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Abstract13

We propose a new typed graphical language for quantum computation, based on compact categories14

with biproducts. Our language generalizes existing approaches such as ZX-calculus and quantum15

circuits, while offering a natural framework to support quantum control: it natively supports16

“quantum tests”.17

The language comes equipped with a denotational semantics based on linear applications, and an18

equational theory. Through the use of normal forms for the diagrams, we prove the language to be19

universal, and the equational theory to be complete with respect to the semantics.20
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1 Introduction26

Conventional wisdom has it that quantum computation is about quantum data in superposition.27

In the standard model, the memory holding quantum data is encapsulated inside a coprocessor28

accessed through a simple interface: The coprocessor holds individually addressable registers29

holding quantum bits, on which one can apply a fixed set of operations —gates— specified30

by the interface. If some of these gates can generate superposition of data, this is kept inside31

the coprocessor and opaque to the programmer. A typical interaction with the coprocessor32

is a purely classical sequence of elementary operations of the form “Apply gate X to register33

n; apply gate Y to register m; etc”. Such a sequence of instructions is usually represented34

as a quantum circuit. In this model, a quantum program is then a conventional program35

building a quantum circuit and sending it as a batch-job to the coprocessor.36

From a semantical perspective, the state of a quantum memory consisting of n quantum37

bits is a vector in a 2n-dimensional Hilbert space. A quantum circuit is a linear, sequential38

description of elementary operations describing a linear, unitary map on the state space. The39

quantum coprocessor should come with a universal set of such operations, that is, such that40

any unitary operation on the state space can be realized using the given elementary gates.41

If unitary maps form the original representation for (pure) quantum operations, this42

extensional presentation makes a very rough semantics for the interaction with the quantum43

memory. It is akin to say that one could abstract a conventional program by the plot of44
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the corresponding function: this hides useful information one might want to keep track of,45

such as topological constraints, composition of subroutines and execution flow, required46

resources or other costs, etc [33]. Most of the structure of the computation is lost in the47

matrix representation.48

Coming all the way from Feyman’s diagrams [22], graphical languages for representing49

quantum processes can be seen as an answer to the limitations of plain unitary matrices. In50

recent year, in the field of quantum computation has blossomed a wide variety of proposals51

to focus on specific aspects of the semantics of quantum programs [23, 14, 8].52

Quantum circuits are an obvious candidate for a graphical language, and indeed, several53

lines of research took them as their main object of study [24, 16, 30, 7]. Quantum circuits in54

particular form a natural medium for describing the execution flow of a computation. Similar55

to the intuition one can build for classical boolean circuits, one can make an operational56

semantics for quantum circuits using a token-machine Geometry of Interaction. Each token57

in the circuit carries a quantum bit, and they flow in the circuit from inputs to outputs58

while getting modified as they pass through gates [16]. The main problem with the model of59

quantum circuits is the lack of a satisfactory equational presentation. If several attempts have60

been made for various subsets [12, 11, 26, 27], none of them provides a complete presentation.61

A recent proposal answering the defects of quantum circuits as a (formal) language is the62

ZX-calculus [14]. Rooted in category theory [1], it comes with a small set of generators and63

a sound and complete equational theory [36]. Conservative extension of quantum circuits,64

yet versatile, the ZX-calculus has shown its use in a wide variety of applications, ranging65

from optimization [20, 3], verification [21, 19], and error-correction [17].66

Despite its success, the ZX-calculus is nonetheless still tied to the quantum coprocessor67

model. Indeed, it fails to account for one peculiar feature of quantum computation: non-68

causal execution paths. Indeed, the Janus-faced quantum computational paradigm features69

two seemingly distinct notions of control structure. On the one hand, a quantum program70

follows classical control: it is hosted on the conventional computer governing the coprocessor,71

and can therefore only enjoy loops, tests and other regular causally ordered sequences of72

operations. On the other hand, the lab bench turns out to be more flexible than the rigid73

coprocessor model, permitting more elaborate purely quantum computational constructs than74

what quantum circuits or ZX-calculus allow.75

The archetypal example of an quantum computational behavior hardly attainable within76

ZX-calculus (or quantum circuits) is the Quantum Switch. Consider two quantum bits x77

and y and two unitary operations U and V acting on y. The problem consists in generating78

the operation that performs UV on y if x is in state |0〉 and V U if it is in state |1〉. As79

x can be in superposition, in general the operation is then sending (α |0〉+ β |1〉) ⊗ |y〉 to80

α |0〉 ⊗ (UV |y〉)x + β |1〉 ⊗ (V U |y〉). It is a purely quantum test: not only can we have values81

in superpositions (here, x) but also execution orders. This is in sharp contrast with what82

happens within the standard quantum coprocessor model.83

Computational models supporting superpositions of execution orders have been studied84

in the literature. One trend of research consists in proposing a suitable extension of85

quantum circuits [9, 31, 35, 37]. These approaches typically aim at discussing the notion86

of quantum channel from a quantum information theoretical standpoint. Another research87

line is concerned with exhibiting the execution flow internal to ZX-terms in a distributed88

manner [6]. Somewhat similarly to what has been proposed in [16], tokens are let to flow in89

a ZX-term, realizing the computation, the difference being that the tokens can themselves90

be in superposition. The limit is however that a ZX-term is inherently causal, therefore91

restricting the possibilities for superposition of orders.92
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Figure 1 Examples of splits

One limitation of the existing extensions of quantum circuits or of graphical languages93

based on ZX-calculus is the limited support for typed quantum data. In the context of94

quantum circuits, the strategy have been to consider extended structures stemming from95

proofs-nets and resource-sensitive logics such as linear logic. A proof-net is a structured graph96

describing a proof of a linear logic formula. Through the Curry-Howard isomorphism, a proof97

can be regarded as a program and a formula as a type specifying how the program handles98

resources. This turns out to be particularly well-suited for quantum computation [18, 29, 16].99

In the approaches merging quantum circuits with types based on linear logic, the additive100

types such as the sum-type are purely classical: 1⊕ 1 is always a (conventional) boolean. In101

quantum computation, the sum-type 1⊕ 1 can however be understood as a sum of vector102

spaces, giving an alternative interpretation to 1⊕1: it can be regarded as the type of a quantum103

bit, superposition of True and False. One should note that this appealing standpoint should104

be taken cautiously: (Pure) quantum information imposes strong constraints on the structure105

of the data in superposition: orthogonality and unit-norm have to be preserved [2, 32].106

The standard categorical formalization underlying quantum computation, whether with107

the coprocessor or with the purely quantum viewpoint, is symmetric monoidal categories,108

and compact closed categories in particular. The monoidal structure stands for the tensor of109

quantum data, while coproducts are used to represent “tests”, whether classical [16, 18] or110

quantum [32].111

Graphical languages for symmetric monoidal structure with coproducts usually rely on a112

notion of sheet, or worlds, to handle tests and coproducts in general [18, 28]. Figure 1a shows113

for instance how to represent the construction of the morphism f ⊕ g : A ⊕ A′ → B ⊕ B′114

out of f : A→ B and g : A′ → B′. The symbol “⊕” stands for the “split” of worlds. Such a115

graphical language therefore comes with two distinct “splits”: one for the monoidal structure116

—leaving inside one specific world—, and one for the coproduct —splitting worlds—. They117

can be intertwined, as shown in Figure 1b. Another approach followed by [15] externalizes the118

two products (tensor product and coproduct) into the structure of the diagrams themselves,119

at the price of a less intuitive tensor product and a form of synchronization constraint.120

However, in the state of the art this “splitting-world” understanding has only been carried121

for classical tests [16] and probabilistic branching stemming from measurements [18, 34],122

and not for quantum superposition. The Quantum Switch can for instance be naturally123

understood in this framework. Consider for instance Figure 2, read from left to right: as124

input, a pair of an element of type A and a quantum bits. Based on the value of the qubit125

(True or False), the wire A goes in the upper or the lower sheet, and is fed with U then V or126

V then U . Then everything is merged back together.127

In this paper, we provide a rigorous interpretation for this type of (purely quantum)128

behavior.129

Contributions In this paper, we introduce a new graphical language for quantum130

CVIT 2016
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Figure 2 Quantum Switch with Worlds

computation, based on compact category with biproduct [?]. This language allows us to131

express any quantum process, as we can encode the ZX-Calculus within it. We develop a132

denotational semantic and an equational theory, and prove the soundness and completeness133

of the semantics. As a case-study, we show how the Quantum Switch can naturally be134

encoded in the language.135

In the paper, the missing proofs can be found in Appendix.136

2 The Many-Worlds Calculus137

While the goal is to define a graphical language in which each wire can be enabled or disabled138

depending on the world in which the computation takes place, we first define the category139

