the two in section 4, we
show that the provided rewrite system reaches completeness for the Toffoli-Hadamard fragment in
section 5, and at the same time show that it is not confluent. We then show in section 6 how the
rewrite strategy can be tweaked to reach completeness for the whole so-called Clifford hierarchy, a
restriction that encompasses Clifford, Clifford+T and Toffoli-Hadamard.

The missing proofs can be found in the appendix.

2 Sums-Over-Paths

2.1 The Morphisms

Sums-Over-Paths [3] are a way to symbolically describe linear maps of dimensions powers of 2
over the complex numbers. These linear maps form a †-compact monoidal category [17,19] denoted
Qubit where the objects are natural numbers (this makes the category a PROP [14,24]), where
morphisms from n to m are linear maps C2n → C2m , and where (. ◦ .) (resp. (. ⊗ .)) is the usual
composition (resp. tensor product) of linear maps. The category is endowed with a symmetric
braiding σn,m : n + m → m + n, as well as a compact structure (ηn : 0 → 2n, εn : 2n → 0).
Furthermore, there exists an inductive contravariant endofunctor (.)†, that behaves properly with
the symmetric braiding and the compact structure. For more information on these structures, see
[19].

Definition 1 (SOP). We define SOP as the collection of objects N and morphisms between them,

of the form: f := s
∑
y∈V k

e2iπP (y) |O(y)〉〈I(y)|

where s ∈ R, P ∈ R[X1, . . . , Xk]/(1, X2
i −Xi) is called the phase polynomial of f , O ∈ (F2[X1, . . . , Xk])

m

and I ∈ (F2[X1, . . . , Xk])
n

.
Compositions are obtained as:

– f ◦ g :=
sfsg

2|If |
∑

yf ,yg
y∈Vm

e
2iπ
(
Pg+Pf+

Og·y+If ·y
2

)
|Of 〉〈Ig|

– f ⊗ g := sfsg
∑

yf ,yg
e2iπ(Pg+Pf ) |OfOg〉〈IfIg|

We distinguish particular morphisms:

– Identity morphisms idn :
∑

y∈V n
|y〉〈y|

– Symmetric braidings σn,m =
∑

y1,y2

|y2,y1〉〈y1,y2|

– Morphisms for compact structure ηn =
∑
y
|y,y〉〈| and εn =

∑
y
|〉〈y,y|

We also distinguish two functors that have SOP as a domain:
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– The †-functor is given by: f† := s
∑
y
e−2iπP |I〉〈O|

– The functor J.K : SOP→ Qubit is defined as: JfK := s
∑

y∈{0,1}k
e2iπP (y) |O(y)〉〈I(y)|

We took the liberty of calling the last two maps functors, although SOP is not a category. For
instance, notice that id ◦ id 6= id. However, it suffices to quotient the formalism with rewrite rules
to turn it into a category [23].

2.2 A Rewrite System

We hence give in Figure 1 a set of rewrite rules denoted −→
TH

that induces an equational theory ∼
TH

.

∑
y

e2iπP |O〉〈I| −→
y0 /∈Var(P,O,I)

2
∑

y\{y0}

e2iπP |O〉〈I| (Elim)

t =
∑

e2iπ( y02 (yiQ̂+Q̂′+1)+R) |O〉〈I| −→
y0 /∈Var(Q,Q′,R,O,I,D)

yi /∈Var(Q,Q′)
QQ′=Q′

t[yi ← 1⊕Q′] (HHgen)

t =
∑

e
2iπ

(
y0
2
Q̂+

y′0
2
Q̂′+R

)
|O〉〈I| −→

y0,y
′
0 /∈Var(Q,Q′,R,O,I)

2t[y′0 ← y0⊕ y0Q] (HHnl)

t =
∑
y

e2iπ(P )| · · · ,

Oi︷ ︸︸ ︷
y0⊕O′i, · · · 〉〈I| −→

O′i 6=0

y0 /∈Var(O1,...,Oi−1,O
′
i)

t[y0←Oi] (ket)

t =
∑
y

e2iπ(P ) |O〉〈· · · ,

Ii︷ ︸︸ ︷
y0⊕I ′i, · · · | −→

I′i 6=0

y0 /∈Var(O,I1,...,Ii−1,I
′
i)

t[y0←Ii] (bra)

s
∑
y

e2iπ( y02 +R) |O〉〈I| −→
R 6=0 or O,I 6=0
y0 /∈Var(R,O,I)

∑
y0

e2iπ( y02 ) |0, · · · , 0〉〈0, · · · , 0| (Z)

Fig. 1. Rewrite system −→
TH

We need in the conditions of all the rules the function Var, that, given a set or list of polynomials,
gives the set of all variables used in them. We call internal variable a variable that is present in
the morphism t but not in its inputs/outputs, i.e. a variable y0 such that y0 ∈ Var(t) \Var(O, I).

The rules (HHgen), (HHnl) and (Z) all stem from a particular observation: In the morphism

t =
∑
e2iπ( y02 Q̂+R) |O〉〈I| where y0 is internal and not in R, if Q is evaluated to 1, then the whole

morphism is interpreted as null. This is exactly what (Z) captures.
The rule (HHgen) deals with a case where the polynomial Q can be forced to 0, whilst the rule

(HHnl) factorises different such polynomials Q into one.

Remark 1. When performing certain rules, we have to substitute a variable by a boolean polynomial
Q. We need to be able to understand Q as a phase polynomial, as the variable can occur in P .

