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Abstract20

State-space models (SSM) and recurrent neural networks (RNN) are widely

used approaches for dynamical system modeling. In the case of SSMs, they in-

clude explicit modeling of all components, including the noise characterization,

and thus allow for interpretability and uncertainty quantification. However, the

underlying dynamical model parameters must be specified, and closed-form in-

ference is possible only in a few simple cases. RNNs, on the other hand, can

learn, through supervised training, rather complex nonlinearities from the data

but lack the aforementioned advantages of SSMs. In this work, we combine

the benefits of both approaches by introducing a Gaussian SSM whose state

and evolution operators can be learnt from the data. In order to deal with the

ill-posedness of this parameter estimation problem, we propose an innovative

factorized form of both the state and observation operators reminiscent of deep

nonnegative matrix factorization models. An expectation-maximization method

combined with a block alternating strategy is introduced to estimate each of the

involved positive latent factors, while jointly performing the probabilistic state

inference. Our resulting formulation and inference tool is deep recurrent dic-

tionary learning (DRDL). We then specialize DRDL for the problem of stock

forecasting by proposing an online training strategy and a probabilistic assess-

ment of the trading decision. Numerical experiments on a problem of stock

market data inference show its superiority among several state-of-the-art dy-

namic modeling tools.
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1. Introduction24

Modeling dynamical systems has been a topic of interest to signal processing,25

machine learning and control engineering researchers for more than five decades.26

Applications range in areas as diverse as financial market analysis to electric27

demand forecasting. We propose a new dynamical recurrent modeling technique28

that combines the advantages of state-of-the-art deep learning tools with those29

of traditional state-space models. The proposed tool is then particularized to30

processing stock market time series. In the following, we review the literature31

of dynamic modeling around this particular application and we describe the32

contributions of the paper.33

1.1. State-of-the-art review34

Modeling the stock market is a well-known challenging problem Yang &35

Wu (2006). The difficulty lies in the non-stationary and nonlinearity of the36

underlying dynamical process. Moreover, financial markets are not only in-37

fluenced by consumer behavior but also by a myriad of external factors like38

natural disasters, administrative policies, political decisions, international rela-39

tions, etc., to name a few. Therefore developing reliable algorithmic models for40

stock trading still remains a challenging yet interesting topic from the point of41

view of both finance and machine learning/signal processing Fama (2021); Shah42

et al. (2019). Auto-regressive moving average (ARMA) models have been used43

to model stock market Zhao-yang (2010); Atsalakis & Valavanis (2010); Moon44

et al. (2021); Nowicka-Zagrajek & Weron (2002). ARMA assumes the stochastic45

process to be stationary; this turns out to be too simplistic and consequently46

unrealistic for the stock market. This limitation was partially overcome by au-47

toregressive integrated moving average (ARIMA) Ariyo et al. (2014) models48
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(also referred as Box-Jenkins model). ARIMA has been used in the past for49

stock forecasting and trading Devi et al. (2013), Petrica et al. (2016). However,50

Box-Jenkins/ARIMA methods could not model non-smooth variations in time51

series Makridakis & Hibon (1997); O’Donovan (1983). ARIMA with regressors52

were introduced to overcome the limitations, leading to ARIMAX Chadsuthi53

et al. (2012); Ababio (2012). Unfortunately, ARIMAX introduced other prob-54

lems such as over/under-fitting because of the handling of extra predictors and55

variables.56

SSM is another powerful approach for modeling and analysing time-series57

Särkkä (2013); Newman et al. (2023). Many studies used SSMs for stock fore-58

casting, and analysis Östermark (1991); Saini et al. (2014); Elvira & Chouzenoux59

(2022). The celebrated Kalman filter is a solution to the inference of a linear60

SSM where the noise is assumed to be Gaussian Kalman (1960). The literature61

illustrates its minimal use in stock forecasting Choudhry & Wu (2009) but found62

its application in other financial analyses, see for example Wells (2013). To over-63

come the restrictive linearity assumption, extended Kalman filter (EKF) Ljung64

(1979), unscented Kalman filter (UKF) Wan & Van Der Merwe (2000) were in-65

troduced. Particle filters Djuric et al. (2003); Doucet & Johansen (2009); Elvira66

et al. (2019); Ntemi & Kotropoulos (2021) further relaxed the Gaussianity as-67

sumption. The advantage of the SSM approach is that it can model uncertainty68

in the estimate Doucet & Johansen (2009); Bach & Jordan (2004). Uncertainty69

is crucial for financial markets since it gives a measure of the associated risk70