CD of diagrams without any "worlds", and will then add the world annotations.140

2.1 A First Graphical Language141

We define our graphical language within the paradigm of colored PROP [4, 25], meaning142

that a diagram will be composed of nodes, or generators, linked to each others through typed143

wires, wired that are allowed to cross each others. Additionally, we assume that our colored144

PROP is compact closed and auto-dual, meaning that we allow to curve wires to obtain a145

Cup or a Cap.146

The generators of our language are described in Figure 3 and are respectively the Identity,147

the Swap, the Cup, the Cap, the Plus, the Tensor, the Unit, the n-ary Contraction, and148

the Scalar indexed with s ranging over C. Mirrored versions of those generators are defined149

as syntactic sugar through the compact closure, as shown for the mirrored Plus on the150

right-hand-side of Figure 3. Diagrams are read top-to-bottom: the top-most wires are the151

input wires and the bottom-most wires are the output wires.152

The types of our wires are built from the syntax A,B ::= 1 | A⊕B | A⊗B. The objects153

of our category are the set of wires as generated by the grammar A,B ::= A�B |�� | A. The154

choice of the notation � for wires in parallel is uncommon, we use it to put an emphasis on155

the fact that contrary to languages like the ZX-calculus, wires that are in parallel are not156

necessarily "in tensor with one another". In fact, A�B can be understood semantically as157

"either A⊗B or A⊕B".158

D2 ◦D1 :=

...

...

...
D2

D1
D1�D2 :=

...

...
D1

...

...
D2

Diagrams are obtained from generators159

by composing them in parallel (written �),160

or sequentially (written ◦) as follows. Se-161

quential composition requires the type (and162

number) of wires to match. We write CD for the category of diagrams we defined as such.163

I Example 1. While our language lacks the worlds labeling, we can already illustrate it by164

encoding some basic quantum primitive in it and show how they operate. In Figure 4 we165

show the encoding of a quantum bit α |0〉+ β |1〉 and the Hadamard unitary. In particular,166
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Figure 4 A Quantum Bit and the Hadamard Unitary

the Plus allows to "build" a new quantum bit from two scalars in parallel or to "open" a167

quantum bit to recover its corresponding scalars, the left branch corresponding to |0〉 and the168

right branch to |1〉. The meaning of the Contraction is better seen when applying Hadamard169

to a quantum bit as we show in Figure 5: it allows us to duplicate and sum scalars. The170

rewriting sequence of Figure 5 is made using the equational theory defined in Section 4,171

however to correctly define our equational theory, the worlds labeling are required. So while172

this specific worlds-free rewriting sequence is sound, many other similar worlds-free rewriting173

sequences are unsound.174

I Remark 2. Instead of having the Cup and the Cap as generators and defining the mirrored175

version of each generator through them, one could proceed the other way around by defining176

the Cap as follows, and the Cup in a mirrored way:177

:=
A B

A⊗B
:=

A B

A⊕B
1 :=

1 1

178

2.2 Adding Worlds Labeling179

c

c

{a, b, c}

{a} {b, c}

{a, b, c}

{b, c}

{a}{b}
{c}

{b, c} {a, b, c}
{a, b, c}

We now label wires of our diagram with worlds sets w ⊆W180

for a given a set of worlds W . For each world a ∈ W ,181

wires labeled by a set containing a are said to be "enabled182

in a", and the others are said "disabled in a". This allows183

us to correlate the enabling of wires. For example, the184

"controlled not" can be represented by the diagram on the right, with worlds {a, b, c, ?}. The185

left-hand-side of the diagram forces the world a to correspond to the case where the control186

qubit is equal to |0〉, and the worlds b and c when it is equal to |1〉. The right-hand-side187

of the diagram applies the identity in the world a, and a negation in the worlds b and c.188

Lastly, the world ? appears nowhere in the labels, and corresponds to "we do not evaluate189

this circuit at all". While not strictly necessary, it is often practical to have a world absent190

from every wire.191

I Definition 3. Given a set of worlds W , we define the auto-dual compact closed colored192

PROP (MWW ,�,��) of many-worlds calculus over W as follows:193

Its colors are the pairs (A : w) of colors A of CD and subsets w ⊆W . We write (A, `A) for194

the objects, where A is an object of CD and `A is a labeling function from the colors of A to195

the subsets of W .196

CVIT 2016
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Figure 5 Applying the Hadamard unitary to a quantum bit

Its morphisms f : (A, `A) → (B, `B) are pairs (Df , `f ) of a morphism Df ∈ CD(A,B) and197

a labeling function `f from the wires of Df to the subsets of W , satisfying the following198

constraints: The label on an input or output wire of color (A : w) must be equal to w, and199

w w v
w

w
s

w

w

w v

wtv

w w

w w

∀n ≥ 0,
...
c

n
w1 wn

w1t . . .twn
200

where t denotes a set union which is disjoint. The constraints for the mirrored versions are201

similar. The sequential composition ◦ and the parallel composition � preserve the labels.202

Because of the first restriction on labels, given a morphism f , one can infer the labels on203

its objects from the label `f , hence we can write f : A→ B instead of f : (A, `A)→ (B, `B)204

unambiguously. It is discussed in Appendix B.1 how we can compose f : A→ B and g : B→ C205

even when their induced labels do not match.206

I Example 4 (The Quantum Switch). Given two subdiagrams U and V , the Quantum207

Switch of U ;V and V ;U presented in Figure 2 can be encoded as in ??.The figure is split208

into two parts: the control part on the left-hand-side, and the computational part on the209

right-hand-side. The idea is that the control part, that uses ⊕, will behave as an if-then-else210

and will bind the world w to the case where the control quantum bit is |0〉, and the world211

v to the case where the control quantum bit is |1〉. On the computational part, U ◦ V will212

be applied within the world v while V ◦ U will be applied within the world w. The “sheets”213

presented in Figure 2 are here modeled with world labels.214

For the sake of simplicity, we represented the Quantum Switch here with two copies of U215

and V , one for each branch. It is actually possible within our language to share U and V216

between the two worlds in order to only have one copy of each (which is the whole purpose217

of the Quantum Switch). We describe in Example 8 this “true” Quantum Switch, and one218

can show using the equational theory given in Section 4 that the two are equivalent.219

2.3 Comparison with Other Graphical Languages220

We draw some comparison between our language and two other graphical languages: the221

ZX-Calculus [13], and Duncan’s Tensor-Sum Logic [18].222

2.3.1 ZX-Calculus223

The first difference is the restrictions of the ZX-calculus to computations between qubits,224

in other words linear map from C2n 7→ C2m , while our language can encode any linear map225

from Cn 7→ Cm. The Tensor generator allowing the decomposition of C2n into instances226

of C2 was already present in the scalable extension of the ZX-calculus [5], but the main227

difference comes from the Plus (and the Contraction).228
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Additionally, every ZX-diagram can be encoded in our graphical language. The identity,229

swap, cup and cap of the ZX calculus are encoded by the similar generators over the type230

1⊕ 1, the green spider and Hadamard gate are encoded as described in ??, and an encoding231

for the red spider can be deduced from those. The worlds set W is equal to P(Names) where232

each green node of the ZX-diagram is given a name, and each input and each output of233

an Hadamard gate is given a name too. For a name g, we write {a 3 g} ⊆ W for the set234

{a ⊆ Names | g ∈ a} and {a 63 g} for its complementary.235

2.3.2 Tensor-Sum Logic236

f g f g

c

c

 

w vThe core difference between their work and ours is the237

presence of the contraction in our graphical language. They238

instead rely on an enrichment of their category by a sum,239

which they represent graphically with boxes. We show on240

the right how the morphism f + g would be encoded in both their and our language. More241

generally, their boxes correspond to uses of our contraction generator in a "well-bracketed"242

way. Another point of difference is their approach to quantum computation, as we do243

not assign the same semantics to those superpositions of morphisms. In their approach,244

the superposition is a classical construction and corresponds to the measurement and the245

classical control flow, while in our approach the superposition is a quantum construction and246

corresponds to the quantum control.247

3 Semantics of the Many-Worlds Calculus248

Our calculus aims at pure quantum computations. Following the ZX approach, we relax the249

condition on unitarity and define a semantics for our Many-World Calculus based on finite250

dimensional Hilbert spaces and (general) linear operators. More precisely, we will define two251

semantics, a world-dependent semantics J−Ka for every world a, which will be a monoidal252

functor from MWW to FdHilb, and a worlds-agnostic semantics J−K which will not be253

functorial for the standard sequential composition and parallel composition, though we define254

in Appendix B.1 the worlds-agnostic sequential composition and parallel composition for255

which J−K will be functorial.256

We start by defining those semantics on the objects. For every object A of CD, we define257

its enablings A• as "replacing any number of wire type by •". For example (A�B)• =258