The map (̂.) : F2[X1, . . . , Xk]→ R[X1, . . . , Xk]/(1, X2
i −Xi), serves this purpose. It is inductively

defined as:

Q̂1Q2 = Q̂1Q̂2 Q̂1⊕Q2 = Q̂1 + Q̂2 − 2Q̂1Q̂2 ŷi = yi α̂ = α

Remark 2. The rule (HHgen) can be generalised to:

t =
∑

e2iπ( y02 (yiQ̂+Q̂Q′+1)+R) |O〉〈I| −→
y0 /∈Var(Q,Q′,R,O,I)

yi /∈Var(Q,Q′)

t[yi ← 1⊕Q′] (HHgen’)

However, finding a “minimal” Q′ for this rule is a hard problem, as it requires the use of boolean
Groebner bases [18]. (HHgen) can be seen as a particular case of (HHgen’), where Q′ ← QQ′, as
Q×QQ′ = QQ′. The rule (HHgen) is sufficient for the scope of this paper.
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In [3] was introduced a particular and important rule:

t =
∑

e2iπ( y02 (yi+Q̂)+R) |O〉〈I| −→
y0 /∈Var(Q,R,O,I)

yi /∈Var(Q)

2
∑

e2iπR[yi←Q̂](|O〉〈I|)[yi ← Q] (HH)

This one is a particular case of the rule (HHgen) (with additional use of the rule (Elim)), where
Q← 1, Q′ ← Q⊕ 1. Moreover, the rule gave enough power to the formalism to become a †-compact
PROP [23]. We can extend this result here thanks to:

Proposition 1.

∀t1, t2 ∈ SOP, t1 ∼
TH

t2 =⇒

A ◦ t1 ◦B ∼TH
A ◦ t2 ◦B for all A, B composable

A⊗ t1 ⊗B ∼
TH

A⊗ t2 ⊗B for all A, B

Thanks to this Proposition, and since SOP/ ∼
HH

is a †-compact PROP by [23], we get:

Corollary 1. SOP/ ∼
TH

is a †-compact PROP.

The set of rules was obviously chosen so as to preserve the semantics:

Proposition 2 (Soundness). For any two SOP morphisms t1 and t2, if t1
∗−→

TH
t2, then Jt1K =

Jt2K.

3 The ZH-Calculus

The graphical calculi ZX, ZW and ZH [4,8,9] are calculi for quantum computing, with a tight link
with the Sum-Over-Paths formalism [15,16,23], and whose completeness was proven in particular
for the Toffoli-Hadamard fragment [11,21,22].

This fragment of quantum mechanics is approximately universal [2,20], and it is arguably the
simplest one with this property. This is the fragment we will be interested in, in most of the following
of the paper; and the associated completeness result will be paramount in the development of the
following.

We choose to present here the ZH-Calculus, because of its proximity with SOP. Notice however
that there exist translations between all the aforementioned graphical calculi, so by composition,
we can connect SOP to all of them.

ZH is a PROP whose morphisms – read here from top to bottom – are composed (sequentially
(. ◦ .) or in parallel (.⊗ .)) from Z-spiders and H-spiders:

– Znm : n→ m ::

...

...
, called Z-spider

– Hn
m(r) : n→ m :: r

...

...
, called H-spider, with a parameter r ∈ C

When r is not specified, the parameter in the H-spider is taken to be −1.

ZH is made a †-compact PROP, which means it also has a symmetric structure σn,m ::

n... m...

... ...
,

a compact structure

(
ηn :: ...

n
...
n
, εn ::

n... n...
)

, and a †-functor (.)† : ZHop → ZH. It is defined

by: (Znm)† := Zmn and (Hn
m(r))† := Hm

n (r) where r is the complex conjugate of r. For convenience,
we define two additional spiders:
...

...
:=

...

...
1
2 and

...

...
:=

...

...
¬ 1

2

The language comes with a way of interpreting the morphisms as morphisms of Qubit. The
standard interpretation J.K : ZH→ Qubit is a †-compact-PROP-functor, defined as:

t ...

...

|

= |0m〉〈0n|+ |1m〉〈1n|
r z

= |0〉〈0|+ |1〉〈1|
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t

r

...

...

|

=
∑

jk,ik∈{0,1}

rj1...jmi1...in |j1, . . . , jm〉〈i1, . . . , in|

s
...
n

...
n

{
=

∑
ik∈{0,1}

|i1, . . . , in, i1, . . . , in〉 =

s
n... n...

{†

t n... m...

... ...

|

=
∑

ik,jk∈{0,1}

|j1, . . . , jm, i1, . . . , in〉〈i1, . . . , in, j1, . . . , jm|

Notice that we used the same symbol for two different functors: the two interpretations J.K :
SOP → Qubit and J.K : ZH → Qubit. It should be clear from the context which one is to be
used.
The language is universal: ∀f ∈ Qubit, ∃Df ∈ ZH, JDf K = f . In other words, the interpretation
J.K is onto.

The language comes with an equational theory, which in particular gives the axioms for a
†-compact PROP. We will not present it here.

We can easily define a restriction of ZH that exactly captures the Toffoli-Hadamard fragment

of quantum mechanics [21], as the language generated by:

{ ...

...
,

...

...
, 1√

2

}
. Notice that the two

black spiders can still be defined if we also define 1√
2p := 1√

2

⊗p
. We denote this restriction by

ZHTH.

This restriction is provided with an equational theory, given in Figure 2, that makes it complete:

...

...

...

...

=
(ZS1)

=
(ZS2)

...

...

=

...

...(HS1)
=

(HS2)

=
(BA1)

...

...

...

...

=
(BA2)

...

...

...

...

=
(M)

=
(O)

¬ ¬

=
(&) ¬

¬ ¬

1
4

1
2 =

(IV)
=
(Z)

1√
2

...

...
:=

...

...

1
2

...

...
:=

...

...
¬ 1

2
1√
2p := 1√

2

⊗p

Fig. 2. Set of rules ZHTH

Theorem 1 ([21] Completeness of ZHTH/ZHTH).

