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Abstract
In this paper, we explore the interaction between two monoidal structures: a multiplicative one,
for the encoding of pairing, and an additive one, for the encoding of choice. We propose a PROP
to model computation in this framework, where the choice is parametrized by an algebraic side
effect: the model can support regular tests, probabilistic and non-deterministic branching, as well as
quantum branching, i.e. superposition.

The graphical language comes equipped with a denotational semantics based on linear applications,
and an equational theory. We prove the language to be universal, and the equational theory to be
complete with respect to the semantics.
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1 Introduction

The basic execution flow of a computation is arguably based on three notions: sequences,
tuples and branches. Sequences form the building block of compositionality, tuples are what
makes it possible to consider multiple pieces of information together, while branches allow
the behavior to change depending on the inputs or on the state of the system.

Ranging from (sometimes informal) flow-chart languages [3] to sophisticated structures
such as interaction or proof nets [25, 19], graphical languages are commonly used to represent
the possible control flow of a computation. On a formal level, a graphical language is a
PROP [24], that is, a symmetric, strict monoidal structure (C,>,�) whose objects are of the
form W � · · ·�W . The object W is a “wire”, and any object stands for a bunch of wires.
The monoidal structure formalizes how the bunching of wires behaves.

Two Canonical Monoidal Structures. The monoidal structure of a PROP is very
versatile. On one hand, it can be considered in a multiplicative way, with A�B seen as the
pairing of an element of type A and an element of type B. This approach is one followed
in the design of MLL proof-nets for instance [14]. On the other hand, one can consider
the monoidal structure in an additive way, with � for instance being a co- or a bi-product.
Standard examples are the category FinRel of finite sets and relations, forming an additive
PROP with � being the disjoint union, or the category of finite dimensional vector spaces (or
semi-modules) and linear maps, with � being the cartesian product. From a computational
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Figure 1 Examples of branchings

perspective, an additive monoidal structure can be regarded as the possibility to choose a
computational path upon the state of the input. Depending on the underlying system, this
choice can be regarded as deterministic (if based on Set), non-deterministic (if based on Rel),
probabilistic (if based on a suitable semi-module), etc.

To be able to handle both pairing and branching in a PROP, we cannot uniquely identify
� as being multiplicative additive. We instead need to extend the PROP with two additional
monoidal structures, one for pairing (⊗) and one for branching (⊕).

In this paper, we focus on a framework where these two monoidal structures are available.
Graphical languages for such a setting usually rely on a notion of sheet, or worlds, to handle
general branching [16, 26]. Figure 1a shows for instance how to represent the construction of
the morphism f ⊕ g : A⊕A′ → B ⊕B′ out of f : A→ A′ and g : B → B′. The symbol “⊕”
stands for the “split” of worlds. Such a graphical language therefore comes with two distinct
“splits”: one for the monoidal structure —leaving inside one specific world—, and one for the
coproduct —splitting worlds—. They can be intertwined, as shown in Figure 1b. Another
approach followed by [13] externalizes the two products (tensor product and coproduct) into
the structure of the diagrams themselves, at the price of a less intuitive tensor product and a
form of synchronization constraint.

However, in the state of the art this “splitting-world” understanding has only been carried
for deterministic or probabilistic branching [14, 16, 30]. These existing approaches do not
support more exotic branchings, such as quantum superposition.

Quantum Computation. Conventional wisdom has it that quantum computation is about
quantum data in superposition. In the standard model, the memory holding quantum data
is encapsulated inside a coprocessor accessed through a simple interface: The coprocessor
holds individually addressable registers holding quantum bits, on which one can apply a fixed
set of operations —gates— specified by the interface. If some of these gates can generate
superposition of data, this is kept inside the coprocessor and opaque to the programmer. A
typical interaction with the coprocessor is a purely classical sequence of elementary operations
of the form “Apply gate X to register n; apply gate Y to register m; etc”. Such a sequence of
instructions is usually represented as a quantum circuit. In this model, a quantum program
is then a conventional program building a quantum circuit and sending it as a batch-job to
the coprocessor.

From a semantical perspective, the state of a quantum memory consisting of n quantum
bits is a vector in a 2n-dimensional Hilbert space. A (pure) quantum circuit is a linear,
sequential description of elementary operations describing a linear, unitary map on the state
space.

Coming all the way from Feyman’s diagrams [17], graphical languages are commonly used
for representing quantum processes. Whether directly based on quantum circuits [20, 14, 27, 7]
or stemming from categorical analysis such as the ZX-calculus [12], these formal languages
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are still tied to the quantum coprocessor model in the sense that the only monoidal structure
that can be applied to quantum information is the (multiplicative) Kronecker product. The
only possible branching is based on the (probabilistic) measurement.

Quantum Control Flow. However, one peculiar feature of quantum computation is non-
causal execution paths. Indeed, the Janus-faced quantum computational paradigm features
two seemingly distinct notions of control structure. On the one hand, a quantum program
follows classical control: it is hosted on the conventional computer governing the coprocessor,
and can therefore only enjoy loops, tests and other regular causally ordered sequences of
operations. On the other hand, the lab bench turns out to be more flexible than the rigid
coprocessor model, permitting more elaborate purely quantum computational constructs than
what quantum circuits or ZX-calculus allow.

The archetypal example of a quantum computational behavior hardly attainable within
quantum circuits or ZX-calculus is the Quantum Switch. Consider two quantum bits x and
y and two unitary operations U and V acting on y. The problem consists in generating
the operation that performs UV on y if x is in state |0〉 and V U if it is in state |1〉. As
x can be in superposition, in general the operation is then sending (α |0〉+ β |1〉) ⊗ |y〉 to
α |0〉 ⊗ (UV |y〉) + β |1〉 ⊗ (V U |y〉). It is a purely quantum test: not only can we have values
in superpositions (here, x) but also execution orders. This is in sharp contrast with what
happens within the standard quantum coprocessor model.

Computational models supporting superpositions of execution orders have been studied in
the literature. One strand of research consists in proposing a suitable extension of quantum
circuits [8, 28, 31, 32]. These approaches typically aim at discussing the notion of quantum
channel from a quantum information theoretical standpoint.

Limitation of Current Approaches and Objective of the Paper. Although there is
a finer and finer understanding of superposition of causal orders in the literature, none of the
existing PROPs can support both the quantum switch on complex data built from tensors
and coproducts. We claim in this paper that the same intuition underlying probabilistic
branching can be followed for quantum (and more general) branching. In the conventional
case, 1⊕ 1 is a regular boolean: either “left” (standing e.g. for True) or “right” (standing
e.g. for False). In quantum computation, the sum-type 1⊕ 1 can however be understood
as a sum of vector spaces, giving an alternative interpretation to 1⊕ 1: it can be regarded
as the type of a quantum bit, superposition of True and False. One should note that this
appealing standpoint should be taken cautiously: (Pure) quantum information imposes
strong constraints on the structure of the data in superposition: orthogonality and unit-norm
have to be preserved [1, 29].

The Quantum Switch can then be naturally understood in this framework. Consider for
instance Figure 2, read from left to right: as input, a pair of an element of type A and a
quantum bit. Based on the value of the qubit (True or False), the wire A goes in the upper
or the lower sheet, and is fed with U then V or V then U . Then everything is merged back
together.
Contributions. In this paper, we introduce a new graphical language for quantum
computation, based on compact category with biproduct [23]. This language allows us
to express any process with both pairing and a general notion of algebraic branching,
encompassing deterministic, non-deterministic, probabilistic and quantum branching. We
develop a denotational semantic and an equational theory, and prove its soundness and
completeness with respect to the semantics. As a case-study, we show how the Quantum
Switch can naturally be encoded in the language.
In the paper, the missing proofs can be found in Appendix.
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Figure 2 Quantum Switch with Worlds

2 The Many-Worlds Calculus

Our calculus is parameterized by a commutative semiring (R,+, 0,×, 1). It can be instanti-
ated by the complex numbers (C,+, 0,×, 1) to represent pure quantum computations, the
non-negative real numbers (R≥0,+, 0,×, 1) for probabilistic computations, or the booleans
({False,True},OR,False,AND,True) for non-deterministic computations.