{•� •, •�B,A� •, A�B}. To each enabling E ∈ A• we associate a Hilbert space HE as259

follows: HE�F := HE⊗HF, H�� = H• = H1 := C, HA⊗B := HA⊗HB , HA⊕B := HA⊕HB .260

Then, for any object (A, `A) of MWW and any world a ∈ W , we define (A, `A) ⇓ a to be261

the enabling of A in which every (A : w) with a ∈ w is preserved and every (A : w)262

with a /∈ w is replaced by •. For example (A : {a}�B : {b}) ⇓ a = A� •. We can then263

CVIT 2016
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r
w v

z

a
=


Id ∈ FdHilb(HA,HA) if a ∈ w\v
Id ∈ FdHilb(HB ,HB) if a ∈ v\w

h⊗ h′ 7→ h′ ⊗ h ∈ FdHilb(HA⊗B ,HB⊗A) if a ∈ w ∩ v
(1) ∈ FdHilb(C,C) otherwise

r w z

a
=
{
h⊗ h′ 7→ 〈h|h′〉 ∈ FdHilb(HA⊗A,C) if a ∈ w

(1) ∈ FdHilb(C,C) otherwise

and the (conjugate)
transposed operator
for the Cup

t

s
w

w

|

a

=
{
s · Id ∈ FdHilb(HA,HA) if a ∈ w
(1) ∈ FdHilb(C,C) otherwise

t
w v

wtv

|

a

=



(
Id
0

)
∈ FdHilb(HA⊕B ,HA) if a ∈ w(

0
Id

)
∈ FdHilb(HA⊕B ,HB) if a ∈ v

(1) ∈ FdHilb(C,C) otherwise

and the (conjugate)
transposed operator
for the mirrored
Plus

Figure 7 Semantics of the Generators of MWW in a World a ∈W .

define the semantics J−Ka : MWW → FdHilb and J−K : MWW → FdHilb on objects264

as
q
(A, `A))

y
a

:= H(A,`
A

)⇓a and
q
(A, `A)

y
:=
⊕
E∈A

• HE. Then, for the morphisms, we265

proceed by compositionality for J−Ka, meaning that we define J−Ka on every generator and266

compute the semantics of a diagram by decomposing it with Jg ◦ fKa := JgKa ◦ JfKa and267

Jf � gKa := JfKa⊗ JgKa. When looking at a generator gen ∈MWW ((A, `A), (B, `B)), in most268

cases
q
(A, `A)

y
a

=
q
(B, `B)

y
a

= H: we then define JgenKa as the identity of Hilb(H,H).269

The semantics of the generators are given in Figure 6, for all the other generators their270

semantics is simply the identity.271

The worlds-agnostic semantics is defined from the world-dependent semantics, as follows.272

Consider f ∈ MWW ((A, `A), (B, `B)). Then JfK ∈ FdHilb
(⊕
E∈A

• HE,
⊕
F∈B• HB

)
is273

defined as JfK :=
{∑

a∈W
A,B,E,F

JfKa

}
E∈A

•
,F∈B•

, where WA,B,E,F is a shortcut notation274

for the set
{
a ∈W | (A, `A) ⇓ a = E and (B, `B) ⇓ a = F

}
.275

For example, the worlds-agnostic semantics of the Tensor and the Plus are simply the276

collection of all their world-dependent semantics assembled into a single linear operator:277

u

ww
v

A : {a} B : {a}

A⊗B : {a}

World set: {a, ?}}

��
~ =

A�B A� • •�B •� •( )
A⊗B Id 0 0 0
• 0 0 0 1

278

279 u

ww
v

A : {a} B : {b}

A⊕ B : {a, b}

World set: {a, b, ?}}

��
~ =

A�B A� • •�B •� •( )
A⊕B 0

0
Id
0

0
Id

0
0

• 0 0 0 1
280

The worlds-agnostic semantics is universal in the following sense:281
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c
≡W

cc
≡W

c
· · ·· · · · · ·· · ·

w1 wn w1 wn

tnwitnwi tnwi tnwi

w1 wn w1 wn

c

c c
≡W

· · · · · ·

tnwi tnvi

w1 t v1 wn t vn w1 t v1 wn t vn

tnwi tnvi

c

s

s s

c

· · · · · ·

tnwi tnwi

w1 w1 wnwn

≡W

c

c c

≡W
· · · · · ·

v1 vk

w1 w1wn wn

v1 vk

c

c c

· · · · · ·

≡W

w w w w

ww w w

s · t

s t

w w

w w ww

≡W

≡W

w w

w w

≡W

w w

w w

≡W

tnwi

tnwi tnwi

c

c

· · ·

tnwi

≡W

w w

w w

1 ≡W

w w

w w

s

t
s · t≡Ww

c
· · ·

w1 w`wk wn

tnwi

c c
· · · · · ·

≡W

tnwi

c

w1 w`wk wn

· · · · · · · · ·

w t v

c

w v

w t v

c

vw

≡W

Worlds annotations on wires are
ommited when uniquely determ-
ined. We assume that:
w ∩ v = ∅
wi ∩ wj = ∅ whenever i 6= j
vi ∩ vj = ∅ whenever i 6= j

w1

wn

w
n ∩
v
k

w
1 ∩
v

1

≡W

w v w v

vw w v

Mirrored up-down versions of
those equations can be deduced
from the compact closure.
Additional equations for the ⊕ and
the scalars are provided in the next
Figure.

Figure 8 Equations with a Fixed Worlds Set W

I Theorem 5 (Universality). For every A,B objects of CD, and for every linear operator in282

U ∈ FdHilb
(⊕
E∈A

• HE,
⊕
F∈B• HB

)
, there exists a worlds set W , some labelings `A, `B,283

and a morphism f ∈MWW ((A, `A), (B, `B)) such that JfK = U . J284

4 The Equational Theory285

Similarly to how our semantics is defined in two steps, the equational theory is also defined286

in two steps:287

(1) A set of equations within MWW for a fixed set of worlds W , which will not be complete,288

but will be sound for J−Ka for every a ∈W , hence sound for J−K too. We write ≡W for the289

induced congruence1 over MWW . We list those equations in Figure 7. Quite notably, the290

last two rows describe the fact that the contraction is a natural transformation.291

(2) Five additional equations with side effects on the set of worlds, which will be sound are292

complete for J−K, but not for the J−Ka. We write ≡ for the induced equivalence relation,293

spanning over the morphisms of all the categories MWW for W any set of worlds. We have:294

One equation that allows us to rename the worlds: for every morphism (Df , `f ) of MWW ,295

and for every bijection i : W → V , we have (Df , `f ) ≡ (Df , i ◦ `f ) ∈MWV ; Two equations296

1 In other words the smallest equivalence relation satisfying those equations and such that f ≡W f ′ =⇒
∀g, h, l, g ◦ (f �h) ◦ k ≡W g ◦ (f ′�h) ◦ k.

CVIT 2016
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0F

· · ·

· · ·

w
0F\w

· · ·

· · ·

∅
≡ F

· · ·

· · ·

w v

w′ v′
F\z

· · ·

· · ·

W WW\w W\z

≡

Worlds sets

w
∩
w
′

v
∩
v
′

Worlds sets

w′

w′′
w′

w′′
s t
c

c

W W(W\w) t w′ t w′′
Worlds sets Worlds sets

(W\w) t w′ t w′′

s + tF

· · ·

· · ·

w
≡

· · ·

· · ·

G F

· · ·

· · ·

w
≡

· · ·

· · ·

G

Where:
w = {a1, . . . , an}
w′ = {a′1, . . . , a′n}
w′′ = {a′′1 , . . . , a′′n}
G is F where every in-
stance of the world ai has
been replaced by both a′i
and a′′i .