∀D1, D2 ∈ ZHTH, JD1K = JD2K ⇐⇒ ZHTH ` D1 = D2
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4 Translations between SOP and ZH

4.1 From SOP to ZH

It is possible to translate SOP morphisms to ZH-diagrams using interpretation [.]ZH : SOP→ ZH.
A description of [.]ZH : SOP→ ZH was defined in [15,16] and in [23]. We choose the latter definition
as it fits our definition of SOP.

[
s
∑
y

e2iπP |O1, . . . , Om〉〈I1, . . . , In|

]ZH
:=

P

...

...

O1 Om

y1 yk

s

...
I1 Im

where the row of Z-spiders represents the variables y1, . . . , yk. Informally:

– each monomial αyi1 ...yis in P gives a single H-spider with parameter α
2π and connected to the

Z-spiders that represent yi1 ,...,yis

– each monomial yi1 ...yis in Oi is represented by 1
2

...

where the inputs are connected to

the Z-spiders that represent yi1 ,...,yis . Notice that the only (non-zero) constant monomial is
1
2 =

¬

– these monomials are then added to form Oi thanks to
...

– the nodes Ii are defined similarly, but upside-down

For more details, see [23].

Example 1. The SOP morphism:

1

2
√

2

∑
y

e2iπ( 1
4y0+

1
2y4y0+

1
8y5y0y1+

3
4y1y2y3+

1
2y0y3) |0, 1⊕y0⊕y4y2, y5〉〈y4, y5⊕y2⊕y3|

is mapped to

e
iπ
4 e

3iπ
2e

iπ
2

1
4
√

2 ¬

y4

y5

y1

y3
y2y0

This translation preserves the semantics:

Proposition 3 ([23]).
q
[.]ZH

y
= J.K.

4.2 From ZH to SOP

Any ZH-diagram can be understood as a SOP-morphism. To do so, we use the PROP-functor
[.]sop : ZH→ SOP defined as:[

eiα

...

...

]sop
:=
∑

e2iπ
α
2π x1...xny1...ym |y1, . . . , ym〉〈x1, . . . , xn|

[ s ]
sop

:= s |〉〈| for s ∈ R[ ...

...

]sop
:=
∑
y

|y, . . . , y〉〈y, . . . , y|

[
0

...

...

]sop
:=

[ ...

...
1
2

]sop

6



The functor furthermore maps the symmetric braiding (resp. the compact structure) of ZH to the
symmetric braiding (resp. the compact structure) of SOP.

This does not give a full description of [.]sop, as we did not describe the interpretation of the
H-spider for all parameters, but only for phases and 0. However, any H-spider can be decomposed
using the previous ones:

Lemma 1. For any r ∈ C such that |r| /∈ {0, 1}, there exist s ∈ C, α, β ∈ R such that:

t

r

...

...

|

=

u

v
...

...
s

eiα

eiβ

}

~

As a consequence, we extend the definition of [.]sop by:

[
r

...

...

]sop
:=

 ...

...
s

eiα

eiβ

sop

This interpretation of ZH-diagrams as SOP-morphisms preserves the semantics:

Proposition 4 ([23]). J[.]sopK = J.K.

The composition of the two interpretations is close to the identity:

Proposition 5 ([23]).
[
[.]ZH

]sop ∼
TH

(.)

4.3 Restrictions of SOP

Recall that ZHTH exactly captures the Toffoli-Hadamard fragment of quantum mechanics. We can
then use the two interpretations to define the Toffoli-Hadamard fragment of SOP. We actually go
a step beyond and define a family of fragments indexed by n:

Definition 2 (SOP[ 1
2n ]). We define SOP[ 1

2n ] as the restriction of SOP to morphisms of the

form: t =
1
√

2
p

∑
e2iπ

P
2n |O〉〈I| where p ∈ Z and P has integer coefficients.

Proposition 6. SOP[ 12 ] captures exactly the Toffoli-Hadamard fragment of quantum mechanics.

Proof. We can prove this by showing that [ZHTH]
sop ⊆ SOP[ 12 ] and that

[
SOP[ 12 ]

]ZH ⊆ ZHTH.
The two claims are straightforward verifications, and use the fact that compositions of SOP[ 12 ]-
morphisms give SOP[ 12 ]-morphisms.

Then, JZHTHK = J[ZHTH]
sopK ⊆

q
SOP[ 12 ]

y
=

r[
SOP[ 12 ]

]ZHz
⊆ JZHTHK, so:

q
SOP[ 12 ]

y
= JZHTHK

5 Completeness for Toffoli-Hadamard

The point of this section is to show that the set of rules −→
TH

captures the whole Toffoli-Hadamard

fragment of quantum mechanics. We do so by transporting the similar result from ZHTH to
SOP[ 12 ]. First, we show:

Proposition 7. ∀D1, D2 ∈ ZHTH, ZHTH ` D1 = D2 =⇒ [D1]sop ∼
TH

[D2]sop

We can then use the previous proposition to show the main result of this paper:

Theorem 2. SOP[ 12 ]/ ∼
TH

is complete, i.e.: ∀t1, t2 ∈ SOP[ 12 ], Jt1K = Jt2K ⇐⇒ t1 ∼
TH

t2

7



Proof. Let t1 and t2 be two SOP[ 12 ]-morphisms such that Jt1K = Jt2K. By Proposition 3:
q
[t1]ZH

y
=q

[t2]ZH
y
.

By completeness of ZHTH/ZHTH (Theorem 1): ZHTH ` [t1]ZH = [t2]ZH

Thanks to Proposition 7:
[
[t1]ZH

]sop ∼
TH

[
[t2]ZH

]sop
. Finally, by Proposition 5:

t1 ∼
TH

[
[t1]ZH

]sop ∼
TH

[
[t2]ZH

]sop ∼
TH

t2

The rewrite system is however not sufficient to get to a normal form, as:

Lemma 2 (Non-Confluence). The rewrite system −→
TH

is not confluent.