While the goal is to define a graphical language in which each wire can be enabled or
disabled depending on the world in which the computation takes place, we first define the
category CD of diagrams without any "worlds", and will then add the world annotations.

2.1 A First Graphical Language
We define our graphical language within the paradigm of colored PROP [4, 21], meaning that
a diagram will be composed of nodes, or generators, linked to each other through colored
wires, that are allowed to cross each others. Additionally, we assume that our colored PROP
is compact closed and auto-dual, i.e. we allow to bend wires to obtain a Cup (A A) or a Cap
(
A A

).
The generators of our language are described in Figure 3 and are respectively the Identity,

the Swap, the Cup, the Cap, the Plus, the Tensor, the Unit, the n-ary Contraction for n ≥ 0,
and the Scalar for s ranging over the commutative semiring R. Mirrored versions of those
generators are defined as syntactic sugar through the compact closure, as shown for the
mirrored Plus on the right-hand-side of Figure 3. Diagrams are read top-to-bottom: the
top-most wires are the input wires and the bottom-most wires are the output wires. The
labels A, B, etc correspond to the colors of our PROP. There is one color for every type
generated by the syntax1 A,B ::= 1 | A⊕B | A⊗B. As such, the Unit starts a wire of type
1, the Plus combines two wires of type A and B into a wire of type A⊕B, and similarly the
Tensor combines two wires of type A and B into a wire of type A⊗B.

In a colored PROP, an object A is simply a list of colors A = A1� . . .�An (or A = ��
for the empty collection). For example, the Plus is a morphism from A�B to A⊕B. The
choice of the notation � for wires in parallel is uncommon, we use it to put an emphasis on
the fact that contrary to languages like the ZX-calculus, wires that are in parallel are not
necessarily "in tensor with one another". In fact, A�B can be understood semantically as
"either A⊗B or A⊕B".

D2 ◦D1 :=

...

...

...
D2

D1
D1�D2 :=

...

...
D1

...

...
D2

Diagrams are obtained from generators
by composing them in parallel (written �),
or sequentially (written ◦). Sequential com-
position requires the type (and number) of
wires to match. We write CD for the category of diagrams we defined as such.

1 We do not assume any associativity, distributivity, etc, although types that are semantically equivalent
will be made isomorphic through the equational theory.
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Figure 4 A Quantum Bit and the Hadamard Unitary

I Example 1. We consider R = C. While CD lacks the worlds labeling2, we can already
illustrate our language by encoding some basic quantum primitive in it and show how they
operate. In Figure 4 we show the encoding of a quantum bit α |0〉+ β |1〉 and the Hadamard
unitary. In particular, the Plus allows to "build" a new quantum bit from two scalars in
parallel or to "open" a quantum bit to recover its corresponding scalars, the left branch
corresponding to |0〉 and the right branch to |1〉. The meaning of the Contraction is better
seen when applying Hadamard to a quantum bit as we show in Figure 5: it allows us to
duplicate and sum scalars. The rewriting sequence of Figure 5 is made using the equational
theory defined in Section 4, however to correctly define our equational theory, the worlds
labeling are required. So while this specific worlds-free rewriting sequence is sound, many
other similar worlds-free rewriting sequences are unsound.

I Remark 2. Instead of having the Cup and the Cap as generators and defining the mirrored
version of each generator through them, one could proceed the other way around by defining
the Cap as follows, and the Cup in a mirrored way:

:=
A B

A⊗B
:=

A B

A⊕B
1 :=

1 1

2.2 Adding Worlds Labeling
We now label wires of our diagram with sets of worlds w ⊆W from a given a world set W .
For each world a ∈W , wires labeled by a set containing a are said to be "enabled in a", and
the others are said "disabled in a". This allows us to correlate the enabling of wires. Before
making this formal, we illustrate this notion through the following example:

I Example 3. The "controlled not" on quantum bits can be represented by the Figure 6a. The
figure is split into two parts: the control part on the left-hand-side, and the computational
part on the right-hand-side. The idea is that the control part, that uses ⊕, will behave as
an if-then-else and will bind the world a to the case where the control quantum bit is |0〉,
and the worlds b and c to the case where the control quantum bit is |1〉. Lastly, the world ?
appears nowhere in the labels, and corresponds to "we do not evaluate this circuit at all"3.
On the computational part, we apply the identity within the world a, we negate |0〉 into |1〉

2 We call worlds labeling the attribution of multiple worlds to a single wire, as defined in Section 2.2.
3 While not strictly necessary, it is often practical to have a world absent from every wire.
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Figure 5 Applying the Hadamard unitary to a quantum bit

c

c

1 ⊕ 1 : {a, b, c}

1 : {a} 1 : {b, c}

1 ⊕ 1 : {a, b, c}

1 ⊕ 1 : {b, c}

1 : {a}
1 : {b} 1 : {c}

1 ⊕ 1 : {b, c}

1 ⊕ 1 : {a, b, c}1 ⊕ 1 : {a, b, c}

(a) Controlled Not with world set {a, b, c, ?}

{a} � {b}

W = {a, ?} V = {b, ?}
{(a,b),
(a,?)}

W × V = {(a,b),(a,?),(?,b),(?,?)}

{(a,b),
(?,b)}=

(b) Example of Worlds-Agnostic Parallel Composition

Figure 6

within b, and we negate |1〉 into |0〉 within c. The domain and codomain of this labelled
diagram are (1⊕ 1 : {a, b, c})� (1⊕ 1 : {a, b, c}), which we will write (A, `A) with an object
A = (1⊕ 1)�(1⊕ 1) and a labeling function `A : 1 7→ {a, b, c} 2 7→ {a, b, c}. Similarly, the
"controlled not" above can be seen as a diagram DCNOT of CD(A,A) together with a labeling
function `A which labels every wire with a set of worlds.

We now give a formal definition of the concept of worlds:

I Definition 4. Given a set of worlds W , we define the auto-dual compact closed colored
PROP (MWW ,�,��) of many-worlds calculus over W as follows:
Its colors are the pairs (A : w) of colors A of CD and subsets w ⊆ W . We write (A, `A)
for the objects, where A is an object of CD and `A is a labeling function from the colors
composing A to the subsets of W .
Its morphisms f ∈MWW ((A, `A), (B, `B)) are pairs (Df , `f ) of a morphism Df ∈ CD(A,B)
and a labeling function `f from the wires of Df to the subsets of W , satisfying the following
constraints: The label on an input or output wire of color (A : w) must be equal to w, and

w w v
w

w
s

w

w

w v

wtv

w w

w w

∀n ≥ 0, c
w1 wn

w1 t · · · t wn

· · ·

where t denotes disjoint set-theoretic union. The constraints for the mirrored versions are
similar. The sequential composition ◦ and the parallel composition � preserve the labels.

We write [f ]W : A→ B for f = (Df , `f ) ∈MWW ((A, `A), (B, `B)) where `A and `B can
be deduced from `f using the first restriction on labels. We note that when considering
[f ]W : A → B and [g]W : B → C, there is no reason for the labels deduced on B to be the
same, so there is no reason for [g ◦ f ]W : A→ B to be defined. More generally, when building
two diagrams [f ]W and [g]V , there is no reason for the worlds sets W and V to be equal,
but we might still want to be able to compose them with one another.
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W = {a, ?} W = {a, b, c, ?} W = {a, ?} W = {a, ?}
{a} {a, c} {b, c}

{a}

{a}

Figure 7 Canonical labelings in MW∀

I Definition 5. We define the auto-dual compact closed colored PROP (MW∀,�,��) of
many-worlds calculus as follows:
Its colors and objects are the same as the ones of CD.
Its morphisms from A to B are simply morphisms [f ]W : A→ B of MWW for any finite set
W . See Figure 7 for the canonical labelings on the identity, swap, cup and cap. Morphisms
are considered up to renaming of the worlds4.
The parallel composition is given by [f ]W �[g]V := [f−×V � gW×−]W×V where fσ(−) has
the same diagram Df and has for labels `fσ(−)(x) = σ(`f (x)).
The sequential composition is given by [g]V �[g]W := [g(W×−)∩Z ◦ f (−×V )∩Z ]Z where Z ⊆
W × V is the greatest subset such that this composition is well-defined, as explained in the
following example.