Where:
z = (w\w′) ∪ (w′\w)
∪(v\v′) ∪ (v′\v)

F\w (resp. F\z) is F

where every world of w
(resp. z) has been removed
from the labels.

Figure 9 Equations with Side-Effects on Worlds Sets

allowing the annihilation (or creation, when looking at them from right to left) of worlds297

due to coproducts or scalars (first row of Figure 8); Two equations allowing the splitting (or298

merging, when looking at them from right to left) of worlds due to coproducts or scalars299

(second row of Figure 8).300

I Proposition 6 (Soundness). For f a morphism of MWW and g of MWW , whenever f ≡ g301

we have JfK = JgK. Additionally if W = V , whenever f ≡W g we have ∀a ∈W, JfKa = JgKa.302

I Theorem 7 (Completeness). For every f : A→ B morphism of MWW and g : A→ B one303

of MWV , JfK = JgK ⇐⇒ f ≡ g J304

The soundness can be proved by a case-by-case analysis on every equation. The complete-305

ness theorem follows from the existence of a normal form for ≡, as described in Section 5.1.306

I Example 8 (The Quantum Switch). As claimed in Example 4, it is possible to represent307

the Quantum Switch with only one copy of U and V , and one can rewrite it to the version308

with two copies of each using the equational theory as shown in Figure 9.309

In those diagrams, the worlds set is W = wt v and we rely on thick, thin and doted wires310

to indicate respectively worlds labels w t v, w and v. Each figure has a control side which311

operates on a quantum bit (type 1 ⊕ 1) and binds the world w to |0〉 and the world v to312

|1〉; and a computational side which operates on some data of an arbitrary type A, on which313

could be applied U and/or V which stand for two morphisms of MWW (A : W,A : W ).314

The first rewriting step relies on the two lemmas
on the right, both of which being deducible
from the equational theory (see Appendix A).
The second rewriting step is simply using the
properties of a compact closed category.

c

U
≡W

c

U\v U\w c

c
≡W

315
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w t v

w

v

Legend

c

c

c c

c c

U V

1⊕ 1 : w t v

A : w t v

1⊕ 1 : w t v

A : w t v

→

c

c

U\v

V \v

1⊕ 1 : w t v

A : w t v

1⊕ 1 : w t v

A : w t v

U\w

V \w

→

c

c

U\v V \w

1⊕ 1 : w t v

A : w t v

1⊕ 1 : w t v

A : w t v

U\wV \v

Figure 10 Rewriting the Quantum Switch

5 Normal Form and Completeness316

We can prove that the previous equational theory is complete, by defining a normal form on317

the morphisms, and by showing that all diagrams can be put in this normal form, which is318

unique.319

5.1 Normal Form320

It will be practical for our normal forms to define the following syntactic sugar, which we321

call the unitor, its unit and its generalized form:322

A 1

A

:=
A 1

A

A⊗1
1

1 := 1

... ...A
11

A

:=
... ...

A
1

1 11 1
1

A

A

323

c c

c cc

λ11 λnmλ12

...

...
λ :=
...

...
λ′′2

λ′1
λ′n

λ′′m
λ′′1

λ0

We define the short-hand on the right with the324

assumption that the worlds set is in bijection with the325

set of scalars, in other words the scalars λi j , λ′i, λ′′j and326

λ0 have for worlds label {ai j}, {a′i}, {a′′j } and {a0}327

respectively. In particular, all the input (resp. output)328

wires live in mutually exclusive worlds. An important observation is that any permutation of329

wires (all mutually exclusive, and of type 1) can easily be put in this form using the following330

equations:331

c
0
≡ c c ≡

c0
c

cc
c ≡ c

c
c ≡332

The normal form of a morphism f : A→ B is defined as the form of the diagram on the left333

of Figure 10, where the morphism isoA is defined inductively right.334

The output wires of isoA for any A live in mutually exclusive worlds, but once again, we335

don’t overload the diagrams with unitors or world names encoding this information, although336

it will be used in the following.337

Notice that graphically, there is no difference between A�(B�C) and (A�B)�C, in338

other words � is strictly associative. However isoA�(B�C) and iso(A�B) �C are different,339

but they are equivalent up to a rearranging of the output wires:340

I Lemma 9. There exists a wire permutation σ such that isoA�(B�C) = σ◦iso(A�B) �C. J341

CVIT 2016



23:12 The Many-Worlds Calculus: Representing Quantum Control

f =

iso-1
B

...

...

λ

...
isoA
...

isoA�B :=

isoA
c c
...

isoB
c c
...

... ... ... ......

iso1 :=iso�� := isoA⊕B
...

:=
isoA
...

isoB
...

isoA⊗B
...

:= isoA
c c
...

isoB
c c
...

... ......
...

Figure 11 The Normal Form (left) and the Inductive Definition of isoA (right)

We hence have a choice to make here for canonicity, and choose isoA0 �A1 �A2 � ... :=342

iso(...((A0 �A1) �A2) � ...).343

We define iso-1
A

inductively in the same way, but upside-down. We note that iso−1
A
◦ isoA344

is the normal form of idA.345

I Proposition 10. The normal form is unique.346

5.2 Completeness347

We can now use this normal form to show that our equational theory is complete for arbitrary348

morphisms. To do so, we need to show that all the generators can be put in normal form,349

and then that any composition of morphisms in normal form can be put in normal form. We350

do exactly so, and leave the details to the appendix.351

I Proposition 11. The generators can be put in normal form. J352

I Proposition 12. Compositions of diagrams in normal form can be put in normal form.353

This allows us to prove the completeness theorem claimed above:354

Proof of Theorem 7. The right-to-left direction of the equivalence can be directly checked355

by verifying that all the axioms preserve the semantics.356

Let f1 and f2 be two morphisms such that Jf1K = Jf2K. Both morphisms can be put in357

normal form, resp. fNF1 and fNF2 , with fi ≡ fNFi and thus
q
fNFi

y
= JfiK. By uniqueness of358

the normal form, and since
q
fNF1

y
=

q
fNF2

y
, we get fNF1 ≡ fNF2 , which ends the proof that359

f1 ≡ f2. J360

6 Conclusion361

We introduced a new sound and complete graphical language based on compact categories362

with biproducts, along with a equational theory and a worlds system, helping us build a363

denotational semantics of our language.364

This language allows us to generalize already existing quantum graphical languages such365

as the ZX-calculus with the additions of richer types than just the usual qubits and tensors366

of qubits. In particular the biproduct allows us to reason about superposition of executions,367

as shown by the encoding of the Quantum Switch in Example 8.368

While our language allows for quantum control, it does not capture another language369

that aims at formalizing quantum control, namely the PBS-Calculus [10]. How and in which370

context could we capture the PBS-Calculus is left for future work.371
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A Induced Equations494

We include in this section a few practical lemmas that are provable from the equational495

theory ≡W .496

I Lemma 13. Whenever wi are disjoints sets of worlds, we have the following:497

c
≡W

· · · · · ·

w1 wn

w1 w1wn wn

w1 wn

c
· · · · · ·c c

≡W
· · ·

w1 wn

w1 wn

c c

· · ·

w
n ∩
w
n

w
1 ∩
w

1

c c

· · ·
w1 wn

w1 wn

c c

· · ·
wnw1 ≡W

c

c

c

c
498

499

s ≡W

ww

w w

s

ww

ww

≡W

ww

ww

1

≡W

ww

ww

s1

s s≡W

w w

ww

500

501

s
tnwi ≡W s

c

c

w1 wn

≡W s s
w1 wn

· · ·

· · ·502

J503

I Lemma 14. Whenever wi are disjoints sets of worlds, and that the vi are disjoints set of504

worlds too, we have the following:505

c

w1 w1 wnwn

· · ·

tnwi

≡W
c c

· · ·

tnwi

w1 w1 wnwn · · ·

c

w1 v1 wn vn

· · ·

tn(wi t vi)

≡W
c c

· · ·

tn(wi t vi)

w1 v1 wn vn · · ·

c
· · ·

tnwi

≡W

tnwi

506

Proof. We provide a proof for the third equation, the first two are proven similarly.507

c

w1 v1 wn vn

· · ·

tn(wi t vi)

