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On the links between observed and theoretical
convergence rates for Schwarz waveform
relaxation algorithm for the time-dependent
problems

Sophie Thery

Abstract In the framework of linear problems, a usual approach to study the conver-
gence of Schwarz algorithms is to calculate the convergence rate in the frequency
domain. However, for time-dependent problems, this tool provides results not fully
representative of the observed behaviour of the algorithm. In this article we high-
light differences between the theoretical convergence rate d and the convergence
observed in the physical space-time domain. We also explain how the theoretical
convergence rate can be used to provide bounds to the observed convergence rate
dobs. For problems defined on time windows of finite size, we recall that the bounds
usually considered to study the convergence are empirical estimates albeit robust.
In conclusion of this paper, numerical experiments are carried out to illustrate the
relevance of the theoretical analysis.

1 Context

We study the application of Schwarz waveform relaxation algorithm for the time-
dependent problem to a linearmultiphysics problem on two non-overlapping physical
domains Ω1 and Ω2:
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2 Sophie Thery
mCD 9 (G, C) − A 9D 9 (G, C) = �9 (G, C) on Ω 9×]0, ) [

B 9D 9 (G, C) = � 9 (G, C) on mΩext
9
×]0, ) [

D 9 (G, 0) = D 9 ,0 (G) in Ω 9
(1a){

C1,1D1 |Γ (C) = C1,2D2 |Γ (C) on [0, ) [
C2,2D2 |Γ (C) = C2,1D1 |Γ (C) on [0, ) [ (1b)

where ) can be a finite or infinite time. The Schwarz waveform relaxation algorithm
is applied on problem (1a) with interface conditions (1b). For given first guess D0

9
|Γ (C)

on the interface Γ, the state of the algorithm is given at each iteration = ∈ N by (2).
We suppose here the well-posedness of the initial problem (1) and of the algorithm
(2). This means there exist a unique solution to (1) in L2 (0, ) ;L(Ω 9 )) noted D̃ and
there exist a unique D=

9
∈ L2 (0, ) ;L2 (Ω 9 )) for all iterations = 1 . Some results on

the well-posedness of such kind of problems can be found in [1, 2] (for problems on
finite time window) and in a more general framework in [3] (for problems on finite
or infinite time window).


mCD

=
1 (I, C) − A1D

=
1 (G, C) = �1 (G, C) on Ω1 × [0, ) [

B1D=1 (G, C) = �1 (G, C) on mΩext1 × [0, ) [
D=1 (G, 0) = D1,0 (G) in Ω1

C1,1D=1 (G, C) = C1,2D
=−1
2 (G, C) on Γ × [0, ) [

(2a)


mCD

=
2 (G, C) − A2D

=
2 (G, C) = �2 (G, C) on Ω2 × [0, ) [

B2D=2 (G, C) = �2 (G, C) on mΩext2 × [0, ) [
D=2 (G, 0) = D2,0 (G) in Ω2

C2,2D=2 (G, C) = C2,1D
=
1 (G, C) on Γ × [0, ) [

(2b)

From now on we also suppose D=
9
(G) ∈ L2 (]0, ) [) for all G ∈ Ω 9 2. To quantify

and possibly optimize the convergence of algorithm (2), it is relevant to calculate a
convergence rate as dobsA{1,2} ,B{1,2} ,C{{1,2},{1,2}} , 9 ,= =




4=9 


 /


4=−19 


, where 4=9 = D=9 − D̃ |Ω 9

is the error at each iteration =. In the rest of the paper, indicies A,B,C are neglected
to simplify the notation.

Remark 1 We consider from now on thatΩ 9 are one-dimensional domains. Since all
convergence factors are calculated in Fourier space, all results explained here can be
extended to higher space dimensions parallel to the interface3. Also, we consider here
Schwarz algorithms applied to multiphysics problems (for nonoverlapping domains)
but the following results are also valid in the presence of an overlap.

1 For example, for parabolic problemswe need to have� ∈ L2 (0, ) ; L2 (Ω 9 )) and D 9,0 ∈ L2 (Ω 9 )
2 For example, for parabolic problems we need to have D=

9
∈ L2 (0, ) ;H1 (Ω 9 )) , that it satisfied

if � 9 and first guess are regular enouth (see [4])
3 This involves applying Fourier transforms in all directions parallel to the interface. Fourier
transforms on spatial dimensions do not give rise to the problem that we expose here which is
specific to the temporal dimension
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2 Convergence for problems on an infinite time window

We first consider that the simulation is made on an infinite time window, i.e.) = +∞.