I Example 6 (World Agnostic Composition). In Figure 6b, we show the result of the parallel
composition of [f ]{a,?} = idA:{a} and [g]{b,?} = idA:{b} for a color A: the world (a, ?)
corresponds to the left wire being enabled and the right one disabled, the world (?, b) is the
opposite, the world (a, b) is both enabled and the world (?, ?) is both disabled.

Then, in Figure 8 we continue by composing with the Cup over A : {c, ?}. To compute
the composition, we proceed in two steps: first we handle the situation as if it were a parallel
composition, leading to a diagram labelled over W × V ×U , but with multiple contradictory
labels on the wire. Then, we eliminate as few worlds as possible to make those labels
compatible:

We eliminate (a, b, ?) and (a, ?, ?) which are on the left label but not on the bottom one.
We eliminate (?, b, c) and (?, ?, c) which are on the bottom label but not on the left one.
Looking at the right, we eliminate (?, b, ?) and (a, ?, c) for similar reasons.

We eliminated six worlds, with the only remaining ones being Z = {(a, b, c), (?, ?, ?)}.

2.3 Representing Computation
As a motivational example, we may see how this Many-Worlds diagrams can be used to
represent computations expressed in a language that explicitely uses the two compositions ⊗
(through pairs), and ⊕ (through pattern-matching), as in [29]. As this translation is not the
focus of this paper, a lot of technicalities are glossed over.

Syntax of the Language
The language we present here is adapted from [29], where we consider the values and types
together with the enrichment that is linear combinations of terms, but without abstraction

4 More precisely, [(Df , `f )]W = [(Df , σ ◦ `f )]σ(W ) for any σ describing a bijection between W and σ(W ).
Without this quotient, we would not have [f ]W ◦ id = [f ]W .
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Figure 8 Example of Worlds-Agnostic Sequential Composition

nor recursion. The syntax that is used in the language is given as follows, with scalars s
ranging over the commutative semiring R:

(Base types) A,B ::= 1 | A⊕B | A⊗B
(Isos, first-order) α ::= A↔ B

(Values) v ::= 〈〉 | x | injl v | injr v | 〈v1, . . . , vn〉
(Expressions) e ::= v | let 〈x1, . . . , xn〉 = ω 〈x1, . . . , xn〉 in e | e+ e | αe
(Isos) ω ::= {v1 ↔ e1 | . . . | vn ↔ en}
(Terms) t ::= 〈〉 | x | injl t | injr t | 〈t1, . . . , tn〉 |

αt | t+ t | ω t | let 〈x1, . . . , xn〉 = t in t

The language in particular features branching through the injl and injr constructors,
linear combinations of terms and expressions, and crucially isos that have type A↔ B: they
turn a term of type A to a term of type B using pattern-matching. The language comes with
a predicate (not presented here, although it could be given a diagrammatic meaning), used
in the typing rule of isos, to ensure exhaustivity and the non-overlapping character of the
left-hand and right expressions of the clauses, allowing in particular to define unitaries (in
the complex setting). Constraints on the linear combinations may also be used to enforce
probabilistic constraints (i.e. that states are normalised in the quantum setting).

There are two different typing judgements, one for terms `t and one specific for isos `ω.
For a more complete description of the language, we refer the reader to [29]. In the

following, we will use the shorthands ff := injl 〈〉 and tt := injr 〈〉.

I Example 7. In the case where R = C, one can encode the Hadamard gate by:{
ff ↔ 1√

2 (ff + tt)
tt ↔ 1√

2 (ff− tt)

}
: 1⊕ 1↔ 1⊕ 1

In this setting, any quantum circuit can be encoded by an iso.

Encoding into the Many-Worlds
One can encode any term of the language into a Many-Worlds diagram. Given some typing
derivation ξ of a term x1 : A1, . . . , xn : An `t t : B we write LξM for the function that maps
ξ to a diagram in the Many-Worlds Calculus with n input wires of type A1, . . . , An and
one output wire of type B. For the typing derivation ξ of an iso `ω ω : A↔ B, LξM gives a
diagram with one input wire of type A and one output wire of type B.
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′
2, a
′
3, b, b

′}

{a0, a1, a2, a3} {a′0, a′1, a′2, a′3} {b} {b′}

{b} {b′}

{b, b′}

ffxtt x

ytt ff y tt ffy y

{a0, a1, a2, a3} {a′0, a′1, a′2, a′3}

{a0, a1, a2, a3, a
′
0, a
′
1, a
′
2, a
′
3}

(1⊕ 1)⊗ (1⊕ 1) : {a0, a1, a2, a3, a
′
0, a
′
1, a
′
2, a
′
3, b, b

′}

〈tt, x〉 ↔
let y = H x in

1√
2
〈tt, y〉+ 1√

2
〈ff, y〉 〈ff, x〉 ↔

let y = Id x in
1√
2
〈tt, y〉 − 1√

2
〈ff, y〉

H

Figure 9 Representation of the term t from Example 8.

LξM is defined inductively over `t and `ω as shown in appendix in Figure 14, where the worlds
sets are handled by compositions of world-agnostic diagrams.

I Example 8. We can represent the term

t :=
{
〈tt, x〉 ↔ let y = H x in 1√

2 〈tt, y〉+ 1√
2 〈ff, y〉

〈ff, x〉 ↔ let y = Id x in 1√
2 〈tt, y〉 −

1√
2 〈ff, y〉

}
: (1⊕ 1)⊗2 ↔ (1⊕ 1)⊗2

(already given in [29]) as shown in Figure 9. The yellow box stands for the Hadamard gate
(which one can build following Example 7). Each line of this isomorphism corresponds to a
column of the figure. Each columns start by matching the input as 〈tt, x〉 or 〈ff, x〉, then
compute y from x, and then build the output by following the syntax. The world set is
computed by composing each of the blocks of this term, using the world-agnostic composition
of MW∀. It can be seen as a subset of {a, b} × {c, c′} × {0, 1, 2, 3} where {a, b} corresponds
to being on the first or second line of the matching, {c, c′} being on the left or right of the
sum, and {0, 1, 2, 3} being the world set of the Hadamard gate.

2.4 Comparison with Other Graphical Languages
The distinctive feature of the Many-Worlds Calculus is that it graphically puts the tensor
and the biproduct on an equal footing. By comparison, other graphical language for quantum
computing are inherently centered around either one of them. The ZX-calculus [11] and
cousin languages ZW- and ZH-Calculi [2, 22], as well as Duncan’s Tensor-Sum Logic [16],
use the tensor product as the default monoid, while more recent language – particularly
for linear optics [9, 15, 10] – use the biproduct. We have a closer look at each of them in
the following, and show how – at least part of – each language can be encoded naturally in
the Many-Worlds Calculus. Most of them comes equipped with an equational theory. By
completeness of our language (Theorem 11 to follow), all the equations expressible in the
fragments we consider can be derived in our framework.
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2.4.1 ZX-Calculus

 
eiα

1 : {b}1 : {a}

1⊕ 1 : {a, b} 1⊕ 1 : {a, b}

1⊕ 1 : {a, b}

α

The first difference is the restrictions of the ZX-calculus
to computations between qubits, in other words linear
map from C2n 7→ C2m , while our language can encode
any linear map from Cn 7→ Cm. The Tensor generator
allowing the decomposition of C2n into instances of C2

was already present in the scalable extension of the ZX-calculus [5], but the main difference
comes from the Plus (and the Contraction).

Additionally, every ZX-diagram can be encoded in our graphical language. The identity,
swap, cup and cap of the ZX calculus are encoded by the similar generators over the type
1⊕1, the Hadamard gate is encoded as in Figure 4, and the green spider is encoded as shown
on the right. An encoding for the red spider can then be deduced from those. Diagrams are
composed them together with the world-agnostic composition of MW∀.

2.4.2 Tensor-Sum Logic

f g f g

c

c

 

w vThe core difference between their work and ours is the
presence of the contraction in our graphical language. They
instead rely on an enrichment of their category by a sum,
which they represent graphically with boxes. We show on
the right how the morphism f + g would be encoded in both their and our language. More
generally, their boxes correspond to uses of our contraction generator in a "well-bracketed"
way. Another point of difference is their approach to quantum computation, as we do
not assign the same semantics to those superpositions of morphisms. In their approach,
the superposition is a classical construction and corresponds to the measurement and the
classical control flow, while in our approach the superposition is a quantum construction and
corresponds to the quantum control.