≡W
c c

· · ·

tn(wi t vi)

w1 v1 wn vn · · ·
c c

· · ·

tn(wi t vi)

w1 v1 wn vn

c

c

· · ·w1 t v1 wn t vn

≡W
c c

· · ·

tn(wi t vi)

w1 v1 wn vn

c

· · ·
w1 t v1 wn t vn

c c
≡W508

J509
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I Corollary 15. For every f : �n(Ai : wi) → �m(Bj : vj) with worlds set W and every510

u ⊆W , we have511

f

c c

· · ·
w1\u wn\u w1 ∩ u wn ∩ u

v1 vm

≡W
c c

w1\u wn\u w1 ∩ u wn ∩ u

v1 vm

· · ·

· · ·

f\u f ∩ u
· · · · · · · · ·

· · · · · ·

· · ·

512

where f\u : �n(Ai : wi\u) → �m(Bj : vj\u) is equal to f where every worlds label w has513

been replaced by w\u, and similarly for f ∩ w.514

This is simply proven by induction over f . All the generator cases (including Cup and515

Cap) follow directly from the equations given in Figure 7 an Lemma 14 together with the516

properties of a compact close category.517

I Lemma 16. For every f : �n(Ai : ∅) → �m(Bj : ∅) with worlds set W but such that518

every worlds label of f is ∅, we have519

f

∅ ∅

· · ·

· · ·

∅ ∅

≡W
c c

c c
· · ·

· · ·
∅ ∅

∅ ∅

520

This is simply proven by replacing every wire by two contractions of arity zero (sixth521

axiom of Figure 7 with n = 0), and then using the naturality of the contraction of arity zero522

(last two lines of Figure 7 with n = 0) to consume every generator.523

B Dealing with Worlds Labeling524

The worlds labeling can appear to be a very strict structure making it unpractical to525

manipulate diagrams. In this appendix, we show a number of tools that allow to manipulate526

worlds labeling in a more flexible way.527

B.1 Worlds-Agnostic Category528

In this section, we define the category MW∀ which has the same objects as CD, so no worlds529

labeling on the objects, and has for mosphisms all the morphisms of the categories MWW530

for every worlds set W . In other words, we explain how to make sequential composition and531

parallel composition of morphisms that have different worlds set.532

We write [f ]W : A→ B for a morphism (Df , `f ) ∈MWW ((A, `Af ), (B, `Bf )), where `Af and533

`Bf are the labeling induced on A and B by `f .534

The goal of this section is to allow to compose [f ]W : A→ B and [g]V : B→ C even when535

the inferred labels on B do not match and when W and V are different.536
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{a} � {b}

W = {a, ?} V = {b, ?}
{(a,b),
(a,?)}

W × V = {(a,b),(a,?),
(?,b),(?,?)}

{(a,b),
(?,b)}=

Figure 12 Example of Worlds-Agnostic Parallel Composition

B.1.1 Extending the Worlds Set537

Before tackling the sequential composition, we start by defining the parallel composition �538

between morphisms with different world sets. ForW,V two sets of worlds, and for ` : S →W ,539

we define `−×V : S → W × V as `−×V (s) = {(a, b) | a ∈ `(s), b ∈ V }. Similarly, for540

[f ]W : A → B, we define [f−×V ]W×W as the morphism (Df , `−×Vf ). We define `V×− and541

fV×− symmetrically.542

I Definition 17 (Worlds-Agnostic Parallel Composition). For [f ]W : A→ B and [g]V : C→ D543

two morphisms, we define544

[f ]W �[g]V := [f−×V � gW×−]W×V : (A�B)→ (C�D)545

In Figure 11, we show the result of this parallel composition when [f ]{a,?} = idA:{a} and546

[g]{b,?} = idA:{b} for a color A.547

B.1.2 Restricting the Worlds Set548

We now tackle the sequential composition. For W a set of worlds, w ⊆ W , we define the549

restriction of ` : S → W to W\w written `\w : S → W\w as `\w(s) = {a ∈ `(s) | a /∈ w}.550

For [f ]W : A→ B we define [f\w]W\w : A→ B as the morphism (Df , `\wf ).551

I Definition 18. Given two morphisms [f ]W : (A, `A)→ (B, `B) and [g]V : (B, kB)→ (C, kC),552

we write w for the smallest subset of W × V such that (f−×V )\w induces the same worlds553

labeling on B as (gW×−)\w. We then define554

[g]V ◦ [f ]W := [(gW×−)\w ◦ (f−×V )\w](W×V )\w555

We continue the previous example in Figure 12 by composing the result with the Cup over556

A : {c, ?}. We proceed in two steps: first we handle the situation as if it was a parallel557

composition, leading to a diagram labeled over W × V × U , but with multiple contradictory558

labels on the wire. Then, we eliminate as few worlds as possible to make those labels559

compatible:560

We eliminate (a, b, ?) and (a, ?, ?) which are on the left label but not on the bottom one.561

We eliminate (?, b, c) and (?, ?, c) which are on the bottom label but not on the left one.562

We eliminate (?, b, ?) which is on the right label but not on the bottom one. We would563

also eliminate (a, b, ?) if we had not done so already.564

We eliminate (a, ?, c) which is on the bottom label but not on the right one. We would565

also eliminate (?, ?, c) if we had not done so already.566

The eliminated worlds are w = {(a, b, ?), (a, ?, c), (?, b, c), (a, ?, ?), (?, b, ?), (?, ?, c)}, and what567

remains is {(a, b, c), (?, ?, ?)}.568



K. Chardonnet and M. de Visme B. Valiron and R. Vilmart 23:19

{(a,b),
(a,?)}

W × V = {(a,b),(a,?),
(?,b),(?,?)}

{(a,b),
(?,b)}

 ◦
{c}

U = {c, ?}

(W × V ×W )\w = {(a,b,c),(?,?,?)}W × V × U =
{(a,b,c),(a,b,?),
(a,?,c),(a,?,?),
(?,b,c),(?,b,?),
(?,?,c),(?,?,?)}

 

{(a, b, c)}

{(a,b,c),
(a,b,?),
(a,?,c),
(a,?,?)}

{(a,b,c),
(a,b,?),
(?,b,c),
(?,b,?)}

{(a,b,c),(a,?,c),
(?,b,c),(?,?,c)}

Figure 13 Example of Worlds-Agnostic Sequential Composition

B.1.3 The Worlds-Agnostic Category and its Semantics569

MW∀ with the sequential and parallel composition as described above forms a category (up570

to renaming of worlds), and is in fact an auto-dual compact closed colored PROP (up to571

renaming of worlds).572

I Proposition 19. The worlds-agnostic semantics J−K defined in Section 3 is a monoidal573

functor from MW∀ to FdHilb.574

Proof. We recall here the definition of the worlds-agnostic semantics of [f ]W : A→ B:575

J[f ]W K :=


∑
a∈W

(A,`f
A

)⇓a=A′

(B,`f
B

)⇓a=B′

JfKa


A
′
∈A
•
,B
′∈B•

576

From the definition of the worlds-agnostic compositions, we directly have:577

J[f ]W �[g]V K(a,b) = J[f ]W Ka ⊗ J[g]V Kb J[g]V ◦ [f ]W K(a,b) = J[g]V Kb ◦ J[f ]W Ka578

The functoriality with respect to the parallel composition is then immediate:579

J[f ]W �[g]V K =
{∑

J[f ]W �[g]V K(a,b)

}
=
{∑

J[f ]W Ka
}
⊗
{∑

J[g]V Kb
}

= J[f ]W K⊗J[g]V K580

The functoriality with respect to the sequential composition is more subtle, as one must581

carefully manipulate the indices of the sum and remark that the set of worlds w eliminated582

by the worlds-agnostic composition satisfies the following:583

(a, b) /∈ w ⇐⇒ (B, `f
B

) ⇓ a = (B, `g
B

) ⇓ b where
f : (A, `f

A
)→ (B, `f

B
)

g : (B, `g
C

)→ (C, `g
C

)
584

Then, we have585

J[g]V ◦ [f ]W K =
{∑

J[g]V ◦ [f ]W K(a,b)

}
=
{∑

J[g]V Kb
}
◦
{∑

J[f ]W Ka
}

= J[g]V K◦ J[f ]W K586

J587
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1 2

3
4 

{{1,3},
{1,3,4}}

{{2,3},
{2,3,4}}

{{1,3},{2,3},
{1,3,4},{2,3,4}}

{{4},{1,3,4},
{2,3,4}} ≡

{a, c} {b, d}

{a, b, c, d}
{c, d, e}

Figure 14 A diagram, its canonical labeling, and its equivalent with worlds set {a, b, c, d, e, ?}