Proof. The SOP[ 12 ]-morphism: t =
∑

e2iπ( 1
2y0y6+

1
2y8y9y6+

1
2y4y5y6+

1
2y8y9y12) |y0〉

can be reduced to (at least) three different non-reducible morphisms:

• t −→
HH(y6,[y0←y4y5⊕y8y9])

2
∑

e2iπ( 1
2y8y9y12) |y4y5⊕y8y9〉

• t −→
HHnl(y4,y8)

2
∑

e2iπ( 1
2y9y4y5y6+

1
2y0y6+

1
2y9y4y6+

1
2y9y12y4+

1
2y4y5y6y9y12+

1
2y4y5y6) |y0〉

−→
HH(y6,[y0←y9y12y4y5⊕y9y4⊕y9y4y5⊕y4y5])

4
∑

e2iπ( 1
2y9y12y4) |y9y12y4y5⊕y9y4⊕y9y4y5⊕y4y5〉

• t −→
HHnl(y6,y12)

2
∑

e2iπ( 1
2y0y8y9y6+

1
2y0y6+

1
2y8y9y6+

1
2y4y5y6y8y9+

1
2y4y5y6) |y0〉

−→
HHgen(y6,[y0←y4y5⊕y8y9⊕y4y5y8y9])

2
∑

e2iπ( 1
2y8y9y6) |y4y5⊕y8y9⊕y4y5y8y9〉

6 Completeness for the whole Clifford Hierarchy

We show here how we can turn an SOP[ 1
2n+1 ]-morphism into an an SOP[ 1

2n ]-morphism in a
“reversible” manner. This will allow us to extend the completeness result to all the restrictions
SOP[ 1

2n ].

6.1 Ascending the Clifford Hierarchy

These transformations are more easily defined on SOP-morphisms of a particular shape, namely,
when their phase polynomial is reduced to a single monomial. Because of this, we show how a
SOP-morphism can be turned into a composition of these.

Lemma 3. Let P =
∑
mi ∈ R[X1, . . . , Xk]/(1, X2

i −Xi), and t = s
∑
e2iπP |O〉〈I|. Then:(

s
∑
|O〉〈y0, ..., yk|

)
◦(∑

e2iπm1 |y0, ..., yk〉〈y0, ..., yk|
)
◦ . . . ◦

(∑
e2iπm` |y0, ..., yk〉〈y0, ..., yk|

)
◦
(∑

|y0, ..., yk〉〈I|
) ∗−→

HH
t

Notice that this decomposed form is not unique, as different orderings on the monomials of P
define different orderings of the compositions. However, this will not matter.

A particular care is sadly needed for the overall scalar. Because of this, we will first focus on a
slightly different notion of restriction of SOP.

Definition 3 (SOP[ 1
2n ]
′
). We define SOP[ 1

2n ]′ as the restriction of SOP to morphisms of the

form: t =
1

2p

∑
e2iπ

P
2n |O〉〈I| where P has integer coefficients.

The only difference with SOP[ 1
2n ] is that the overall scalar is now a power of 1

2 and not of 1√
2
.

There always exists a SOP[ 1
2n ]′-morphism that represents the same linear map as any SOP[ 1

2n ]-
morphism.

8



Lemma 4.
r

1√
2

∑
e2iπ( 1

8+
3
4y0)

z
= 1. Hence:

∀t ∈ SOP[ 1
2n ], ∃t′ ∈ SOP[ 1

2max(3,n) ]′, JtK = Jt′K

Proof. If t ∈ SOP[ 1
2n ] and t /∈ SOP[ 1

2n ]′, then:

t′ := t⊗
(

1√
2

∑
e2iπ( 1

8+
3
4y0)

)
∈ SOP[ 1

2max(3,n) ]′ and Jt′K = JtK.

Definition 4. For any k ≥ 1, we define the functor �b.c�k : SOP[ 1
2k+1 ]′ → SOP[ 1

2k
]′, first for

morphisms t = s
∑
e2iπ

`

2k+1 yi1 ...yiq |O〉〈I| with phase polynomial of size 0 or 1:

t 7→

s
∑

e2iπ
`/2

2k
yi1 ...yiq |O, y′〉〈I, y′| = t⊗ id if ` mod 2 = 0

s
∑

e2iπ
yi1

...yiq

2k
((`−1)/2+y′) |O, y′〉

〈
I, y′⊕yi1 ...yiq

∣∣ if ` mod 2 = 1

The functor is then extended to any SOP[ 1
2k+1 ]′-morphism by the decomposition of Lemma 3 (and

given a particular ordering on the monomials of the phase polynomial).

Since �b.c�k is defined to be a functor, we have �b. ◦ .c�k = �b.c�k ◦ �b.c�k. We can show that the ordering

of the monomials has no real importance. Indeed, suppose t1 =
∑
e2iπ

`1
2k+1 yi1 ...yiq |y〉〈y| and t2 =∑

e2iπ
`2

2k+1 yj1 ...yjr |y〉〈y|. Then: �bt1 ◦ t2c�k = �bt2 ◦ t1c�k quite obviously when either l1 mod 2 = 0 or
l2 mod 2 = 0, but also when l1 mod 2 = l2 mod 2 = 1:

�bt1 ◦ t2c�k −→
HH

∑
e

2iπ


yi1

...yiq

2k
((`1−1)/2+y′)+

yj1
...yjr

2k
((`2−1)/2+y′)

+
yi1

...yiq
yj1

...yjr

2k
(1−2y′)


|y, y′〉

〈
y, y′⊕yi1 ...yiq⊕yj1 ...yjr

∣∣
←−
HH

�bt2 ◦ t1c�k

Notice however that �b.c�k adds an input and an output, so necessarily �b.⊗ .c�k 6= �b.c�k ⊗ �b.c�k.