2.5 PBS-Calculus

| U

V

|

The PBS Calculus [9] allow one to represent coherent quantum
control by the use of polarising beam splitters (pbs): whenever a
qbit enter a pbs node, depending on the polarity of the qbit it will
either go through or be reflected. By making implicit the target
system, controlled by the optical system represented by the diagram, the PBS-Calculus
allows one to encode the Quantum Switch (depicted on the right). The pbs generator is
related to the ⊕ of the Many-Worlds.

|  

c

c

c

c

The first main difference with our language is that, since the
generators of the PBS-Calculus represent physical components,
any PBS-diagram is by construction physical, while our approch
is more atomic and decomposes physical components into abstract
smaller ones. The second main difference lie in the trace: while
they can allow a particle to pass through a wire at most twice,
in our system, each wire can be used at most once: more formally, their trace is based on the
coproduct while ours is on the tensor product. If we are assured that each wire can only be
used once during the computation, any PBS-diagram can be translated to the Many-Worlds
calculus direclty, with the transformation on the right, where we distinguish the control
system (the part of the diagram connected to s) from the target system (connected to c s)
which is implicit in the PBS-Calculus.
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2.6 LOv-Calculus
In the PBS-Calculus, the qubit in the control system (the one explicitely represented) cannot
be put in arbitrary superpositions of |0〉 and |1〉 during the computation. To allow this
feature, we may add some linear optical components to the language’s generators, and end
up with the LOv-Calculus [10]. In this language, there is no trace and there is a unique
photon traveling the circuit, which relieves us of the previous constraint. There is also no
need for an implicit target system anymore. All wires at the interface between the generators
are of type 1⊕ 1, and parallel wires have disjoint sets of worlds. Each generator can then be
interpreted as follows:

c

c

c

c

cos(θ)

cos(θ)

i sin(θ)

i sin(θ)

 
θ

c

c

c

c

cos(θ)

cos(θ)

i sin(θ)

i sin(θ)

 θ

|  eiϕ ϕ

0  c

2.7 Path-Calculus
The Path-Calculus is another recent graphical language for linear optical circuits [15]. Its
generators correspond directly to a subset of the Many-Worlds’ with  c ,

 c and  rr ; where each wire has type 1 and where
parallel wires are on disjoint sets of worlds. This language is then used as the core for a
more expressive language called QPath, which this time cannot be direclty encoded in our
language, except when restricting the set of generators (specifically to n = 1), in which case

 
|1〉

.

3 Semantics of the Many-Worlds Calculus

Our calculus represent linear operators between finite dimension R-modules (FdMR). In
particular, in the case R = C we use linear operator between finite dimension Hilbert
spaces, which correspond to pure quantum computations. More precisely, we will define
two semantics, a world-dependent semantics J−Ka for every world a ∈ W , which will be a
monoidal functor from MWW to FdMR, and a worlds-agnostic semantics J−K from MW∀
to FdMR.

We start by defining those semantics on the objects. For every object A of CD, we define
its enablings A• as "replacing any number of wire type by •". For example (A�B)• =
{•� •, •�B,A� •, A�B}. Then, for any object (A, `A) of MWW and any world a ∈ W ,
we define (A, `A) ∩ a to be the enabling of A in which every (A : w) with a ∈ w is preserved
and every (A : w) with a /∈ w is replaced by •. For example (A : {a}�B : {b}) ∩ a = A� •.
To each enabling E ∈ A• we associate a R-moduleME as follows:
MA1 �...�An :=MA1 ⊗ · · · ⊗MAn MA⊗B :=MA ⊗MB

M�� := R M• := R M1 := R MA⊕B :=MA ⊕MB

We can then define the semantics J−Ka : MWW → FdMR and J−K : MW∀ → FdMR on
objects as

q
(A, `A))

y
a

:=M(A,`
A

)∩a and JAK :=
⊕
E∈A

•ME.
Then, for the morphisms, we proceed by compositionality for J−Ka, meaning that we

define J−Ka on every generator and compute the semantics of a diagram by decomposing it
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r
w v

z

a
=


Id ∈ FdMR(MA,MA) if a ∈ w\v
Id ∈ FdMR(MB ,MB) if a ∈ v\w

h⊗ h′ 7→ h′ ⊗ h ∈ FdMR(MA⊗B ,MB⊗A) if a ∈ w ∩ v
(1) ∈ FdMR(R,R) otherwise

r

w

z

a
=
{
h⊗ h′ 7→ 〈h|h′〉 ∈ FdMR(MA⊗A, R) if a ∈ w

(1) ∈ FdMR(R,R) otherwise

and the (conjugate)
transposed operator
for the Cap

t

s
w

w

|

a

=
{
s · Id ∈ FdMR(MA,MA) if a ∈ w
(1) ∈ FdMR(R,R) otherwise

t
w v

wtv

|

a

=



(
Id
0

)
∈ FdMR(MA⊕B ,MA) if a ∈ w(

0
Id

)
∈ FdMR(MA⊕B ,MB) if a ∈ v

(1) ∈ FdMR(R,R) otherwise

and the (conjugate)
transposed operator
for the mirrored
Plus

Figure 10 Semantics of the Generators of MWW in a World a ∈W .

with Jg ◦ fKa := JgKa ◦ JfKa and Jf � gKa := JfKa⊗ JgKa. The semantics of most generators is
given in Figure 10; for all the other generators their semantics is simply the identity operator.

The worlds-agnostic semantics is defined from the world-dependent semantics, as follows.
Consider f ∈MWW ((A, `A), (B, `B)), we define:

J[f ]W K :=


∑
a∈W

(A,`
A

)∩a=A′

(B,`
B

)∩a=B′

JfKa


A
′
∈A
•
,B
′∈B•

∈ FdMR

 ⊕
E∈A

•

ME,
⊕
F∈B•

MB


For example, the worlds-agnostic semantics of the Tensor and the Plus are simply the

collection of all their world-dependent semantics assembled into a single linear operator:

u

ww
v

A : {a} B : {a}

A⊗B : {a}

World set: {a, ?}}

��
~ =

A�B A� • •�B •� •( )
A⊗B Id 0 0 0
• 0 0 0 1

u

ww
v

A : {a} B : {b}

A⊕ B : {a, b}

World set: {a, b, ?}}

��
~ =

A�B A� • •�B •� •( )
A⊕B 0

0
Id
0

0
Id

0
0

• 0 0 0 1

The worlds-agnostic semantics is functorial (see Appendix C) and is universal in the following
sense:

I Theorem 9 (Universality). For every A,B objects of CD, and for every linear operator
in U ∈ FdMR

(⊕
E∈A

• HE,
⊕
F∈B• HB

)
, there exists a world set W , and a morphism

[f ]W ∈MW∀(A,B) such that JfK = U . J
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c
≡W

cc
≡W

c
· · ·· · · · · ·· · ·

w1 wn w1 wn

tnwitnwi tnwi tnwi

w1 wn w1 wn

c

c c
≡W

· · · · · ·

tnwi tnvi

w1 t v1 wn t vn w1 t v1 wn t vn

tnwi tnvi

c

s

s s

c

· · · · · ·

tnwi tnwi

w1 w1 wnwn

≡W

c

c c

≡W
· · · · · ·

v1 vk

w1 w1wn wn

v1 vk

c

c c

· · · · · ·

≡W

w w w w

ww w w

s× t

s t

w w

w w ww

≡W

≡W

w w

w w

≡W

w w

w w

≡W

tnwi

tnwi tnwi

c

c

· · ·

tnwi

≡W

w w

w w

1 ≡W

w w

w w

s

t
s× t≡Ww

c
· · ·

w1 w`wk wn

tnwi

c c
· · · · · ·

≡W

tnwi

c

w1 w`wk wn

· · · · · · · · ·

w t v

c

w v

w t v

c

vw

≡W

Worlds annotations on wires are
ommited when uniquely determ-
ined. We assume that:
w ∩ v = ∅
wi ∩ wj = ∅ whenever i 6= j
vi ∩ vj = ∅ whenever i 6= j

w1

wn

w
n ∩
v
k

w
1 ∩
v

1

≡W

w v w v

vw w v

Mirrored up-down versions of
those equations can be deduced
from the compact closure.
Additional equations for the ⊕ and
the scalars are provided in the next
Figure.

c

w

w

≡W

w

w

Figure 11 Equations with a Fixed World Set W

4 The Equational Theory

Similarly to how our semantics is defined in two steps, the equational theory is also defined
in two steps:
1. A set of equations within MWW for a fixed set of worlds W , which will not be complete,

but will be sound for J−Ka for every a ∈W , hence sound for J−K too. We write ≡W for the
induced congruence5 over MWW . We list those equations in Figure 11. Quite notably,
the last two rows describe the fact that the contraction is a natural transformation.