B.2 Keeping the Worlds Labeling Implicit588

In Figure 5, we provide an example where one can use the equational theory without the589

worlds. In the previous section, we provided a worlds-agnostic semantics to our diagrams. It590

is reasonable to wonder how much can be done within CD, in other words without using the591

worlds labeling. In the following, we show how to provide a canonical labeling for diagrams592

of CD and deduce a denotational semantics for CD.593

We consider a diagram D of CD and we want to define a canonical worlds labeling over594

its set of wires W. The core idea is that a world will be a set of wires that can cohabit with595

each others while satisfying the constraints of the nodes Plus, Tensor, etc. For example in596

Figure 13, there are four wires with wire 1 and 2 being incompatible due to the Plus, but597

also inseparable from wire 3, hence the canonical worlds set would be:598

{∅, {1, 3}, {2, 3}, {4}, {1, 3, 4}, {2, 3, 4}}599

More formally, a subset of wires S ⊆ W is said valid if the labeling `S : x 7→ {?} if x ∈ S600

and ∅ otherwise is a valid labeling for D, in other words if (D, `S) is a morphism of MW{?}.601

We will take for worlds set WD ⊆ P(W) the sets of valid subsets of wires. The labeling will602

simply be: `D : x 7→ {S ∈ V | x ∈ S}.603

I Proposition 20. For every diagram D of CD, (D, `D) is a morphism of MWWD . Up to604

renaming of the worlds, this construction is a monoidal functor from CD to MW∀.605

It follows that if we define JDK as J(D, `D)K, this semantics is a monoidal functor from606

CD to FdHilb. We note that it is enough to compute the semantics of the generators of607

CD (see FIGURE) to obtain the semantics for every diagram using JD ◦ D′K = JDK ◦ JD′K608

and JD�D′K = JDK⊗ JD′K.609
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C Proofs of Universality and Uniqueness of Normal Form610

Universality611

In this section, we show that for every A,B objects of CD, and for every linear operator612

Λ =


λ1 1 · · · λn 1 λ′′1
...

...
...

λ1m · · · λnm λ′′m
λ′1 · · · λ′n λ0

 ∈ FdHilb

 ⊕
E∈A

•

HE,
⊕
F∈B•

HB

613

then the morphism f = iso−1
B
◦λ ◦ isoA defined in Figure 10 satisfies JfK = Λ.614

As stated in the corresponding section, there is one world for each scalar in λ, so we write615

ai j the world associated to λi j and a′i, a′′j , a0 similarly, and W the set of all those worlds.616

Writing •k for •� . . .� • (with k elements) and 1ki for •k where the i-th • has been replaced617

by 1, we have the following:618 
JλKai j : 1ni → 1mj : x 7→ λi j · x
JλKa′

i
: 1ni → •m : x 7→ λ′i · x

JλKa′′
j

: •n → 1mj : x 7→ λ′′j · x

JλKa0
: •n → •m : x 7→ λ0 · x

where

c c

c cc

λ11 λnmλ12

...

...
λ :=
...

...
λ′′2

λ′1
λ′n

λ′′m
λ′′1

λ0619

Additionally, one can show by induction that
q
isoA

y
ai j

and
q
isoA

y
a′
i

(resp.
q
isoA

y
a′′
j

620

and
q
isoA

y
a0
) are simply the projection on the i-th (resp. (n + 1)-th) element of the621

canonical basis, and
r

iso−1
B

z

ai j
and

r
iso−1
B

z

a′′
j

(resp.
r

iso−1
B

z

a′
i

and
r

iso−1
B

z

a0
) are simply622

the injection on the j-th (resp. (m+ 1)-th) element of the canonical basis. Since we have623

JfKa =
r

iso−1
B

z

a
◦ JλKa ◦

q
isoA

y
a
for every a ∈W , and JfK being the collection of all the JfK,624

we obtain that JfK = Λ.625

Uniqueness of Normal Form626

Let f and g be two diagrams in normal form (with respectively λ and µ as inner block), such627

that JfK = JgK (the naming of the worlds is taken to be the same in both diagrams, and is628

the same as in the previous proof). By the definition of J.K, we have JfKa = JgKa for every629

a ∈W . We hence have
r

iso−1
B

z

a
◦ JλKa ◦

q
isoA

y
a

=
r

iso−1
B

z

a
◦ JµKa ◦

q
isoA

y
a
.630

Denoting eAi (resp. eBi ) the i-th element of the basis of A (resp. B), we have:631 

λij = eB†j

r
iso−1
B

z

aij
◦ JλKaij ◦

q
isoA

y
aij
eAi = eB†j

r
iso−1
B

z

aij
◦ JµKaij ◦

q
isoA

y
aij
eAi = µij

λ′i = •|B|†
r

iso−1
B

z

a′
i

◦ JλKa′
i
◦

q
isoA

y
a′
i

eAi = •|B|†
r

iso−1
B

z

a′
i

◦ JµKa′
i
◦

q
isoA

y
a′
i

eAi = µ′i

λ′′j = eB†j

r
iso−1
B

z

a′′
j

◦ JλKa′′
j
◦

q
isoA

y
a′′
j

•|A| = eB†j

r
iso−1
B

z

a′′
j

◦ JµKa′′
j
◦

q
isoA

y
a′′
j

•|A| = µ′′j

λ0 = •|B|†
r

iso−1
B

z

a0
◦ JλKa0

◦
q
isoA

y
a0
•|A| = •|B|†

r
iso−1
B

z

a0
◦ JµKa0

◦
q
isoA

y
a0
•|A| = µ0

632

where |B| denotes the number of wires in B.633

Hence, all coefficients in the scalars of f and g are the same. Since the structure is otherwise634

the same for f and g, they are the same diagram.635
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D Proof of Soundness636

Given that most of the time, JgenKa is the identity, the equations defining ≡W are quite637

straightforward to verify. We immediately have that ≡W is sound with respect to J−Ka for638

every a ∈W . Since J−K is defined from J−Ka, soundness with respect to J−K is also correct.639

We then handle the five additional equations of ≡.640

Renaming Applying a bijection to the worlds set W does not change the result computed641

by
∑
a∈W . . . , hence this equation is sound with respect to J−K.642

Annihilation due to Scalars This equation simply removes elements equal to zero from the643

sum
∑
a∈W . . . , hence it is sound with respect to J−K.644

Annihilation due to Plus Since ⊕ is a biproduct in FdHilb, we have projH⊕KH ◦ injH⊕KH =645

idH , projH⊕KK ◦ injH⊕KK = idK , projH⊕KK ◦ injH⊕KH = 0 and projH⊕KH ◦ injH⊕KK = 0. One646

can then simply remove from the
∑
a∈W . . . the elements equal to zero, which proves647

that Annihilation due to Plus is sound with respect to J−K.648

Splitting due to Scalars Since FdHilb is a vector space, we have (s+ t) · f = s · f + t · f ,649

which is exactly the property required for this equation to be sound for J−K.650

Splitting due to Plus Similarly, we have in FdHilb the property that idH⊕K = injH⊕KH ◦651

projH⊕KH + injH⊕KK ◦ projH⊕KK , which is the property required for this equation to be652

sound for J−K.653
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E Proofs for Completeness654

E.1 The Normal Form655

Proof of Lemma 9. First notice that in both isoA�(B�C) and iso(A�B)�C, we can use656

the bialgebra between contractions and unitors, followed by their respective fusions in the657

following way:658

isoA�(B�C)
...

≡
isoA

c c
...

isoB�C
c c

...

... ... ... ......

≡ isoA
c c
...

c c

... ... ... ......

isoB
c c
...

isoC
c c
...

c
...

c c
...

c c
...

c
......659

≡

isoA
c c
...

... ... ... ......

isoB
c c
...

isoC
c c
...

......

660

661

and similarly for iso(A�B) �C . It then suffices to check which contractions the bottom662

unitors are linked to. Naming the ith contraction existing isoA as ai, and similarly for B663

and C, we can see that for each triple (ai, bj , ck) there is exactly one unitor connected to664

precisely contraction ai, bj and ck, in both diagrams. The same is true for every pair (ai, bj),665

(ai, ck) and (bj , ck), as well as for every 1-tuple (ai, ), (bj , ) and (ck, ). This shows that both666

diagrams are equal up to rearranging of the outputs. J667

I Lemma 21. Notice that isoA⊕B
...

≡ isoA�B

c
...

c
...

and isoA⊗B
...

≡ isoA�B

c
...

c
...

.668

I Lemma 22. We have the following identities:669

isoA...
iso-1
A

...