Convergence factor in Fourier space: For time-dependent problems, the ob-
served convergence factor cannot be calculated analytically. Thus a usual approach
consists in applying a time Fourier transform to the error system. In the case where
) = +∞ and considering that the error is equal to zero for negative times, the
convergence is determined in the Fourier space by solving the following system:

8l 4̂=1 (G, l) − A14̂
=
1 (I, l) = 0 on Ω1 × R

B14̂=1 (G, l) = 0 on mΩ4GC1 × R
C1,14̂=1 (G, l) = C1,24̂

=−1
2 (G, l) on Γ × R

(3a)


8l4̂=2 (G, l) − A24̂

=
2 (G, l) = 0 on Ω2 × R

B24̂=2 (G, l) = 0 on mΩ4GC2 × R
C2,24̂=2 (G, l) = C2,14̂

=
1 (G, l) on Γ × R

(3b)

Suppose that (3) can be solved for any l ∈ R, then the convergence factor r and
convergence rate d in the Fourier space can be calculated as:

r(l) :=
4̂=
9
|Γ (l)

4̂=−1
9
|Γ (l)

d(l) := |r(l) | (4)

It can be shown that d is independent of the space variable G and of the domain 9 .
Without lack of generality, from now on suppose d is calculate from the errors at the
interface Γ. General methods to study the convergence of Schwarz algorithms can
be found in [5, 6, 7].

Observed convergence factor: From the well-posedness properties of the algo-
rithm, we assume that 4=

9
(G, ·) ∈ L2 (R) for all G ∈ Ω 9 . Then 4̂=9 (G, ·) ∈ L2 (R) and

the following inequality is obviously satisfied:

inf
l∈R

d (l)



4̂=−19 (G, ·)


2 ≤ 


4̂=9 (G, ·)


2 ≤ supl∈R

d (l)



4̂=−19 (G, ·)


2 (5)

Thanks to Parseval’s theorem, we can thus provide the following bounds to the
observed convergence factor:

inf
l∈R

d (l) ≤




4=9 (G, ·)


2


4=−19 (G, ·)


2 =: dobs9 ,= (G) ≤ supl∈R
d (l) . (6)

Thus, if sup
l∈R

d (l) < 1 then algorithm (2) converges in L2 (]0, +∞[) norm :

‖4=
9
(G, ·)‖2 −→

=→∞
0.Moreover, because d given by (4) is the same for all G ∈ Ω 9 , previ-
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ous bounds (5) and (6) are also valid for dobs
9 ,=
:=




4=9 


L2 ( ]0,∞[,L2 (Ω)) /


4=−19 



L2 ( ]0,∞[,L2 (Ω))

.
Finally the theoretical convergence rate d provides bounds for the observed conver-
gence in the L2 (]0,∞[,L2 (Ω 9 )) norms.

Discrete in time problems : Let first assume that we simulate the semi-discrete
problem over an infinite time windowwith a similar time step XC in both subdomains.
The observed numerical error is denoted �=,<

9
(G) with < ∈ N, and can be seen as

the result of a Dirac comb on the continuous error 4=
9
(G, ·):

�
=,<
9
(G) = *=,<

9
(G) − D(G, C<) and �

=, ·
9
(G) = ΔXC4=9 (G, ·)

with * the solution of the discrete problem, ΔXC the Dirac comb of period XC and
4=
9
(G, C) the error on the continuous problem.4 Frequencies higher than c/XC are

not generated by the temporal grid [8]. Applying Shannon theorem leads to restrict
the study of the errors in Fourier space �̂=, ·

9
on an interval �l :=

[
− c
XC
;
c

XC

]
and

�̂
=, ·
9
(G, l) = 4̂=

9
(G, l) for all l ∈ �l . Details of the process can be found in [9].

ThusL2 norm of �̂=, ·
9

can be calculate using result of the continuous case. Parseval’s
theorem can be used to obtain bounds on observed convergence rate in L2 norm:

min
|l | ≤c/XC

d(l) ≤ dobs9 ,= (G) :=




�=, ·9 (G)


2


�=−1, ·9
(G)





2

≤ max
|l | ≤c/XC

d(l) (7)

Consequently, the samebounds apply on convergence rate dobs
9 ,=

inL2 (]0,∞[,L2 (Ω 9 ))
norm.

