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Abstract: Assessing the probability of failure of a structure under seismic loading requires
the simulation of a great number of similar nonlinear computations. A model-order reduc-
tion strategy is proposed for decreasing the computational cost associated to each nonlinear
simulation. In this contribution, the method is illustrated to evaluate the damage evolution
in a primary circuit piping component of a pressurized water reactor, subjected to accidental
seismic input. Piping components are described with a damageable elasto-plastic material
exhibiting a preliminary damage pattern.

1 INTRODUCTION

Fragility curves are one of the main tools for characterizing the resistance of civil engi-
neering structures, such as nuclear facilities, to seismic hazard. These curves describe the
probability that the response of a structure exceeds a given criterion, called “failure cri-
terion”, as a function of the expected seismic loading level. Their computational cost is
expensive as a large number of loading scenarii must be considered to model seismic in-
put variability, but also due to the inherent uncertainties (material parameters, geometry,
modelling errors, etc.) that must be taken into account for reliability assessment. Their
construction therefore falls into the scope of the many-queries problems where the need to
reduce the numerical cost of each simulation is imperative. Another point is that the final
aim of the study is to add a preliminary structural damage as a parameter of those charts.
Decreasing the computational costs of solving large dimensional problems has long been
studied and decreasing the dimension of the solution space has shown to be of great interest.
Among the several existing methods, one finds Model-Order Reduction (MOR) techniques.
Some of them (referred to as a posteriori methods) require beforehand the computation of
a given reduced basis, while others (referred to as a priori methods) consist in building the
reduced basis simultaneously with the computation. The first kind, including among others
the use of Ritz vectors [1] or the Proper Orthogonal Decomposition (POD) [2], has greatly
been studied in [3] where a wide range of reduced basis choices have been examined. In this
last reference, computation time saving and robustness of the basis considered are looked
over. It highlights that the choice of the basis proves to be decisive and when dealing with
numerous computations, finding an ideal reduced basis on which to project the solutions to
these various problems may not be an obvious task. To overcome this difficulty it is rele-
vant to build the reduced basis on-the-fly, as the solver progresses, to optimize the choice of
new modes. Such a priori model-order reduction methods include the Proper Generalized
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Decomposition (PGD) [4] which is used in the present work.
Herein, the focus is on the implementation of a strategy based on a priori model-order

reduction for the calculation of the nonlinear dynamics problem at stake. Among the different
possible approaches, the PGD coupled with the LATIN method [5] is particularly well suited
for solving parameterized problems in nonlinear mechanics in order to build numerical charts
[6]. The LATIN-PGD method is an iterative approach that seeks the solution of a given
problem by building, in a greedy way, a dedicated reduced-order basis. This basis can be
reused and enriched, allowing a good numerical efficiency. It has been applied to solve a wide
range of problems in mechanics (and more recently for earthquake-engineering applications
[7]). Here we develop this method to solve the low-frequency dynamics problem that arises
when applying seismic loading to metallic piping structures with a nonlinear behaviour while
taking into account their possibly pre-damaged state.

2 DYNAMIC EQUATIONS

The spatial domain on which the problem is written is denoted Ω. On that body of
density ρ, body forces fd and surface forces Fd are applied on Ω and on ∂Ω2 respectively
while imposed displacements ud are applied on ∂Ω1 as described in Fig. 1.

Figure 1: Reference problem on the domain Ω

Let us then define the three sets defining admissibility :

• U =

{
u | ε(u) =

1

2

(
∇ u+T ∇ u

)
, u̇|t=0 = 0, u|t=0 = 0 in Ω,

u = ud on ∂Ω1 and u̇ = u̇d on ∂Ω1} ,

• U0 =

{
u | ε(u) =

1

2

(
∇ u+T ∇ u

)
, u̇|t=0 = 0, u|t=0 = 0 in Ω,

u = 0 on ∂Ω1 and u̇ = 0 on ∂Ω1} ,

• S = {σ | ∇ · σ + fd = ρü in Ω and σ n = Fd on ∂Ω2},

U (respectively U0) is the kinematically admissible (respectively to zero) displacements set
and S is the dynamically admissible stress set. σ is Cauchy’s stress tensor while ε is the strain
tensor. One then needs to find admissible displacement and stress fields s = (u,σ) ∈ U ×S
that also satisfy the constitutive relations.