...

≡ ...A and
...

...

...

≡
...
c

...

≡ ...

s1 sns2

isoA

iso-1
A where `(si) ∩ `(sj) = ∅ when i 6= j.670

Proof of Lemma 22. We will use the following identities:671

c c... c c...

c c
...

c c
...

... ... ... ...... ≡a11 a1n am1amn
b1 bm

c1 cn ... ...

b1 t
⊔

a1i

bm t
⊔

ami

c1 t
⊔

ai1

cn t
⊔

ain

when all the wires aij , bi, cj
are mutually exclusive (1)672

673

We can show this result by induction on n and m. Case (0,m) is obvious. Case (1, 1) can be674

proven easily using worlds sets:675

c c

c c

a b c ≡
c c

c c

a b ca

a b ca

≡

ab ac

ab ac

≡ ab ac676
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For any n and m, we can then prove the case (n+ 1,m) using the cases (n,m) and (1,m)677

(the case (n,m+ 1) is completely symmetric):678

c c... c c...

c c
...

c c
...

... ... ... ......

c

c

... ≡

c c... c c...

c c
...

c c
...

... ... ... ......

c

c

...

c
c

c
c

679

≡ ......

c

c

...

c
c

c
c

≡ ......
680

681

In a similar way, it is possible to show the following three identities:682

c c
...

c c
...

... ... ... ......

a11 a1n am1amn

b1 bm

c1 cn

c c c c

... ... ... ......

≡
a11 a1n am1amn

b1 bm

c1 cn... ... ... ......
when all the wires aij , bi, cj
are mutually exclusive683

684

c c... c c...

c c
...

c c
...

... ...... ≡a11 a1n am1amn
... ...

⊔
a1i⊔

ami⊔
ai1⊔

ain

when all the wires aij
are mutually exclusive685

686

c c
...

c c
...

... ......

a11 a1n am1amn

c c c c

... ......

≡
a11 a1n am1amn

... ......
when all the wires aij
are mutually exclusive687



K. Chardonnet and M. de Visme B. Valiron and R. Vilmart 23:25

[iso-1
A
◦ isoA]: The result is obvious in cases 1 and��. For A⊕B:688

isoA⊕B
...

iso-1A⊕B
≡

isoA...
iso-1A

isoB...
iso-1B

≡ ≡689

690

The proof is similar for ⊗ and � using the previous identities.691

[isoA ◦ iso-1
A
]: The result is again obvious for 1 and��. The general result is easy to prove692

by induction using the above identities.693

J694

E.2 The Completeness695

We want to show here the results of Section 5.2. To do so we will first derive a few lemmas:696

I Corollary 23 (of Corollary 15). cc

s1 s2 s3 s4

≡

s1 s2 s3 s4

c
when s1 ∩ s4 = s2 ∩ s3 = ∅697

I Corollary 24 (of Corollary 15). Single-colored isos distribute over the contraction:698

c

isoA...
≡

isoA...
isoA...

c c...
699

I Lemma 25. Scalars distribute over single-colored isos:700

s

isoA...
≡

s

isoA

... s
701

Proof. The result is obvious for 1 and��. For A⊕B:702

isoA⊕B
...

s

=
isoA
...

isoB
...

s

≡
isoA
...

isoB
...

s s ≡ isoA

...

isoB

...s s s s

= isoA⊕B
...s s

703

704

For A⊗B:705

isoA⊗B
...

s

= isoA
c c
...

isoB
c c
...

... ......

s

≡ isoA
c c
...

isoB
c c
...

... ......

s

≡
isoA

c c
...

isoB
c c
...

... ......

s s706

≡
isoA

c c

...
isoB

c c
...

... ......

ss ss
≡

isoA
c c
...

isoB
c c
...

... ......s s s s

= isoA⊗B
...

s s

707
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708

J709

I Corollary 26 (of Corollary 15).

c
c

λ

≡ c

c c
λλ

s0 s1
710

711

with s0 ∩ s1 = ∅.712

I Corollary 27 (of Lemma 13).

λ

{a}tw

≡ λ λ
{a} w

713

714

I Corollary 28 (of Lemma 13).

λ µ
w w ≡ λµ

w

715

716

I Lemma 29.

λ

...

...
µ
...

≡ ν
...

...
717

718

with νij =
∑
k λikµkj + λ′iµ

′′
j , ν′i =

∑
k λikµ

′′
k + µ0λ

′
i, ν′′i =

∑
k λ
′′
kµki + λ0µ

′′
i and ν0 =719

λ0µ0 +
∑
k λ
′′
kµ
′
k.720

Proof. Consider first the following simpler case:721

c c

c c

λ11 λnm

...

...

c c

c c

µ11 µmp

...

...

≡

c c

λ11 λnm

...

...

c c

µ11 µmp

...

...

c

c

c

c

c

c

c

c
≡

c c

λ11µ11

...

...

c c...
λ1mµm1

...
λn1µ1p

λnmµmp

... ≡

c c

∑
λ1kµk1

∑
λnkµkp

...

c c...
(2)722

723

Importantly, in the last diagram, we have that each internal wire lives in a set of worlds724

that has empty intersection with any of the others. It is hence possible to rename this set of725

worlds to a singleton, and to do it for each internal wire.726

For the general case, it is important to properly look at the worlds. Denoting wλij the727

(singleton) world that bears λij , wλ
′

i the one that bears λ′i, wλ
′′

i the one that bears λ′′i and728

wλ0 the one that bears λ0 in matrix block λ, and similarly in matrix block µ, we get:729

c c

c c

λ11 λnm

...

...λ

=

...

...

λ′1 λ′n

λ′′mλ′′1

λ0

µ
...

c c

c c

µ11 µmp

...

...

µ′1 µ′m

µ′′pµ′′1

µ0

⊔
i

λ
0w
µ′′
i
t λ0w

µ
0

⊔
i

λ′
1w
µ′′
i
t λ
′
1w
µ
0⊔

i

λ
11w

µ
1i t

λ
11w

µ′
1⊔

i

λ′′
1w
µ
1i t

λ′′
1w
µ′
1⊔

i

λ
i1w

µ′
1 t λ

′′
1w
µ′
1 ⊔

i

λ′
i
w
µ
0 t

λ
0w
µ
0

⊔
i

λ
i1w

µ
11 t

λ′′
1w
µ
11⊔

i

λ′
i
w
µ′′
1 t λ0w

µ′′
1

730



K. Chardonnet and M. de Visme B. Valiron and R. Vilmart 23:27

where a
xw

b
y = {(z1, z2) | z1 ∈ wax, z2 ∈ wby}. Let us now look at how to push the middle731

dangling wires through. At the first junction, we have:732

c

λ11

λ′′1

c

µ11

µ′1

⊔
i

λ
11w

µ
1i t

λ
11w

µ′
1⊔

i

λ′′
1w
µ
1i t

λ′′
1w
µ′
1⊔

i

λ
i1w

µ′
1 t λ

′′
1w
µ′
1⊔

i

λ
i1w

µ
11 t

λ′′
1w
µ
11

λn1
⊔
i

λ
n1w

µ
1i t

λ
n1w

µ′
1

µ1p
⊔
i

λ
i1w

µ
1p t

λ′′
1w
µ
1p

...

...

≡
c

λ11

c

µ11

⊔
i

λ
11w

µ
1i t

λ
11w

µ′
1

⊔
i

λ
i1w

µ
11 t

λ′′
1w
µ
11

λn1
⊔
i

λ
n1w

µ
1i t

λ
n1w

µ′
1

µ1p
⊔
i

λ
i1w

µ
1p t

λ′′
1w
µ
1p

...

...

λ′′1

µ′1

λ′′
1w
µ′
1

c
µ′1

λ
11w

µ′
1

c
µ′1

λ
n1w

µ′
1

cλ′′1
λ′′

1w
µ
11 c λ′′1

λ′′
1w
µ
1p

733

≡
c

c
µ11

⊔
i

λ
i1w

µ
11

µ1p
⊔
i

λ
i1w

µ
1p

...

...