Proposition 8. ∀t1, t2 ∈ SOP[ 1
2k+1 ]′, Jt1K = Jt2K =⇒ J�bt1c�kK = J�bt2c�kK

6.2 Going Back

We now show how to reverse the functor �b.c�k.

Definition 5. We define the (partial) functor �d.e�k : SOP[ 1
2k

]′ → SOP[ 1
2k+1 ]′ as:

∀t : n+ 1→ m+ 1 ∈ SOP[ 1
2k

]′, �dte�k := (idm ⊗ 〈0|) ◦ t ◦ (idn ⊗
∑

e2iπ
y0

2k+1 |y0〉)

Notice that �d.e�k can only be applied on morphisms that have at least one input and one output.

Proposition 9. �d�b.c�ke�k ∼TH
(.)

6.3 Completeness

We may now show completeness first for SOP[ 1
2k+1 ]′ and then tweak the equational theory to

extend the result to SOP[ 1
2k+1 ].

Theorem 3 (Completeness of SOP[ 1
2k+1 ]

′
/ ∼
TH

).

∀t1, t2 ∈ SOP[ 1
2k+1 ]′, Jt1K = Jt2K ⇐⇒ t1 ∼

TH
t2

9



Proof. Let t1, t2 ∈ SOP[ 1
2k+1 ]′ such that Jt1K = Jt2K. By Proposition 8:

J�b...�bt1c�k...c�1K = J�b...�bt2c�k...c�1K

Since �b...�btic�k...c�1 ∈ SOP[ 12 ]′ ⊂ SOP[ 12 ], by completeness of this fragment (Theorem 2):

�b...�bt1c�k...c�1 ∼
TH

�b...�bt2c�k...c�1

Finally, by Proposition 9: t1 ∼
TH

�d...�d�b...�bt1c�k...c�1e�1...e�k ∼TH
�d...�d�b...�bt2c�k...c�1e�1...e�k ∼TH

t2.

This is not entirely satisfactory, as we would like to relate any two morphisms of the same
interpretation. However:

Lemma 5. If t1 ∈ SOP[ 1
2k+1 ]′ and t2 ∈ SOP[ 1

2k+1 ] \ SOP[ 1
2k+1 ]′, then t1 �

TH
t2.

Proof. There is no rule in −→
TH

that changes the overall scalar from an odd power of 1√
2

to an even

one, or vice-versa.

However, adding a single rule:∑
y

e2iπ( 1
8+

3
4y0+R) |O〉〈I| −→

y0 /∈Var(R,O,I)

√
2
∑

y\{y0}

e2iπR |O〉〈I| (
√

2)

fixes this caveat. This rule can also be recovered from the more general one:∑
y

e2iπ( y04 +
y0
2 Q̂+R) |O〉〈I| −→

y0 /∈Var(Q,R,O,I)

√
2
∑

y\{y0}

e2iπ( 1
8−

1
4 Q̂+R) |O〉〈I| (ω)

which was already used in [3,16,23] to deal with the Clifford fragment of quantum mechanics.

Theorem 4 (Completeness of SOP[ 1
2k+1 ]/ ∼

TH’
). Let us write −→

TH’
:= −→

TH
+{(
√

2)}. Then:

∀t1, t2 ∈ SOP[ 1
2k+1 ], Jt1K = Jt2K ⇐⇒ t1 ∼

TH’
t2

Proof. Let t1, t2 ∈ SOP[ 1
2k+1 ] such that Jt1K = Jt2K. Let us also write:

t√2 :=
1√
2

∑
e2iπ( 1

8+
3
4y0)

We define t′i as: t′i :=

{
ti if ti ∈ SOP[ 1

2k+1 ]′

ti ⊗ t√2 if ti /∈ SOP[ 1
2k+1 ]′

.

It is easy to check that t′i ∈ SOP[ 1
2max(3,k+1) ]′ and that ti ∼

TH’
t′i. By Theorem 3:

t1 ∼
TH’

t′1 ∼
TH’

t′2 ∼
TH’

t2

7 Conclusion and Discussion

We have given a new rewrite system for the Toffoli-Hadamard fragment of Sums-Over-Paths, and
showed the induced equational theory to be complete. We then extended this rewrite strategy by
adding a single new rewrite, which we then proved to be complete for the whole Clifford Hierarchy.
As expected from the universality of the fragments at hand, the rewrite strategies given here are
not confluent.

Using the translation from SOP to ZH, this time, we can make sense of the SOP rewrite rules
as graphical ones. We will focus on the two rules that were not present in the previous works on
SOP, namely (HHgen) and (HHnl). Let us start with the latter.
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(HHnl) turns an occurrence of y0
2 Q̂+

y′0
2 Q̂
′ into y0

2 (Q̂+ Q̂′ + Q̂Q̂′), when the two variables are
linked to nothing else than their respective polynomials Q and Q′. The induced ZH identity can
be derived using its rules:

=Q Q′ Q Q′ = Q Q′Q Q′ = Q QQ′ Q′ =

Q+Q′+
QQ′

... ... ... ... ...

2

2 2

= Q QQ′ Q′

...

2

2

Although the overall number of nodes usually increases, the number of white nodes that amount
to SOP-variables (i.e. white nodes that are not part of a polynomial) decreases.

Rule (HHgen) is a bit more tricky to deal with in particular as it involves a non-trivial side
condition. Hence, we do not provide a derivation of the equality, but only state it. With the pattern
y0
2 (yiQ̂+ Q̂′ + 1) we get y0

2 (yiQ̂+ 1) with all other occurrences of yi replaced by Q′ ⊕ 1:

=Q Q′

...