The weak formulation of the dynamic equilibrium then reads

−
∫

Ω×I
σ : ε(u∗)dΩdt+

∫
Ω×I

fd ·u∗dΩdt+

∫
∂Ω×I

Fd ·u∗dSdt =

∫
Ω×I

ρ ü ·u∗dΩdt ∀u∗ ∈ U0. (1)
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In addition to this dynamic equation, the material behaviour of the structure is described through
nonlinear equations which motivates the methodology introduced in this work.

3 DUCTILE DAMAGE MODEL INCLUDING CRACK CLOSURE EFFECT

The damage evolution in the structure is governed by a plastic model [8] with linear kinematic
and isotropic hardening along with isotropic damage contribution [9]. In order to account for
crack-closure effect, an effective stress tensor σ̃ [10] is introduced to read

σ̃ =
σd

1−D
+

[
〈σH〉
1−D

− 〈−σH〉
]

1, (2)

with σd the deviatoric part of Cauchy’s stress σ and σH its hydrostatic part, D the damage variable,
1 the identity tensor and 〈�〉 = max (�, 0) defining the positive part. Doing so leads to Hooke’s
relation between stress and elastic strain reading

σ̃ = K : εe (3)

with K the Hooke’s tensor. Thus, the damage variable is no more explicitly apparent in the elastic
constitutive relation.

When the solicitation is high, some non reversibilities appear and plastic laws as well as new
variables are required. The yield function fp(σ) describes the elastic domain. When the stress is
small enough for the function to be negative then the material follows an elastic behaviour but
when the yield function increases to the point that it reaches zero, non reversibilities appear and
plasticity laws become necessary. The plasticity yield function fp verifies

fp ≤ 0, (4)

and is written using von Mises equivalent stress J2 (�) as follows

fp = J2

(
σ

1−D
−X

)
− σy −R (5)

with σy the yield stress, R the isotropic hardening variable and X the kinematic hardening tensor.
The model chosen to describe those irreversibilities, following the lines of [8], involves both

kinematic and isotropic hardening. The elastic strain tensor reads εe = ε − εp with εp being the
plastic strain. The plasticity level is described by an internal variable called the cumulative plastic
strain p which is a strictly increasing quantity. State equations relative to linear hardening read{

R = hp,

X = 2
3Cα

(6)

with h the rate at which the isotropic hardening increases, C a material coefficient and α the
kinematics internal variable.

Lemaitre’s damage evolution law reads as a function of the elastic energy density Y defined as

Y =
1

2
εe : K : εe = Rν

J2 (σ̃)2

2E
, (7)

where the triaxiality function Rν = 2
3 (1 + ν) + 3 (1− 2ν) 〈 σ̃H

J2(σ̃)〉
2 is introduced.

In order to predict the temporal evolution of these quantities, evolution laws are needed. Plas-
ticity evolution laws are derived using normality rule, leading toε̇

p = ṗ3
2

(σ̃−X)d
J2(σ̃−X) ,

α̇ = ṗ (1−D)
[

3
2

(σ̃−X)d
J2(σ̃−X)

]
.

(8)
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As for the damage variable, the evolution is written as

Ḋ = ṗ

(
Y

S

)s
, if Ws > WD, (9)

with Ws the so-called corrected stored energy [9], WD a given energy threshold, s and S material
parameters. This set of equations allows to describe finely the damage state evolution of the
structure but the resulting problem is nonlinear and involves a large number of degrees of freedom.

4 THE LATIN-PGD

Using the finite element method, the mechanical problem gives a detailed description of the
evolution of the quantities of interest but its computation requires solving nonlinear equations at
each Gauss point at each given time step. That leads to a high computational cost that could be
driven down by using model-order reduction techniques.

4.1 The PGD method

For solving linear problems, the idea of the PGD technique is to look for the solution as the sum
of products of single-variable functions. Thus, a displacement field u is approximated by uN (x, t)
reading

u(x, t) ≈ uN (x, t) =
N∑
i=1

ui(x)λi(t). (10)

The reduced basis {ui} is not a priori known and is built during the computation using a greedy
algorithm. New modes are added on the fly. In order to perform a PGD, the used greedy algorithm
requires that one solves a linear space-time problem. Hence having a method turning the nonlinear
problem into solving linear equations on such a domain is mandatory.