2. Five additional equations with side effects on the set of worlds, which will be sound and
complete for J−K (but not for J−Ka). We write ≡ for the induced equivalence relation,
which is a congruence over MW∀. We have: One equation that allows us to rename the
worlds: for every morphism (Df , `f ) of MWW , and for every bijection i : W → V , we
have [(Df , `f )]W ≡ [(Df , i ◦ `f )]V ; Two equations allowing the annihilation (or creation,
when looking at them from right to left) of worlds due to coproducts or scalars (first row
of Figure 12); Two equations allowing the splitting (or merging, when looking at them
from right to left) of worlds due to coproducts or scalars (second row of Figure 12).

I Proposition 10 (Soundness). For f a morphism of MWW and g of MWV , whenever

5 In other words the smallest equivalence relation satisfying those equations and such that f ≡W f ′ =⇒
∀g, h, l, g ◦ (f �h) ◦ k ≡W g ◦ (f ′�h) ◦ k.
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0F

· · ·

· · ·

w
0F\w

· · ·

· · ·

∅
≡ F

· · ·

· · ·

w v

w′ v′
F\z

· · ·

· · ·

W WW\w W\z

≡

Worlds sets

w
∩
w
′

v
∩
v
′

Worlds sets

w′

w′′
w′

w′′
s t
c

c

W W(W\w) t w′ t w′′
Worlds sets Worlds sets

(W\w) t w′ t w′′

s+ tF

· · ·

· · ·

w
≡

· · ·

· · ·

G F

· · ·

· · ·

w
≡

· · ·

· · ·

G

Where:
w = {a1, . . . , an}
w′ = {a′1, . . . , a′n}
w′′ = {a′′1 , . . . , a′′n}
G is F where every in-
stance of the world ai has
been replaced by both a′i
and a′′i .

Where:
z = (w\w′) ∪ (w′\w)
∪(v\v′) ∪ (v′\v)

F\w (resp. F\z) is F

where every world of w
(resp. z) has been removed
from the labels.

Figure 12 Equations with Side-Effects on World Sets

[f ]W ≡ [g]V we have J[f ]W K = J[g]V K. Additionally if W = V , whenever f ≡W g we have
∀a ∈W, JfKa = JgKa.

I Theorem 11 (Completeness). For every [f ]W : A → B and [g]V : A → B, J[f ]W K =
J[g]V K ⇐⇒ [f ]W ≡ [g]V J

The soundness can be proved by a case-by-case analysis on every equation. The complete-
ness theorem follows from the existence of a normal form for ≡, as described in Appendix E.1.

I Example 12 (The Quantum Switch). Similarly to the "controlled not" in Example 3 where
a quantum bit controls whether the identity or a negation is applied to some data, one can
consider the case where a quantum bit control whether U ◦ V or V ◦ U is applied to some
data (for U and V two quantum operators on the same type A).

On the rightmost part of Figure 13, one can see the most direct implementation of this
"quantum switch", but this implementation uses two copies of U and V . On the leftmost
part of the figure, we show another implementation which only relies on one copy of each,
and both can be rewritten into another using the equational theory.

In those diagrams, the world set is W = w t v and we rely on violet, blue and red wires
to indicate respectively worlds labels w t v, w and v. Each figure has a control side which
operates on a quantum bit (type 1 ⊕ 1) and binds the world w to |0〉 and the world v to
|1〉; and a computational side which operates on some data of an arbitrary type A, on which
could be applied U and/or V which stand for two morphisms of MWW (A : W,A : W ).
The first rewriting step relies on the two lemmas
on the right, both of which being deducible
from the equational theory (see Appendix B).
The second rewriting step is simply using the
properties of a compact closed category.

c

U
≡W

c

U\v U\w c

c
≡W
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w t v

w

v

Legend

c

c

c c

c c

U V

1⊕ 1 : w t v

A : w t v

1⊕ 1 : w t v

A : w t v

≡wtv

c

c

U\v

V \v

1⊕ 1 : w t v

A : w t v

1⊕ 1 : w t v

A : w t v

U\w

V \w

≡wtv

c

c

U\v V \w

1⊕ 1 : w t v

A : w t v

1⊕ 1 : w t v

A : w t v

U\wV \v

Figure 13 Rewriting the Quantum Switch

5 Conclusion

We introduced a new sound and complete graphical language based on compact categories
with biproducts, along with an equational theory and a worlds system, helping us to build a
denotational semantics of our language.

This language is a first step towards the unification of languages based on the tensor
⊗ and those based on the biproduct ⊕. This allows us to reason about both systems in
parallel, and superposition of executions, as shown by the encoding of the Quantum Switch
in Example 12 and the translation from term of the language in Section 2.3.

Following this translation, a natural development of the Many-Worlds calculus consists in
accomodating function abstraction and recursion in the language. The question of a complete
equational theory for the language on mixed states (e.g. via the discard construction [6]) is
also left open.

Finally, while our language allows for quantum control, it does not entirely capture
another language that aims at formalizing quantum control, namely the PBS-Calculus [9].
How and in which context could we capture the PBS-Calculus is left for future work.
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A Encoding the Iso Language with the Many Worlds Calculus

For simplicity of the encoding, we give the following syntactic sugar: :=
... ...

Lx : A ` x : AM = A L` 〈〉 : 1M = 1 L

ξ

∆ ` t : A
∆ ` αt : AM =

α

LξM
...∆

L

ξ

∆ ` t : A
∆ ` injr t : A⊕BM = LξM

...∆

c L

ξ

∆ ` t : B
∆ ` injl t : A⊕BM = LξM

...∆

c

L

ξ1
∆1 ` t1 : A

ξ2
∆2 ` t2 : B

∆1,∆2 ` 〈t1, t2〉 : A⊗B M = Lξ1M
...∆1

Lξ2M
...∆2

L

ξ1
∆ ` t1 : A

ξ2
∆ ` t2 : A

∆ ` t1 + t2 : A M =

c c...∆

c
Lξ1M
...

Lξ2M
...

L

ξ1
∆1 ` t1 : A1 ⊗ · · · ⊗An

ξ2
x1 : A1, . . . , xn : An,∆2 ` t2 : B

∆1,∆2 ` let 〈x1, . . . , xn〉 = t1 in t2 : B M = Lξ1M
...∆1

Lξ2M

...∆2

...

L

ξi
∆i ` vi : A

ξ′i
∆i ` ei : B

` {v1 ↔ e1 | . . . | vn ↔ en} : A↔ BM =

A

c

Lξ′1M Lξ′nM

c

Lξ1M† LξnM†...

B

......

L

ξ1
`ω ω : A↔ B

ξ2
∆ ` t : A

∆ ` ω t : B M =
Lξ1M

Lξ2M
...∆

Figure 14 Inductive translation of terms from Section 2.3 into Many-Worlds diagrams.
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Figure 15 Alternative Presentation of the Equational Theory with a Fixed World Set W

B Induced Equations

In Figure 11, we presented a set of equation reasonably small, by having equations para-
meterized by the arity of the contraction, and by omitting a lot of useful equations that
can be deduced from them. In Figure 15, we take the opposite approach: we give equations
using the contractions of arity zero and two (which are sufficient to generate all the other
contractions) and we provide additional axioms that follows from Lemma 13 and Lemma 14.

Note that this is only an alternative presentation to the equational theory for ≡W , the
axioms of Figure 12 are still required for ≡.