3 Convergence for problems on a finite time window

Bold notation is used to describe the solution u=
9
and the error e=

9
over a finite win-

dow of time [0, )] with 0 < ) < +∞. We will consider l ∈ �l with �l = R if
we consider a continuous simulation, and �l defined in section 2 if we consider a
discrete problem.

Difficulties expressing error over a finite time window: Applying the Fourier
transform to the windowed signal would lead to search for the solution of an equation
of the type:

8lê=9 (G, l) + A(̂e=9 (G, l)) = −e=9 (G, )) exp(−8l)) (8)

4 Here the discrete solution* (resp. the discrete error �) is obtained by discretizing the continuous
solution D (resp. the continous error 4). The discrete signal optained with a numerical simulation
is an approximation of* depending on the numerical scheme.
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Without more knowledge about the error at time ) , one cannot solve the differ-
ential equation (8), therefore cannot express the error ê=

9
(I, l) according only

to the parameters of the equation. Nevertheless, the error can be expressed by
ê = 4̂ ∗ %̂ [0,) ] (l) where % is the rectangular function on [0, )] and %̂ [0,) ] =
) exp(−8l)/2) sinc(l)/2) The convergence rate for the error e for a given fre-
quency l thus reads:

1(l) =
����� 4̂=+1 |Γ ∗�% [0,) ] (l)
4̂= |Γ ∗�% [0,) ] (l)

����� =
�����
∫
r(\) 4̂= |Γ (\)�% [0,) ] (l − \) 3\∫
4̂= |Γ (\)�% [0,) ] (l − \) 3\

����� (9)

which clearly shows that d and 1 are different functions, except in the exceptional
case where r(l) is a constant. Also, definition (9) supports that function d cannot
be seen as the convergence factor at a given frequency: d(l) ≠ |ê=

9
(l) |/|ê=−1

9
(l) |.

Bound on observed convergence : The bound on the convergence factor given
by (9) is complicated to determined. However it is possible to directly bound the
error :

Theorem 1 (Bound on the L2 norm)


e=9 (G, ·)


2 ≤ (
sup
l∈�l

d(l)
)= 


e09 (G, ·)


2 (10)

wich implies a bound for the =-product on the observed convergence rate:

=

Π
:=1

1>1B9,: (G) ≤
(
sup
l∈�l

d(l)
)=

∀G ∈ Ω 9 (11)

This ensures the convergence of the error for the windowed algorithm as long as
sup
l∈�l

d(l) < 1. This bounds also works for



e=9 




! ( ]0,) [,L2 (Ω 9 ))
.

Proof It is possible to link the convergence of the windowed problem to a cor-
responding infinite-in-time problem. We can bound the L2 norm of error on
the windowed problem by the corresponding error of a inifite in time problem :


e=9 (G, ·)


2 ≤ 


4=9 (G, ·)


2 ≤ (

sup
l∈�l

d(l)
)= 


409 (G, ·)


2 where 409 is any first guess ex-

tended to infinite time. Using the particular extension 40
9
| [0,) ] = e0

9
and 40

9
| ]) ,∞[ = 0

leads to (10). Then combining ‖e=
9
(G, ·)‖2/‖e09 (G, ·)‖2 =

=

Π
:=1

1>1B
9,:
(G) and (10) leads

to (11). �

Remark 2 A bound on the convergence factor given by (9) was already calculated in
[10]. This bound is complicated to calculate and then hardly usable. In this paper,
a global remark on the possible influencing of the time windowing is done. It is
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explained why the method used in [1, 11] needs special conditions and cannot be
applied in a general context 5.

Range of influencing frequencies: For a given problem discretized in time XC
over a time window [0.)], we estimate that in the general framework:

min
c/) ≤ |l | ≤c/XC

d(l) ≤ 1obs9 ,= (G) ≤ max
c/) ≤ |l | ≤c/XC

d(l) (12)

and the interval |l | ∈
[ c
)
,
c

XC

]
is called influencing frequencies. This interval of

frequencies is usually considered for optimizing the convergence rate. As discussed in
section 2, it is justified to consider that c/XC is the maximum frequency. However the
choice of the minimum frequency is justified only for time-independent problems but
is an empirical estimate for time-dependent problems. We can still find justifications
for this choice by considering the definition (9). First, it shows that convergence is
influenced by

∫
d(\)3\ more than by its value at a given frequency l. Moreover,

thanks to the property of %̂(l−\), frequencies such that |l | � c/) have a low impact
on the convergence6. That said, relevance of the minimum influncing frequency c/)
is to be proved.