4.2 The LATIN solver

The LATIN method, first introduced in [11] has been singled out as it is an iterative non
incremental solver that allows seeking a solution on the entire space-time domain while some of
the computations involve linear equations. Each LATIN iteration is decomposed in so-called local
and global stages. At the local stage, the nonlinear part of the constitutive relations is solved at
each Gauss point and at the global stage, admissibility is imposed on the whole time-space domain
leading to a linear problem. The PGD can be used for an efficient computation of the solution
at the linear stage. Those solutions belong respectively to the manifold Γ gathering solutions of
the nonlinear equations and the manifold Ad gathering solutions of the linear equations. The
final solution sexact, which is naturally found at the intersection of these two manifolds, is thought
alternatively in both spaces Ad and Γ involving two search directions H+ and H− linking the
manifolds through Eq. (11),{(

σn+1 − σ̂n+1/2

)
−H−

(
εn+1 − ε̂n+1/2

)
= 0,(

σ̂n+1/2 − σn
)

+ H+
(
ε̂n+1/2 − εn

)
= 0.

(11)

This iterative scheme can be sketched by Fig. 2 where ŝn+1/2 is the solution belonging to Γ and

sn+1 is a solution of Ad, both computed at the (n+ 1)th stage of the method.
The solution can be initialized to a kinematically and dynamically admissible elastic solution.

Then one loops over finding alternatively a solution in Γ and in Ad until a stopping criterion is
reached. Such a criterion is satisfied when an error indicator

η2 =
‖ŝn+1/2 − sn+1‖2

1/2‖sn+1‖2 + 1/2‖ŝn+1/2‖2
, (12)
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Figure 2: Working principle of the LATIN method, modified from [11]

based on the distance between two consecutive solutions, is lower than a chosen threshold. The
norm ‖s‖ is defined as

‖s‖2 =

∫
Ω×I

ε : K : ε dΩdt+

∫
Ω×I

σ : K−1 : σ dΩdt. (13)

Such a methodology has recently been suggested for a dynamic resolution [7] where the material is
considered to be described by a visco-plastic behaviour without considering damage evolution.

4.2.1 The global stage

The global stage consists in finding a solution inAd which means solving the dynamic equilibrium
defined by Eq. (1). Subtracting that equation written in two successive steps of the LATIN method
gives the admissibiblity equation written in corrective terms reading

−
∫

Ω×I
∆σ : ε(u∗)dΩdt =

∫
Ω×I

ρ∆ü · u∗dΩdt ∀u∗ ∈ U0, (14)

with ∆� = �n+1 −�n.
To solve that equation the descending search direction given by Eq. (11) is injected in the latter,

leading to,

∫
Ω×I

H− : ε(∆u) :ε(u∗)dΩdt+

∫
Ω×I

ρ∆ü · u∗dΩdt

=

∫
Ω×I

[(
σn − σ̂n+1/2

)
−H− :

(
εn − ˆεn+1/2

)]
︸ ︷︷ ︸

−f̂

: ε(u∗)dΩdt ∀u∗ ∈ U0.
(15)

One may notice that terms in the second hand f̂ of that equation are already known quantities.
The displacement field is the only unknown.

Because the global stage consists in solving linear equations over the whole time-space domain,
a greedy algorithm can advantageously be set up in order to find the solution under a PGD form.

To do so, the PGD decomposition �(x, t) =
∑N

i=1 �
i
(x)λi(t) of the displacement field is injected

into the previous equation to compute the corrections, N being the number of PGD modes used
to describe the solution.

4.2.2 The local stage

The local stage consists in solving the local and possibly nonlinear equations of the problem.
That means finding ŝn+1/2 ∈ Γ knowing sn ∈ Ad. The ascendant search direction is chosen vertical,
i.e. ε̂n+1/2 = εn. Technically, the local stage consists in a radial feedback algorithm to compute
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the plastic and damage evolution of the structure while taking into account normality law and the
von Mises criterion defined by Eq. (4).

5 NUMERICAL RESULTS

In order to illustrate the method, two cases are investigated. First the dynamic aspects of the
problem are exposed with a 3D beam under flexion loading. Then a pre-damaged 3D plate with
a hole is investigated with various initial damage states. Both geometries are described in Fig. 3
and their dimensions are summarized in Table 1.

(a) Geometry of the beam (b) Geometry of the plate

Figure 3: Two test cases geometries

Table 1: Dimensions of the geometries

Geometry L l H Umax
d R

Plate 60 mm 20 mm 2 mm 2 mm 1 mm
Beam 40 mm 8 mm 8 mm 5 mm -

The material parameters are given in Table 2.