Rigotti & Shannon (2005).71

The main drawback of the aforesaid signal processing-based forecasting ap-72

proaches is that they need the model’s specification. Unfortunately, specifying73

an underlying model for the stock market is difficult, if not impossible. Several74

works in the literature have thus investigated the learning of model parameters75

in SSMs. In the case of linear-Gaussian state-space models (LG-SSMs), see for76

instance the methods in Sharma et al. (2020); Shumway & Stoffer (1982); Khan77

& Dutt (2007), and (Särkkä, 2013, Chapter 12). All these works consider the78

observation and state operators to be unknown and estimated from data using79
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expectation-maximization (EM) methods. However, the aforementioned works80

can only consider linear models and do not account for any prior knowledge81

on the involved operators. Inferring model parameters for non-linear SSMs has82

been explored in more generic algorithms, e.g., particle MCMC methods An-83

drieu et al. (2010), SMC2 Chopin et al. (2013), and nested PFs Crisan & Miguez84

(2018). In all these cases, the inference is costly, as they use Monte-Carlo sam-85

pling methods and thus do not generally scale well. The problem of scalability86

in SSM model inference has been mildly explored. Let us mention our two re-87

cent works Chouzenoux & Elvira (2020); Sharma et al. (2021), both focusing88

on LG-SSMs. In Chouzenoux & Elvira (2020), a sparsity prior in introduced on89

the linear matrices to infer, providing an interpretable and compressible model.90

Though this method is promising, it does not allow explicit control of the final91

dimension of the model easily, and as such, still requires an increased compu-92

tational time at inference. In Sharma et al. (2021), we proposed an online (still93

EM-based) estimation approach in the context of stock market time series pro-94

cessing. The online processing allows a reduced complexity and memory burden95

while being beneficial to capturing non-linear phenomena in such volatile time96

series. However, the parametric estimation step lacked of robustness and lack97

of sufficient imposed structure on the estimated factors.98

Neural network (NN) models represent another family of approaches for time99

series modeling. By construction, these methods excel when the model spec-100

ification is missing, as they implicitly learn the model from the data through101

the training phase. In particular, the approximation capability of recurrent102

neural networks (RNNs) for dynamical systems allows to learn the underlying103

phenomena given enough training data Gonzalez-Olvera & Tang (2010); Won104

et al. (2010); Yin et al. (2022). RNN and its subsequent versions are used in105

several studies for stock price forecasting Saad et al. (1998); Tino et al. (2001).106

Deeper neural network architectures are known to yield better results than their107

shallow counterparts Bengio et al. (2007); Shao et al. (2014). They are engi-108

neered to approximate highly non-linear function in high-dimensional spaces109

and are supposed to be more suitable for challenging problems Cheridito et al.110
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(2021); Bianchini & Scarselli (2014). 1-D CNN performs better when compared111

to LSTM and RNN owing to their ease of training. There are studies, such as112

Sezer & Ozbayoglu (2018), that use them as financial forecasting. However, 1-D113

CNNs cannot process streaming data. Hence some works have recently proposed114

the combination of RNN with 1-D CNN in order to model time-series signals115

Long et al. (2019). It must be noted that deep neural networks are computa-116

tionally intensive Abbe & Sandon (2018). Furthermore, deep neural networks117

only provide data estimates for each time step and do not provide uncertainty118

quantification, while such information would be necessary for stock forecasting119

to assess risks. Therefore, recent works have been dedicated to combine proba-120

bilistic forecasting and deep learning techniques, so as to predict the probability121

distribution of future events in the time series given its past/historical recordings122