I Lemma 13. Whenever wi are disjoints sets of worlds, we have the following:

c
≡W

· · · · · ·

w1 wn

w1 w1wn wn

w1 wn

c
· · · · · ·c c

≡W
· · ·

w1 wn

w1 wn

c c

· · ·

w
n ∩
w
n

w
1 ∩
w

1

c c

· · ·
w1 wn

w1 wn

c c

· · ·
wnw1 ≡W

c

c

c

c

s ≡W

ww

w w

s

ww

ww

≡W

ww

ww

1

≡W

ww

ww

s1

s s≡W

w w

ww
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s
tnwi ≡W s

c

c

w1 wn

≡W s s
w1 wn

· · ·

· · ·

J

I Lemma 14. Whenever wi are disjoint sets of worlds, and that the vis are disjoint sets of
worlds too, we have the following:

c

w1 w1 wnwn

· · ·

tnwi

≡W
c c

· · ·

tnwi

w1 w1 wnwn · · ·

c

w1 v1 wn vn

· · ·

tn(wi t vi)

≡W
c c

· · ·

tn(wi t vi)

w1 v1 wn vn · · ·

c
· · ·

tnwi

≡W

tnwi
Proof. We provide a proof for the third equation, the first two are proven similarly.

c

w1 v1 wn vn

· · ·

tn(wi t vi)

≡W
c c

· · ·

tn(wi t vi)

w1 v1 wn vn · · ·
c c

· · ·

tn(wi t vi)

w1 v1 wn vn

c

c

· · ·w1 t v1 wn t vn

≡W
c c

· · ·

tn(wi t vi)

w1 v1 wn vn

c

· · ·
w1 t v1 wn t vn

c c
≡W

J

I Corollary 15 (Naturality of the Binary Contraction). For every f : �n(Ai : wi)→ �m(Bj :
vj) with world set W and every u ⊆W , we have

f

c c

· · ·
w1\u wn\u w1 ∩ u wn ∩ u

v1 vm

≡W
c c

w1\u wn\u w1 ∩ u wn ∩ u

v1 vm

· · ·

· · ·

f\u f ∩ u
· · · · · · · · ·

· · · · · ·

· · ·

where f\u : �n(Ai : wi\u) → �m(Bj : vj\u) is equal to f where every worlds label w has
been replaced by w\u, and similarly for f ∩ w.

This is simply proven by induction over f . All the generator cases (including Cup and
Cap) follow directly from the equations given in Figure 11 an Lemma 14 together with the
properties of a compact close category.

I Lemma 16 (Empty World). For every f : �n(Ai : ∅)→ �m(Bj : ∅) with world set W but
such that every worlds label of f is ∅, we have

f

∅ ∅

· · ·

· · ·

∅ ∅

≡W
c c

c c
· · ·

· · ·
∅ ∅

∅ ∅
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This is simply proven by replacing every wire by two contractions of arity zero (sixth
axiom of Figure 11 with n = 0), and then using the naturality of the contraction of arity
zero (last two lines of Figure 11 with n = 0) to consume every generator.

C Proof of Functoriality of the World-Agnostic Semantics

I Proposition 17. The worlds-agnostic semantics J−K defined in Section 3 is a monoidal
functor from MW∀ to FdMR.

Proof. We recall here the definition of the worlds-agnostic semantics of [f ]W : A→ B:

J[f ]W K :=


∑
a∈W

(A,`f
A

)∩a=A′

(B,`f
B

)∩a=B′

JfKa


A
′
∈A
•
,B
′∈B•

From the definition of the worlds-agnostic compositions, we directly have:

J[f ]W �[g]V K(a,b) = J[f ]W Ka ⊗ J[g]V Kb J[g]V ◦ [f ]W K(a,b) = J[g]V Kb ◦ J[f ]W Ka

The functoriality with respect to the parallel composition is then immediate:

J[f ]W �[g]V K =
{∑

J[f ]W �[g]V K(a,b)

}
=
{∑

J[f ]W Ka
}
⊗
{∑

J[g]V Kb
}

= J[f ]W K⊗J[g]V K

The functoriality with respect to the sequential composition is more subtle, as one must
carefully manipulate the indices of the sum and remark that the set of worlds w eliminated
by the worlds-agnostic composition satisfies the following:

(a, b) /∈ w ⇐⇒ (B, `f
B

) ∩ a = (B, `g
B

) ∩ b where
f : (A, `f

A
)→ (B, `f

B
)

g : (B, `g
C

)→ (C, `g
C

)

Then, we have

J[g]V ◦ [f ]W K =
{∑

J[g]V ◦ [f ]W K(a,b)

}
=
{∑

J[g]V Kb
}
◦
{∑

J[f ]W Ka
}

= J[g]V K◦ J[f ]W K

J
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D Proof of Soundness

Given that most of the time, JgenKa is the identity, the equations defining ≡W are quite
straightforward to verify. We immediately have that ≡W is sound with respect to J−Ka for
every a ∈W . Since J−K is defined from J−Ka, soundness with respect to J−K is also correct.
We then handle the five additional equations of ≡.

Renaming Applying a bijection to the worlds set W does not change the result computed
by
∑
a∈W . . . , hence this equation is sound with respect to J−K.

Annihilation due to Scalars This equation simply removes elements equal to zero from the
sum

∑
a∈W . . . , hence it is sound with respect to J−K.

Annihilation due to Plus Since ⊕ is a biproduct in FdHilb, we have projH⊕KH ◦ injH⊕KH =
idH , projH⊕KK ◦ injH⊕KK = idK , projH⊕KK ◦ injH⊕KH = 0 and projH⊕KH ◦ injH⊕KK = 0. One
can then simply remove from the

∑
a∈W . . . the elements equal to zero, which proves

that Annihilation due to Plus is sound with respect to J−K.
Splitting due to Scalars Since FdHilb is a vector space, we have (s+ t) · f = s · f + t · f ,

which is exactly the property required for this equation to be sound for J−K.
Splitting due to Plus Similarly, we have in FdHilb the property that idH⊕K = injH⊕KH ◦

projH⊕KH + injH⊕KK ◦ projH⊕KK , which is the property required for this equation to be
sound for J−K.
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f =

iso-1
B

...

...

λ

...
isoA
...

isoA�B :=

isoA
c c
...

isoB
c c
...

... ... ... ......

iso1 :=iso�� := isoA⊕B
...

:=
isoA
...

isoB
...

isoA⊗B
...

:= isoA
c c
...

isoB
c c
...

... ......
...

Figure 16 The Normal Form (left) and the Inductive Definition of isoA (right)

E Normal Form, Universality and Completeness

We can prove that the equational theory of Section 4 is complete, by defining a normal form
on the morphisms, and by showing that all diagrams can be put in this normal form, which
is unique.

E.1 Normal Form
It will be practical for our normal forms to define the following syntactic sugar, which we
call the unitor, its unit and its generalized form:

A 1

A

:=
A 1

A

A⊗1
1

1 := 1

... ...A
11

A

:=
... ...

A
1

1 11 1
1

A

A

c c

c c

λ11 λnm

...

...
λ :=
...

...
λ00

λ01

λ10

c

c

We define the short-hand on the right with the
assumption that the world set is in bijection with
the set of scalars, in other words the scalars λi j have
for worlds label {ai j}. In particular, all the input
(resp. output) wires live in mutually exclusive worlds.

A first important observation is that we can put
this diagram in the following alternative form, with exactly the same assumption on the
world set:

c c

c cc

λ11 λnmλ12

...

...
λ =
...

...
λ02

λ10 λn0

λ0mλ01

λ00 (1)

We will freely change between the two representations in the following. Another important
observation is that any permutation of wires (all mutually exclusive, and of type 1) can
easily be put in this form using the following equations:

c
0
≡ c c ≡

c0
c

cc
c ≡ c

c
c ≡

The normal form of a morphism f : A→ B is defined as the form of the diagram on the left
of Figure 16, where the morphism isoA is defined inductively right.

The output wires of isoA for any A live in mutually exclusive worlds, but once again, we
don’t overload the diagrams with unitors or world names encoding this information, although
it will be used in the following.
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Notice that graphically, there is no difference between A�(B�C) and (A�B)�C, in
other words � is strictly associative. However isoA�(B�C) and iso(A�B)�C are different,
but they are equivalent up to a rearranging of the output wires:

I Lemma 18. There exists a wire permutation σ such that isoA�(B�C) = σ ◦ iso(A�B)�C.
J

Proof. First notice that in both isoA�(B�C) and iso(A�B)�C, we can use the bialgebra
between contractions and unitors, followed by their respective fusions in the following way:

isoA�(B�C)
...