Table 2: Material parameters

Name Parameters

Young’s modulus E = 200 GPa
Poisson’s ratio ν = 0.3

Kinematic hardening modulus C = 2.21× 104 MPa
Yield stress σy = 200 MPa

Isotropic hardening ratio h = 0 MPa
Damage law exponent s = 2

Parameter for damage evolution S = 0.6 MPa
Density ρ = 7900 kg/m3

Damage threshold energy WD = 0 Jm3/kg

5.1 Dynamic behaviour

A cantilever beam loaded by an imposed vertical displacement Ud at its end, as shown in Fig.
3a, is studied. The beam is submitted to a triangular load for the first half of the simulation then
the displacement at the end of the beam is kept equal to zero for the second half. From an initial
undamaged state, the damage increases along the beam. The damage maps at t = 2.5× 10−4 s,
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t = 6× 10−4 s and t = 8× 10−4 s are presented in Fig. 4a, 4b and 4c respectively. It can be noted
that the first instant corresponds to the maximum amplitude of the external perturbation while
the two other instants of interest are posterior to the external load, as shown in Fig. 4d.

(a) t = 2.5× 10−4 s (b) t = 6× 10−4 s (c) t = 8× 10−4 s

0 0.2 0.4 0.6 0.8 1

Time (s) 10 -3

0

1

2

3

4
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d
in

g
 U

d
 (

m
m

)

(d) Loading

Figure 4: Evolution of the damage map in the beam

One may notice that, even though the last two showcased results (Fig. 4b and 4b) are taken when
there is no more external loading, the damage map keeps on progressing. This evolution is therefore
only due to inertial forces because waves propagate through the structure as observed in Fig. 4b
and Fig. 4c.

The convergence of the LATIN-PGD implementation leading to this result is plotted in Fig.
5 which shows the evolution of the error indicator η with respect to the number of PGD modes.
It may be noted that the number of modes is rather large at convergence. Indeed, currently the
global stage of the method only consists in adding a PGD mode but a more efficient strategy would
be to first update the temporal modes associated with the existing spatial modes and only add a
supplementary PGD mode if that update did not prove to be effective enough.

0 20 40 60 80 100 120
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rr
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Figure 5: Evolution of the indicator of error for the beam scenario
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5.2 Influence of the initial damage state

As previously stated our long term ambition is the construction of virtual charts in which the
pre-damage is a parameter. To illustrate the role of a pre-damaged zone on the final solution two
simulations with distinct initial damage states have been carried out. The common structure is a
plate shown in Fig. 3a and the loading is a 1 s ramp loading directed along the y-axis. The first
case scenario (illustrated in Fig. 6a, 6b and 6c) shows the structure with a pre-damaged zone below
the hole while the second case scenario (illustrated in Fig. 6d, 6e and 6f) shows the structure with
a pre-damaged zone facing the hole. Only a part of the whole structure is shown as to focus on the
damaged zones, which are of interest.

When observing the damaged maps projected on the deformed structure in Fig. 6, one can see
that damage tends to grow in the surrounding area of the initial damaged zone and near the hole.
In the second case scenario similarly damage increases near the hole and the pre-damaged zone
first. But a coalescence arises between those two zones. A significant influence of pre-damage zones
is therefore observed.

(a) 1st scenario, t = 0 s (b) 1st scenario, t = 0.5 s (c) 1st scenario, t = 1 s

(d) 2nd scenario, t = 0 s (e) 2nd scenario, t = 0.5 s (f) 2nd scenario, t = 1 s

Figure 6: Evolution of the damage map in the plate

As it has been done for the plate, the convergence of the method is plotted in Fig. 7 which shows
the evolution of the error indicator η while the number of PGD modes increases. The previous
remark about the number of modes at convergence remains valid as a great number of modes is
needed here too.
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Figure 7: Evolution of the indicator of error for the plate scenario

A few other cases have been implemented showing similar convergence curves, proving the
methodology robust enough to investigate a vast variety of scenarii.

6 CONCLUSIONS

The LATIN-PGD framework has been presented for damageable materials in dynamics. Pre-
dicting the damage evolution of a plastic structure under a dynamic loading is possible and the
computation of the solution gives access to a PGD basis. The next step will be to implement the
update strategy in the global stage in order to be able to take advantage of previously computed
spatial modes. The LATIN-PGD methodology will then provide a favorable framework for the
computation of fragility curves where the seismic performances of quasi-identical structures have
to be computed for a family of similar inputs defining the seismic risk. Both initialization of the
solution and re-use of reduced order PGD basis enable one to take full advantage of the possible
redundancy contained in those virtual charts.
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[5] P. Ladevèze. Nonlinear computational structural mechanics: new approaches and non-
incremental methods of calculation. Mechanical engineering series. Springer, New York, 1999.

http://www.institut-seism.fr
http://www.narsis.eu


10
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