Q′ Q

...

¬

=
Q′

Q

...
¬

Q′

¬

if Q Q′ = Q′

...

...

.........

1
2

This paper, together with the above small study of how the rewrites translate as ZH trans-
formation, really shows how the two formalisms (SOP and ZH) give different and complementary
approaches to rewriting and simplifying representations of quantum processes.

We provided new rewrites that allow simplification in the terms – in that they decrease the
number of variables – with the aim of completeness. A next important step for verification, simu-
lation and simplification using SOP is to determine which rewrites, or which variants, are the most
relevant to the task at hand.
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Proof (Proof of Proposition 1). The result is obvious for the tensor product (. ⊗ .). For the
composition, we show that if t1 −→

TH
t2 in one step, then A ◦ t1 ◦ B ∼

TH
A ◦ t2 ◦ B. In other words,

we have to show it for every rule in −→
TH

:

• (Elim): Obvious.
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e
2iπ

(
PA+PB+

y0
2 (yiQ̂+Q̂′+1)+R+

O·x+IA·x+I·x′+OB ·x
′

2

)
|OA〉〈IB |

−→
HHgen

∑
e
2iπ

(
PA+PB+

y0
2 (Q̂+1)+R[yi←1̂⊕Q′]+

O[yi←1̂⊕Q′]·x+IA·x+I[yi←1̂⊕Q′]·x′+OB ·x
′

2

)
|OA〉〈IB |
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= A ◦ t1[yi ← 1⊕Q′] ◦B = A ◦ t2 ◦B

• (HHnl):

A ◦ t1 ◦B =
∑

e
2iπ

(
PA+PB+

y0
2 Q̂+

y′0
2 Q̂
′+R+

O·x+IA·x+I·x′+OB ·x
′

2

)
|OA〉〈IB |

−→
HHnl

2
∑

e
2iπ

(
PA+PB+

y0
2 (Q̂+Q̂′+Q̂Q′)+R+

O·x+IA·x+I·x′+OB ·x
′

2

)
|OA〉〈IB |

= A ◦ (2t1[y′0 ← y0⊕y0Q]) ◦B = A ◦ t2 ◦B

• (ket):

A ◦ t1 ◦B =∑
e
2iπ

(
PA+PB+P+

(Ô1+ÎA1)x1+...+(y0+Ô′i+ÎAi)xi+...+(Ôm+ÎAm)xm+I·x′+OB ·x
′

2

)
|OA〉〈IB |

−→
HH

2
∑

e
2iπ

(
PA+PB+P [y0←Ô′i⊕IAi]+

O[y0←
̂O′
i
⊕IAi]·x+IA·x+I[y0←

̂O′
i
⊕IAi]·x

′+OB ·x
′

2

)
|OA〉〈IB |

←−
HH

∑
e
2iπ

(
PA+PB+P [y0←ŷ0⊕O′i]+

O[y0←
̂y0⊕O′i]·x+IA·x+I[y0←

̂y0⊕O′i]·x
′+OB ·x

′

2

)
|OA〉〈IB |

= A ◦ t1[y0 ← y0⊕O′i] ◦B = A ◦ t2 ◦B

• (bra): Similar to (ket).
• (Z):

A ◦ t1 ◦B =
∑

e
2iπ

(
PA+PB+

y0
2 +R+

O·x+IA·x+I·x′+OB ·x
′

2

)
|OA〉〈IB | −→

Z

∑
e2iπ( y02 ) |0〉〈0|

←−
Z

∑
e
2iπ

(
PA+PB+

y0
2 +

0·x+IA·x+0·x′+OB ·x
′

2

)
|OA〉〈IB | = A ◦ t2 ◦B

Proof (Proof of Proposition 2).

(HHgen): If t =
∑

y∈V k e
2iπ( y02 (yiQ̂+Q̂′+1)+R) |O〉〈I| such that QQ′ = Q′:

JtK =
∑

y∈{0,1}k
e2iπ( y02 (yiQ̂+Q̂′+1)+R) |O〉〈I| =

∑
y∈{0,1}k−1

(1 + eiπ(yiQ̂+Q̂′+1))e2iπR |O〉〈I|

=
∑

y∈{0,1}k−2

(1 + eiπ(Q̂
′Q̂+Q̂′+1))e2iπR[yi←Q̂′](|O〉〈I|)[yi ← Q′]

+
∑

y∈{0,1}k−2

(1 + eiπ(1̂⊕Q
′Q̂+Q̂′+1))e2iπR[yi←1̂⊕Q′](|O〉〈I|)[yi ← 1⊕Q′]

= 0 +
∑

y∈{0,1}k−2

(1 + eiπ(1̂⊕Q
′Q̂+Q̂′+1))e2iπR[yi←1̂⊕Q′](|O〉〈I|)[yi ← 1⊕Q′]

= Jt[yi ← 1⊕Q′]K

(HHnl) : If t =
∑
e
2iπ

(
y0
2 Q̂+

y′0
2 Q̂
′+R

)
|O〉〈I|:

JtK =
∑

y∈{0,1}k
e
2iπ

(
y0
2 Q̂+

y′0
2 Q̂
′+R

)
|O〉〈I|

=
∑

y∈{0,1}k−2

(
1 + eiπQ̂ + eiπQ̂

′
+ eiπQ̂⊕Q

′
)
e2iπR |O〉〈I|

=
∑

y∈{0,1}k−2

2
(

1 + eiπ
̂Q⊕Q′⊕QQ′

)
e2iπR |O〉〈I|
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= 2
∑

y∈{0,1}k−1

e2iπ( y02 (Q̂+Q̂′+Q̂Q′)+R) |O〉〈I|

= J2t[y′0 ← y0⊕ y0Q]K

The third equality is obtained by checking that the equality is true for all values of Q̂ and Q̂′:

Q̂ Q̂′
(

1 + eiπQ̂ + eiπQ̂
′
+ eiπQ̂⊕Q

′
)

2
(

1 + eiπ
̂Q⊕Q′⊕QQ′

)
0 0 4 4
0 1 0 0
1 0 0 0
1 1 0 0

Proof (Proof of Proposition 7). We show that all the rules of −→
TH

hold in SOP[ 12 ].