≡
isoA

c c
...

isoB�C
c c

...

... ... ... ......

≡ isoA
c c
...

c c

... ... ... ......

isoB
c c
...

isoC
c c
...

c
...

c c
...

c c
...

c
......

≡

isoA
c c
...

... ... ... ......

isoB
c c
...

isoC
c c
...

......
and similarly for iso(A�B)�C . It then suffices to check which contractions the bottom
unitors are linked to. Naming the ith contraction existing isoA as ai, and similarly for B
and C, we can see that for each triple (ai, bj , ck) there is exactly one unitor connected to
precisely contraction ai, bj and ck, in both diagrams. The same is true for every pair (ai, bj),
(ai, ck) and (bj , ck), as well as for every 1-tuple (ai, ), (bj , ) and (ck, ). This shows that both
diagrams are equal up to rearranging of the outputs. J

We hence have a choice to make here for canonicity, and choose isoA0 �A1 �A2 � ... :=
iso(...((A0 �A1)�A2)� ...).

We define iso-1
A

inductively in the same way, but upside-down.
We note that iso−1

A
◦ isoA is the normal form of idA.

I Lemma 19. Notice that isoA⊕B
...

≡ isoA�B

c
...

c
...

and isoA⊗B
...

≡ isoA�B

c
...

c
...

.

I Lemma 20. We have the following identities:

isoA...
iso-1
A

...

...

≡ ...A and
...

...

...

≡
...
c

...

≡ ...

s1 sns2

isoA

iso-1
A where `(si) ∩ `(sj) = ∅ when i 6= j.

Proof of Lemma 20. We will use the following identities:

c c... c c...

c c
...

c c
...

... ... ... ...... ≡a11 a1n am1amn
b1 bm

c1 cn ... ...

b1 t
⊔

a1i

bm t
⊔

ami

c1 t
⊔

ai1

cn t
⊔

ain

when all the wires aij , bi, cj
are mutually exclusive (2)
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We can show this result by induction on n and m. Case (0,m) is obvious. Case (1, 1) can be
proven easily using world sets:

c c

c c

a b c ≡
c c

c c

a b ca

a b ca

≡

ab ac

ab ac

≡ ab ac

For any n and m, we can then prove the case (n+ 1,m) using the cases (n,m) and (1,m)
(the case (n,m+ 1) is completely symmetric):

c c... c c...

c c
...

c c
...

... ... ... ......

c

c

... ≡

c c... c c...

c c
...

c c
...

... ... ... ......

c

c

...

c
c

c
c

≡ ......

c

c

...

c
c

c
c

≡ ......

In a similar way, it is possible to show the following three identities:

c c
...

c c
...

... ... ... ......

a11 a1n am1amn

b1 bm

c1 cn

c c c c

... ... ... ......

≡
a11 a1n am1amn

b1 bm

c1 cn... ... ... ......
when all the wires aij , bi, cj
are mutually exclusive

c c... c c...

c c
...

c c
...

... ...... ≡a11 a1n am1amn
... ...

⊔
a1i⊔

ami⊔
ai1⊔

ain

when all the wires aij
are mutually exclusive
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c c
...

c c
...

... ......

a11 a1n am1amn

c c c c

... ......

≡
a11 a1n am1amn

... ......
when all the wires aij
are mutually exclusive

[iso-1
A
◦ isoA]: The result is obvious in cases 1 and��. For A⊕B:

isoA⊕B
...

iso-1A⊕B
≡

isoA...
iso-1A

isoB...
iso-1B

≡ ≡

The proof is similar for ⊗ and � using the previous identities.
[isoA ◦ iso-1

A
]: The result is again obvious for 1 and��. The general result is easy to prove

by induction using the above identities.
J

E.2 Universality
Now that we have defined a normal form, we may use it to show the universality (Theorem 9)
of the language, i.e. that for every A,B objects of CD, and for every linear operator

Λ =


λ1 1 · · · λn 1 λ10
...

...
...

λ1m · · · λnm λm0
λ01 · · · λ0n λ00

 ∈ FdMR

 ⊕
E∈A

•

HE,
⊕
F∈B•

HB



then the morphism f = iso−1
B
◦λ ◦ isoA defined in Figure 16 satisfies JfK = Λ.

As stated in the corresponding section, there is one world for each scalar in λ, so we
write ai j the world associated to λi j and W the set of all those worlds. Let us write 1k0 = •k
for •� . . .� • (with k elements) and 1ki for •k where the i-th • has been replaced by 1 if
1 ≤ i ≤ k. Beware that we consider 1k0 to be the last element of the canonical basis. We
then have JλKai j : 1ni → 1mj : x 7→ λi j · x where:

c c

c c

λ11 λnm

...

...
λ :=
...

...
λ00

λ01

λ10

c

c

Additionally, one can show by induction that
q
isoA

y
ai j

is simply the projection on the i-th

element of the canonical basis, and
r

iso−1
B

z

ai j
is simply the injection on the j-th element of

the canonical basis. Since we have JfKa =
r

iso−1
B

z

a
◦ JλKa ◦

q
isoA

y
a
for every a ∈ W , and

JfK being the collection of all the JfK, we obtain that JfK = Λ.
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E.3 Uniqueness of the Normal Form
An crucial feature of the normal form for the completeness is its uniqueness:

I Proposition 21. The normal form is unique.

Proof. Let f and g be two diagrams in normal form (with respectively λ and µ as inner block),
such that JfK = JgK (the naming of the worlds is taken to be the same in both diagrams, and
is the same as in the previous proof). By the definition of J.K, we have JfKa = JgKa for every
a ∈W . We hence have

r
iso−1
B

z

a
◦ JλKa ◦

q
isoA

y
a

=
r

iso−1
B

z

a
◦ JµKa ◦

q
isoA

y
a
.

Denoting eAi (resp. eBi ) the i-th element of the basis of A (resp. B), we have:

λij = eB†j

r
iso−1
B

z

aij
◦ JλKaij ◦

q
isoA

y
aij
eAi = eB†j

r
iso−1
B

z

aij
◦ JµKaij ◦

q
isoA

y
aij
eAi = µij

Hence, all coefficients in the scalars of f and g are the same. Since the structure is otherwise
the same for f and g, they are the same diagram. J

E.4 Completeness
We can now use this normal form to show that our equational theory is complete for arbitrary
morphisms. To do so, we need to show that all the generators can be put in normal form,
and then that any composition of morphisms in normal form can be put in normal form. To
do so we will first derive a few lemmas:

I Corollary 22 (of Corollary 15). cc

s1 s2 s3 s4

≡

s1 s2 s3 s4

c
when s1 ∩ s4 = s2 ∩ s3 = ∅

I Corollary 23 (of Corollary 15). Single-colored isos distribute over the contraction:

c

isoA...
≡

isoA...
isoA...

c c...

I Lemma 24. Scalars distribute over single-colored isos:

s

isoA...
≡

s

isoA

... s

Proof. The result is obvious for 1 and��. For A⊕B:

isoA⊕B
...

s

=
isoA
...

isoB
...

s

≡
isoA
...

isoB
...

s s ≡ isoA

...

isoB

...s s s s

= isoA⊕B
...s s

For A⊗B:

isoA⊗B
...

s

= isoA
c c
...

isoB
c c
...

... ......

s

≡ isoA
c c
...

isoB
c c
...

... ......

s

≡
isoA

c c
...

isoB
c c
...

... ......

s s
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≡
isoA

c c

...
isoB

c c
...

... ......

ss ss
≡

isoA
c c
...

isoB
c c
...

... ......s s s s

= isoA⊗B
...

s s

J

I Corollary 25 (of Corollary 15).

c
c

λ

≡ c

c c
λλ

s0 s1

with s0 ∩ s1 = ∅.

I Lemma 26.

λ

...

...
µ
...

≡ ν
...

...

with νij =
∑
k λikµkj.

Proof. Suppose the worlds of λ are the {aij}ij and that of µ are the {bk`}k`. We count
inputs/outputs starting at 1, hence p ≥ 1 in the following.