Remark 3 (minimal frequency for time-independent problem) The frequency lmin
is justified in some cases of time-independent problem. If the conditions on border
of the dimension parallel to the interface (the one where the Fourier transform is
made) are determined, then the corresponding error system is periodic and a Discrete
Fourier Transform (DFT) can be applied (for example see [12]). In our case, we can
apply a Fourier transform on our discretised signal but, for the reasons evoked section
3, we cannot guarantee that |��) (e=+1

9
) (l8) |/|��) (e=9 ) (l8) | is equal to d(l8).

Remark 4 (optimization) Usually the optimisation of the convergence speed is made
by choosing interface conditions C{{1,2}, {1,2}} under such conditions �, such that

inf
C{{1,2},{1,2}} ∈�

max
c/) ≤ |l | ≤c/XC

dC{{1,2},{1,2}} (l). From (12) this guarantee an minimal up-

per bound to the observed convergence rate and consequently a fast convergence of


4=9 


L2 (0,) ,L2 (Ω)) to zero.
4 Numerical illustration

We propose to illustrate the previous properties on the coupling of two diffusion
equations, with Dirichlet-Neumann interface conditions with a non-overlapping in-
terface in G = 0.

5 it requires the determination of the inverse Fourier transform


F−1d

1 which may not exist or can

be hard to calculate
6 for a given l, frequencies such that |l − \ | � c/) are drown in the integration in (9)
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mCD 9 (G, C) − a 9m2GD 9 (G, C) = 0 on Ω 9×]0, ) [

D 9 (G, C) = 0 on mΩext
9
×]0, ) [

D 9 (G, C = 0) = 0 on Ω 9
(13a){

D1 (0, C) = D2 (0, C) on [0, ) [
a2mGD2 (0, C) = a1mGD1 (0, C) on [0, ) [ (13b)

with Ω1 = [ℎ1, 0] and Ω2 = [0, ℎ2]. We simulate the problem via an implicit
finite difference scheme. Schwarz’s algorithm on this problem is performed on 20
iterations, with a time step XC = 1000s and parameters ℎ1 = −50m, ℎ2 = 300m,
a1 = 0.12m2s−1 and a2 = 0.6m2s−1. In figures 1 and 2 we compare the theoretical
convergence rate given in the Fourier domain d(l) with the observed convergence
rate 1>1B

=, 9
and the convergence rate measured on the DFT of the error at the interface

|��) (e=+1
9
) (0, l8) |/|��) (e=9 ) (0, l8) | which can be seen as an approximation of

1(l8). Fisrt guesses are initialised by a random signal which generates a large
frequency spectrum. In these two figures, we find that bounds of the observed
convergence verify the estimate (12) thus also verify theorem 1. The evolution of
the L2 norm of the error is not explicitly given here but it can be deduce from 1>1B

9,=

(middle panel in 1 and 2).As expected the convergence observed on a given frequency
l8 does not correspond to the theoretical convergence d(l8) and conversely we tend
towards equality for a window of assumed size infinite. Other examples on such
problems were made in [13] and corroborate the estimate.

Fig. 1 For a finite time windowwith) = 200XC . Left panel: theoretical convergence rate d(l) , in-
fluencing frequencies are given by vertical lines and grey zones give the reached values of 1obs

9,=
. The

observed convergence factor 1obs
9,=

is given in the middle panel as a function of the iteration number
= for the two domains. Right panel: the observed rate |��) (e=1 ) (0, l8) |/ |��) (e=−11 ) (0, l8) |
is compared to the theoretical convergence rate d for the first four iterations.
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Fig. 2 Same as Figure 1 with ) = 105. It is considered to be close to an infinite time window.

5 Conclusion

In the context of a time dependent problem, the convergence rate d calculated in
the Fourier space can only be taken as such on problem considering an infinite time
window. Thanks to Parceval theorem, informations on the algorithm in the physical
space can be obtain on the L2 norm of the error. It is therefore possible to bound
the observed convergence rate dobs with the bounds of the theoretical convergence
d. For a finite time window, we can no longer consider d as a convergence rate for a
given frequency. Yet, bounds on the observed convergence rate are still relevant and
we can precise these bounds by estimating an interval of influencing frequencies.
In a futur work, it may be relevant to determine how to choose optimized interface
conditions using the results on the observed convergence rate.
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