Checking the rules (ZS1), (ZS2), (HS1), (HS2) and (M) is straightforward using the rule (HH).
We give for instance a check of the rule (ZS1):

...

...


sop

=
1

2

∑
e2iπ

y0+y1
2 y′ |y1, ..., y1〉〈y0, ..., y0|

−→
HH(y′,[y1←y0])

∑
|y0, ..., y0〉〈y0, ..., y0| =

[ ...

...

]sop
(IV): [

1
2

]sop
=

1

2

∑
y

|〉〈| −→
Elim

1 =
[ ]sop

(Z): [
1√
2

]sop
−→
HH

1√
2

∑
e2iπ

y
2 |〉〈| −→

Z

∑
e2iπ

y
2 |〉〈| ←−

HH

[ ]sop

The two rules (BA1) and (BA2) are fairly easy to check, once one realises that

[ ]sop
−→
HH∑

|y0⊕y1〉〈y0, y1|: 
...

...


sop

−→
HH

1

2

∑
e2iπ

y1+...+yn+y0
2 y′ |y1, ..., yn〉〈y0, ..., y0|

−→
HH(y′,[y0←y1⊕...⊕yn])

∑
|y1, ..., yn〉〈y1⊕...⊕yn, ..., y1⊕...⊕yn| ←−

HH

 ...

...


sop


...

...


sop

−→
HH

1

2

∑
e
2iπ
(
y1...ymy

′
2 +

x1+...+xn+y′
2 y′′

)
|y1, ..., ym〉〈x1, ...xn|

−→
HH(y′′,[y′←x1⊕...⊕xn])

∑
e2iπ( y1...ymx12 +...+

y1...ymxn
2 ) |y1, ..., ym〉〈x1, ...xn|

←−
HH

 ...

...


sop
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(O): ¬

sop

−→
HH

2
∑

e2iπ( 1
2y0y2y3+

1
2y0y3+

1
2y1y2y3) |y0, y1〉〈y2|

¬

sop

−→
HH

∑
e2iπ( 1

2y0y1+
1
2y2y3y4+

1
2y0y1y4) |y0, y3〉〈y4|

−→
HHnl(y1,y2)

2
∑

e2iπ( 1
2y0y1+

1
2y0y1y4+

1
2y1y3y4) |y0, y3〉〈y4|

(&): 

sop

−→
HH

∑
e2iπ( 1

2y0y1+
1
2y0y2y3) |y1〉〈y2, y3| −→

HH(y0,[y1←y2y3])
2
∑
|y2y3〉〈y2, y3|

 ¬

¬ ¬

1
4



sop

−→
HH

1

4

∑
e2iπ( 1

2y0+
1
2y8y1y7+

1
2y1+

1
2y1y3y4+

1
2y0y1y2+

1
2y0y2)
|y0〉〈1⊕y4, 1⊕y7|

−→
HHnl(y8,y2)

1

2

∑
e2iπ( 1

2y0y1y8+
1
2y0+

1
2y8y1y7+

1
2y1+

1
2y1y3y4+

1
2y0y8) |y0〉〈1⊕y4, 1⊕y7|

−→
ket/bra([y4←y4⊕1])
ket/bra([y7←y7⊕1])

1

2

∑
e2iπ( 1

2y0y1y8+
1
2y0+

1
2y8y1y7+

1
2y8y1+

1
2y1+

1
2y1y3y4+

1
2y1y3+

1
2y0y8)
|y0〉〈y4, y7|

−→
HHnl(y8,y3)

∑
e2iπ( 1

2y0y1y8+
1
2y0+

1
2y8y1y4y7+

1
2y1+

1
2y8y1+

1
2y0y8) |y0〉〈y4, y7|

−→
HHgen(y1,[y0←y4y7y8⊕y8⊕1])

∑
e2iπ( 1

2y1+
1
2y8y1+

1
2y8+

1
2 ) |y4y7y8⊕y8⊕1〉〈y4, y7|

−→
HH(y1,[y8←1])

2
∑
|y4y7〉〈y4, y7|

Proof (Proof of Proposition 8). We demonstrate this proposition by showing that:

1.
q
SOP[ 1

2k+1 ]′
y
⊆M(Z[ 12 , e

i π
2k ])

2. For each element x ∈ Z[ 12 , e
i π
2k ], there exists a unique decomposition as x = x1 + ei

π

2k x2 where

x1, x2 ∈ Z[ 12 , e
i π

2k−1 ]

3. There exists a map ψk : M(Z[ 12 , e
i π
2k ]) → M(Z[ 12 , e

i π

2k−1 ]), based on the decomposition, and
such that J�btc�kK = ψk (JtK)

In this case, given t1, t2 ∈ SOP[ 1
2k+1 ]′ such that Jt1K = Jt2K, by 1. we can apply ψk to their

interpretation. By uniqueness of the decomposition 2., ψk(Jt1K) = ψk(Jt2K). Finally, by 3., J�bt1c�kK =
J�bt2c�kK. Let us now prove the previous claims:

1. This point is a simple verification.

2. Let x =

2k−1∑
`=0

α`e
i `π
2k ∈ Z[ 12 , e

i π
2k ]. Obviously, x can be decomposed as

x =

2k−1−1∑
`=0

α2`e
i `π

2k−1 + ei
π

2k

2k−1−1∑
`=0

α2`+1e
i `π

2k−1 = x1 + ei
π

2k x2

15



where x1, x2 ∈ Z[ 12 , e
i π

2k−1 ]. We now need to show that this decomposition is unique. To do

so, let us consider Q[ei
π

2k ] and Q[ei
π

2k−1 ]. These are two fields such that Q[ei
π

2k−1 ] ⊂ Q[ei
π

2k ].