The p-th output of λ has world set {aip}i and the p-th input of µ has world set {bp`}`.
When composing the two in sequence, in the first step, each singleton world {aij} (resp. {bk`})
is mapped to {(aij , bk`)}k` (resp. {(aij , bk`)}ij), and unions of singleton worlds to unions of
the worlds each is mapped to.

In particular, the p-th output of λ now has world set {(aip, bk`)}ik`, and the p-th input
of µ now has world set {(aij , bp`)}ij`. After composition, the two sets have to match. They
become {(aip, bp`)}i`, and all pairs of world that were removed from these two sets are
removed globally.

We do so for all p ≥ 1, which means all worlds in:

{(aij , bk`) | j ≥ 1, j 6= k} ∪ {(aij , bk`) | k ≥ 1, j 6= k} = {(aij , bk`) | j 6= k}

are removed. Crucially, this means that the world sets {ai0}i and {b0`}` are mapped to the
same world set:

{ai0}i 7→ {(ai0, bk`)}ik` \ {(aij , bk`) | j 6= k}
= {(ai0, b0`)}i` = {(aij , b0`)}ij` \ {(aij , bk`) | j 6= k} ←[ {b0`}`
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Hence, the sequencial composition of λ and µ becomes:

c c

c c

λ11 λnm

...

...c

c

λ00

λ01

λ10

c c

c c

µ11 µmp

...

...c

c

µ00

µ10

µ01

{(ai0, b0`)}i` ≡

c c

c c

λ11 λnm

...

...c

c

λ00

λ01

λ10

c c

c c

µ11 µmp

...

...c

c

µ00

µ10

µ01

≡
c

c

c

c

c c

λ11 λnm

...c

λ00

λ01

λ10

c c

µ11 µmp

...

...

c

µ00

µ10

µ01

c

c

c

c

c

c

c

c

c

c

c

c

≡

c c

λ10

λnm

...c

λ00

c c

µmp

...c

µ00

µ00 µ0p

λ00...

λ1m

µ0p
...

λn0

µ0p
... ≡

c c

c c

ν11 νnm

...

...c

c

ν00

ν01

ν10

with νij =
∑
k λikµkj . J

I Lemma 27. For any "matrix block" λ, there exists a "matrix block" ν such that:

λ
...

c c

...
c c...

... ... ... ......

≡

c c... c c...

... ... ... ......

...
ν

Proof. We show the result through several steps. First we show the following:

c
λ

≡ c
λ

≡
λ

c
c

≡
c

c

λ (3)

Then, we deal with the top dangling scalars and prove that:

c c... c c...

... ... ... ......

c
λ

≡

c c... c c...

... ... ... ......

...
ν

(4)

Indeed:

c c... c c...

... ... ... ......

c
λ

≡
25

c c... c c...

... ...
c

... ......

c
λ

c
λ

λ

≡
(3)

c c... c c...

...

... ... ...
...

λ

λ

c
λc c
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≡

c c... c c...

...

... ... ...

...
λ

λ
c
λc

c

c
c ≡

c c... c c...

... ... ... ......

...
ν

This case generalizes to any bottom wire the dangling scalar is applied on. When we have
several of them, we can make them go through the top part in turns, then aggregate them
under a single "matrix block" using Lemma 26.
We then derive the following equation:

c c

c c

λ00 λnm

...

...c

...

≡

c c

λ00 λnm

...

...c

...
c

c
c c

≡

c c

λ00 ...

...c

...
c c

λnm

≡

c c

c c

λ00 λnm

...

...

c ...

(5)

We can finally prove the lemma:

λ
...

c c

...
c c...

... ... ... ......

≡ c c

c c

λ11 λnm

...

...

λ10 λn0

λ0mλ01

λ00

c c

...
c c

... ... ... ......

≡
(4)

c c

c c

λ11 λnm

...

... λ0mλ01

c c

...
c c

... ... ... ......

...
ν′

≡

c c
... λ0mλ01

c c

...
c c

... ... ... ......

...
ν′

c c

c c

λ11 λnm

...

...
c c

c c

λ11 λnm

...

... ≡
(5)

...c c... c c

...
...

...

...
ν′

c c

c c

λ11 λnm

...

...

c c

c c

λ11 λnm

...

... c c λ0mλ01

≡
26

c c... c c...

... ... ... ......

...
ν

J

We can now move on to show that generators can be put in normal form:

I Proposition 28. The generators can be put in normal form. J



K. Chardonnet and M. de Visme B. Valiron and R. Vilmart XX:31

Proof.

A ⊗ B

≡

iso-1A⊗B

isoA⊗B
... ≡

isoA�B

c
...

c
...

iso-1A⊗B

≡
isoA�B

c
...

c
...

iso-1A⊗B

A ⊕ B

≡

iso-1A⊕B

isoA⊕B
... ≡

iso-1A⊕B

isoA�B

c
...

c
...

≡

iso-1A⊕B

isoA�B

c
...

c
...

A B

≡

iso-1
A

isoA

iso-1
B

isoB

...

...
cc cc

...

......

...cc cc...
≡

isoA�B

iso-1A�B

... ≡

iso-1
A

isoA

iso-1
B

isoB

...

...
cc cc

...

......

...c cc c...
≡

isoA�B

iso-1B�A

...
σ
...

with σ a simple permutation of wires.

c ≡

iso-1
A

isoA...

c

A

≡
iso-1
A

isoA

...
isoA

c c
...... ≡

iso-1
A

isoA�A

...c c

......
c c
...

s ≡

iso-1
A

isoA...

s

A

≡

iso-1
A

isoA...
s s...

≡ ≡
iso1

iso��

A
≡ iso-1

A

isoA... ≡ iso-1
A

...
iso-1
A

... ≡ iso-1
A

...
iso-1
A

...c
cc c

c cc c
......

≡ iso-1
A�A

... ...c cc c

c c... cc ......

c c

c

The upside-down versions of the generators are provided in exactly the same way (but
upside-down). J



XX:32 The Many-Worlds Calculus

I Proposition 29. Compositions of diagrams in normal form can be put in normal form.

It is then possible to show that compositions of diagrams in normal form can be put in
normal form:

Proof. In the case of sequential composition:

iso-1
B

...

...

λ

...
isoA
...

iso-1
C

...

...

µ
...

isoB
≡
20

...
λ

...
isoA
...

iso-1
C

...

...

µ
≡
26 ...

ν
...

isoA
...

iso-1
C...

In the case of parallel composition:

iso-1
B

...

...

λ

...
isoA
...

iso-1
D

...

...

µ
...

isoC
...

≡
20

iso-1
B

...

...

λ

...
isoA
...

iso-1
D

...

...

µ
...

isoC
...

isoA�C...
iso-1
A�C

...

iso-1
B�D

...
isoB�D

...

≡
20

λ µ

isoA�C

...

iso-1
B�D...

c c
...

c c
...

... ... ... ......

c c... c c...

... ... ... ......

≡
27

λ

isoA�C

...

iso-1
B�D...

c c
...

c c
...

... ... ... ......

c c... c c...

... ... ... ......
µ′
...

...

≡
27

isoA�C

...

iso-1
B�D...

c c
...

c c
...

... ... ... ......

c c c c

... ... ... ......

µ′

...

...

λ′
...

≡
20
26

isoA�C

...

iso-1
B�D...

ν′
...

...
≡

iso
A�C

...

iso-1
B�D...

ν′
...

...

σ
...

σ′
...

≡
26

iso
A�C

...

iso-1
B�D...

ν
...

...

where A�C represents the canonical choice of composition with � (and similarly for B�D).
J

This finally allows us to prove the completeness theorem claimed above:
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Proof of Theorem 11. The right-to-left direction of the equivalence can be directly checked
by verifying that all the axioms preserve the semantics.

Let f1 and f2 be two morphisms such that Jf1K = Jf2K. Both morphisms can be put in
normal form, resp. fNF1 and fNF2 , with fi ≡ fNFi and thus

q
fNFi

y
= JfiK. By uniqueness of

the normal form, and since
q
fNF1

y
=

q
fNF2

y
, we get fNF1 ≡ fNF2 , which ends the proof that

f1 ≡ f2. J
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