λ′′1 µ
′
1

λ′′
1w
µ′
1

c
λ11µ′1

λ
11w

µ′
1

c
λp1µ′1

λ
n1w

µ′
1

λ11
⊔
i

λ
11w

µ
1i λn1

⊔
i

λ
n1w

µ
1i

cλ′′1 µ11λ′′
1w
µ
11 c λ′′1 µ1p λ′′

1w
µ
1p

734

735

Doing this at every junction wire, we are able to push all the middle dangling wires to the736

boundaries, and where the middle is in the shape of the previous simple case (2).737

Let us now look at the boundaries, for instance the first output. After pushing all dangling738

wires, and taking into account the scalar diagram λ0, we have:739

cλ′′1 µ11λ′′
1w
µ
11

λ′′nµn1λ′′
nw

µ
n1 ...

µ′′1
⊔
i

λ′
i
w
µ′′
1 t λ0w

µ′′
1

... λ0
⊔
i

λ
0w
µ′′
i
t λ0w

µ
0

≡

c
µ′′1

λ′
nw

µ′′
1

...

λ0

⊔
i6=1

λ
0w
µ′′
i
t λ0w

µ
0

λ0µ′′1
λ
0w
µ′′
1

µ′′1
λ′

1w
µ′′
1

...λ′′1 µ11λ′′
1w
µ
11

λ′′nµn1λ′′
nw

µ
n1 ...

740

≡
c

∑
i
λ′′
i
µi1+λ0µ′′1

w1
µ′′1

λ′
nw

µ′′
1

...
λ0

⊔
i6=1

λ
0w
µ′′
i
t λ0w

µ
0 µ′′1

λ′
1w
µ′′
1

...741

742

where on the right hand side of the diagram, we decomposed the dangling wire by its different743

elementary worlds. One of them was shared with the λ0 scalar, and using Lemmas 27 and744

28, we could bring them together. Then on the left hand side, we used the fact that none of745

the λ′′iw
µ
i1 nor the λ0w

µ′′

1 could be found elsewhere in the diagram, so we could sum all the746

scalars without altering the rest of the diagram.747

Doing so for all boundaries, scalars λ0 and µ0 are only left on world λ
0w

µ
0 . We can then use748

Lemma 28 to bring them together. All the worlds on right hand side of the last diagram749

above λ′iw
µ′′

1 can be found on the boundaries at the top (i.e. for each input i and output j750

there is world λ′

iw
µ′′

j shared between the two). Using the small following derivation, we can751

bring them together:752

λ′i

µ′′j

λ′
i
w
µ′′
j

λ′
i
w
µ′′
j ≡

λ′i

µ′′j

λ′
i
w
µ′′
j ≡

λ′iµ
′′
j

λ′
i
w
µ′′
j

753

Now this world can be found nowhere else in the diagram, it is hence possible to sum the754

scalar with the other that has the same neighbourhood, obtained from (2).755
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It remains to deal with the scalars. We have λ0mu0 on world λ
0w

µ
0 from what we just756

discussed. We also have scalar λ′′i µ′i on world λ′′

iw
µ′

i from the dangling wires at the junction.757

All these worlds are again mutually exclusive and found nowhere else in the diagram. We758

can hence sum them and get λ0µ0 +
∑
i λ
′′
i µ
′
i as the scalar on the side. After all this, the759

diagram is in the appropriate form (up to renaming of worlds), with all worlds in the internal760

wires being mutually exclusive. J761

I Lemma 30. For any "matrix block" λ, there exists a "matrix block" ν such that:762

λ
...

c c

...
c c...

... ... ... ......

≡

c c... c c...

... ... ... ......

...
ν

763

764

Proof. We show the result through several steps. First we show the following:765

c
λ

≡ c
λ

≡
λ

c
c

≡
c

c

λ (3)766

767

Then, we deal with the top dangling scalars and prove that:768

c c... c c...

... ... ... ......

c
λ

≡

c c... c c...

... ... ... ......

...
ν

(4)769

770

Indeed:771

c c... c c...

... ... ... ......

c
λ

≡
26

c c... c c...

... ...
c

... ......

c
λ

c
λ

λ

≡
(3)

c c... c c...

...

... ... ...
...

λ

λ

c
λc c

772

≡

c c... c c...

...

... ... ...

...
λ

λ
c
λc

c

c
c ≡

c c... c c...

... ... ... ......

...
ν

773

774

This case generalizes to any bottom wire the dangling scalar is applied on. When we have775

several of them, we can make them go through the top part in turns, then aggregate them776

under a single "matrix block" using Lemma 29.777

We then derive the following equation:778

c c

c c

λ00 λnm

...

...c

...

≡

c c

λ00 λnm

...

...c

...
c

c
c c

≡

c c

λ00 ...

...c

...
c c

λnm

≡

c c

c c

λ00 λnm

...

...

c ...

(5)779
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780

We can finally prove the lemma:781

λ
...

c c

...
c c...

... ... ... ......

≡ c c

c c

λ11 λnm

...

...

λ′1 λ′n

λ′′mλ′′1

λ0−1

c c

...
c c

... ... ... ......

≡
(4)

c c

c c

λ11 λnm

...

... λ′′mλ′′1

c c

...
c c

... ... ... ......

...
ν′

782

≡

c c
... λ′′mλ′′1

c c

...
c c

... ... ... ......

...
ν′

c c

c c

λ11 λnm

...

...
c c

c c

λ11 λnm

...

... ≡
(5)

...c c... c c

...
...

...

...
ν′

c c

c c

λ11 λnm

...

...

c c

c c

λ11 λnm

...

... c c λ′′mλ′′1783

≡
29

c c... c c...

... ... ... ......

...
ν

784

785

J786

We can now move on to show that generators can be put in normal form:787

Proof of Proposition 11.

A ⊗ B

≡

iso-1A⊗B

isoA⊗B
... ≡

isoA�B

c
...

c
...

iso-1A⊗B

≡
isoA�B

c
...

c
...

iso-1A⊗B

788

789

A ⊕ B

≡

iso-1A⊕B

isoA⊕B
... ≡

iso-1A⊕B

isoA�B

c
...

c
...

≡

iso-1A⊕B

isoA�B

c
...

c
...

790
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791

A B

≡

iso-1
A

isoA

iso-1
B

isoB

...

...
cc cc

...

......

...cc cc...
≡

isoA�B

iso-1A�B

... ≡

iso-1
A

isoA

iso-1
B

isoB

...

...
cc cc

...

......

...c cc c...
≡

isoA�B

iso-1B�A

...
σ
...

792

with σ a simple permutation of wires.793

c ≡

iso-1
A

isoA...

c

A

≡
iso-1
A

isoA

...
isoA

c c
...... ≡

iso-1
A

isoA�A

...c c

......
c c
...

794

795

s ≡

iso-1
A

isoA...

s

A

≡

iso-1
A

isoA...
s s...

796

797

≡ ≡
iso1

iso��

798

799

A
≡ iso-1

A

isoA... ≡ iso-1
A

...
iso-1
A

... ≡ iso-1
A

...
iso-1
A

...c
cc c

c cc c
......

≡ iso-1
A�A

... ...c cc c

c c... cc ......

c c

800

The upside-down versions of the generators are provided in exactly the same way (but801

upside-down). J802

And then that compositions of diagrams in normal form can be put in normal form:803

Proof of Proposition 12. In the case of sequential composition:804

iso-1
B

...

...

λ

...
isoA
...

iso-1
C

...

...

µ
...

isoB
≡
22

...
λ

...
isoA
...

iso-1
C

...

...

µ
≡
29 ...

ν
...

isoA
...

iso-1
C...

805

806
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In the case of parallel composition:807

iso-1
B

...

...

λ

...
isoA
...

iso-1
D

...

...

µ
...

isoC
...

≡
22

iso-1
B

...

...

λ

...
isoA
...

iso-1
D

...

...

µ
...

isoC
...

isoA�C...
iso-1
A�C

...

iso-1
B�D

...
isoB�D

...

≡
22

λ µ

isoA�C

...

iso-1
B�D...

c c
...

c c
...

... ... ... ......

c c... c c...

... ... ... ......

≡
30

λ

isoA�C

...

iso-1
B�D...

c c
...

c c
...

... ... ... ......

c c... c c...

... ... ... ......
µ′
...

...

808

≡
30

isoA�C

...

iso-1
B�D...

c c
...

c c
...

... ... ... ......

c c c c

... ... ... ......

µ′

...

...

λ′
...

≡
22
29

isoA�C

...

iso-1
B�D...

ν′′
...

...
≡

iso
A�C

...

iso-1
B�D...

ν′′
...

...

σ
...

σ′
...

≡
29

iso
A�C

...

iso-1
B�D...

ν
...

...
809

810

where A�C represents the canonical choice of composition with � (and similarly for B�D).811

J812
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