Q[ei
π

2k ] can hence be seen as a vector space over Q[ei
π

2k−1 ]. This vector space is of dimension:

[
Q[ei

π

2k ] : Q[ei
π

2k−1 ]
]

=
[
Q[ei

2π

2k+1 ] : Q[ei
2π

2k ]
]

=

[
Q[ei

2π

2k+1 ] : Q
]

[
Q[ei

2π

2k ] : Q
] =

ϕ(2k+1)

ϕ(2k)
=

2k

2k−1
= 2

where ϕ is Euler’s totient function. The vector space has (1, ei
π

2k ) as a basis. Hence, the above
decomposition is unique.

3. We now need to define ψk. We are going to define it first on scalars, and on the basis (1, ei
π

2k ):

ψk(1) := I2 =

(
1 0
0 1

)
and ψk(ei

π

2k ) := Xk =

(
0 1

ei
π

2k−1 0

)
By linearity, ψk is defined on all elements of Z[ 12 , e

i π
2k ]. We then naturally extend this definition

to any matrix over these elements. Formally: ψk : A + Bei
π

2k 7→ A ⊗ I2 + B ⊗ Xk where
A+Bei

π

2k is the aforementioned decomposition extended to matrices. One can check that ψk
is a homomorphism, i.e. ψk(.+ .) = ψk(.) + ψk(.) and ψk(. ◦ .) = ψk(.) ◦ ψk(.).
It remains to show that J�b.c�kK = ψk (J.K). Since ψk is a homomorphism, it is enough to show

the result on the terms in the decomposed form of Lemma 3. Let t = s
∑
e2iπ

`

2k+1 yi1 ...yiq |O〉〈I|
be such a term.
If ` mod 2 = 0, then JtK ∈M(Z[ 12 , e

i π

2k−1 ]) so ψk(JtK) = JtK⊗ I2 and:

J�btc�kK =
r
s
∑

e2iπ
`/2

2k
yi1 ...yiq |O, y′〉〈I, y′|

z
= JtK⊗ I2.

If ` mod 2 = 1, then:

JtK = sei
π

2k

∑
yi1 ...yiq=1

e2iπ
(`−1)/2

2k |O〉〈I|+ s
∑

yi1 ...yiq=0

|O〉〈I|

so:

ψk(JtK) =

s ∑
yi1 ...yiq=1

e2iπ
(`−1)/2

2k |O〉〈I|

⊗Xk +

s ∑
yi1 ...yiq=0

|O〉〈I|

⊗ I2
and

J�btc�kK = s
∑

e2iπ
yi1

...yiq

2k
((`−1)/2+y′) |O, y′〉

〈
I, y′⊕yi1 ...yiq

∣∣
= s

∑
yi1 ...yiq=1

e2iπ
(`−1)/2+y′

2k |O, y′〉〈I, y′⊕1|+ s
∑

yi1 ...yiq=0

|O, y′〉〈I, y′|

=

s ∑
yi1 ...yiq=1

e2iπ
(`−1)/2

2k |O〉〈I|

⊗Xk +

s ∑
yi1 ...yiq=0

|O〉〈I|

⊗ I2 = ψk(JtK)

Proof (Proof of Proposition 9). Again, we can use the decomposition given in Lemma 3. We can

show that if t = s
∑
e2iπ

`

2k+1 yi1 ...yiq |O〉〈I|, then �btc�k◦(idn⊗
∑
e2iπ

y0
2k+1 |y0〉) ∼

TH
t⊗
∑
e2iπ

y0
2k+1 |y0〉:

If ` mod 2 = 0, then �btc�k = t⊗ id so �btc�k ◦ (idn ⊗
∑
e2iπ

y0
2k+1 |y0〉) ∼

TH
t⊗
∑
e2iπ

y0
2k+1 |y0〉.

If ` mod 2 = 1, then:

�btc�k ◦ (idn ⊗
∑

e2iπ
y0

2k+1 |y0〉)

=
s

2

∑
e
2iπ

(
yi1

...yiq

2k
((`−1)/2+y′)+

y′+yi1 ...yiq+y0

2 y′′+
y0

2k+1

)
|O, y′〉〈I|
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−→
HH(y′′,[y0←y′⊕yi1 ...yiq ])

s
∑

e
2iπ

(
yi1

...yiq

2k
((`−1)/2+y′)+

y′+yi1 ...yiq−2y′yi1 ...yiq
2k+1

)
|O, y′〉〈I|

= s
∑

e
2iπ
(
`
yi1

...yiq

2k
+ y′

2k+1

)
|O, y′〉〈I| = t⊗

∑
e2iπ

y0
2k+1 |y0〉

Now, for an arbitrary t ∈ SOP[ 1
2k+1 ]′, we can do the above inductively on each term in its

decomposition, resulting in �btc�k ◦ (idn ⊗
∑
e2iπ

y0
2k+1 |y0〉) ∼

TH
t⊗
∑
e2iπ

y0
2k+1 |y0〉. Finally:

�d�btc�ke�k = (idm ⊗ 〈0|) ◦ �btc�k ◦ (idn ⊗
∑

e2iπ
y0

2k+1 |y0〉)

∼
TH

(idm ⊗ 〈0|) ◦
(
t⊗
∑

e2iπ
y0

2k+1 |y0〉
)
∼
TH

t
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