Salinas et al. (2020); Jiang (2021). Deep factor model based on dropout-based123

heuristic and complex semantics have also been considered in Chauhan et al.124

(2020). These techniques provide probability distributions as outputs, thanks125

to specific learning strategies inherited from the Bayesian NN litterature. How-126

ever, these works, up to our knowledge, do not mention any explicit strategy127

to estimate uncertainty/confidence score on future predictions/decisions that128

would help to assess their reliability. Standard (non deep) machine learning129

models have also been combined to statistical time series modeling tools. For130

instance, the work Pai & Lin (2005) uses ARIMA and support vector machine.131

Another work uses a combination of ARIMA and random forests for the same132

task Kumar & Thenmozhi (2014). Finally, several works, such as Ding et al.133

(2015); Chong et al. (2017); Fischer & Krauss (2018), use information mined134

from news articles and blogs via natural language processing for stock forecast-135

ing Cheng et al. (2022); Li et al. (2023). Strictly speaking, this is not artificial136

intelligence since these are dependent on human cognizance.137

1.2. Contributions compared to existing literature138

As a summary, SSMs are valuable tools for probabilistic time series model-139

ing and inference. But there is a crucial need for new strategies to cope with140
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the curse of dimensionality in learning SSM model parameters. In this work,141

we propose to impose a structured prior on the observation/state operators in-142

volved in an LG-SSM. We introduce deep nonnegative matrix factorized (deep143

NMF) models for both operators. Deep NMF De Handschutter et al. (2021) is144

a generalized form of NMF Cichocki et al. (2009) that models latent representa-145

tions from complex data through a product of a (usually small) number of linear146

operators (called latent factors) satisfying positivity constraints. Deep NMF has147

been employed with success on various unsupervised machine learning tasks Yu148

et al. (2015); Trigeorgis et al. (2016); Xue et al. (2017); Chen et al. (2021);149

Flenner & Hunter (2017). When embedded into an NN structure, it leads to150

the so-called deep ReLu networks Liu & Liang (2021); Daubechies et al. (2022);151

Chen et al. (2019). Deep NMF shares connections with the recently introduced152

deep dictionary learning (deep DL) Tariyal et al. (2016); Mahdizadehaghdam153

et al. (2019), the main difference being in the priors imposed in the latent fac-154

tors (positivity, in the case of deep NMF, low-rank/sparsity in the case of deep155

DL). In our work, deep NMF is neither used for unsupervised representation156

learning nor in an NN framework. In contrast, it is embedded into a Gaussian157

SSM to model, allowing to track and predict complex latent phenomena in time158

series. A novel algorithm is proposed, that learns the positive latent factors159

jointly with the probabilistic state inferential task induced by our SSM. We call160

this modelling and inference tool Deep Recurrent Dictionary Learning (DRDL).161

We further specialize this tool, to make it practically efficient in the context of162

large and volatile time series arising in stock market data. In particular, we163

perused the online training strategy we previously introduced in Sharma et al.164

(2021).165

Contributions in a nutshell. In this work, we:166

• Introduce an LG-SSM model involving deep positive latent factors;167

• Propose a new EM-based inference method to jointly perform the time168

series prediction task and the deep linear positive factors estimation;169

• Devise efficient implementation strategies for practical use of the method170
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in the context of stock market time series analysis;171

• Investigate through experiments and benchmark comparisons on real fi-172

nancial data the performance of the novel DRDL approach.173

1.3. Paper organization174

The rest of the paper is organized as follows. The proposed DRDL model175

and its inference is presented in the following Section 2. The practical imple-176

mentation of DRDL in the context of stock market data analysis is discussed in177

Section 3. The experimental results and their analysis are described in Section178

4. The conclusions of this work are discussed in section 5.179

1.4. Paper organization180

The rest of the paper is organized as follows. The proposed DRDL model181

and its inference is presented in the following Section 2. The practical imple-182

mentation of DRDL in the context of stock market data analysis is discussed in183

Section 3. The experimental results and their analysis are described in Section184

4. The conclusions of this work are discussed in section 5.185

2. Proposed Work186

2.1. Considered model187

Let us consider an observed sequence (xk)1≤k≤K of vectors of size Nx ≥ 1.188

We aim to estimate (zk)1≤k≤K , a sequence of unknown hidden/latent vectors189

of size Nz ≥ 1. The DRDL approach relies on the following re-parametrized190

LG-SSM:191

For every k ∈ {1, . . . ,K},192  zk = D0D1D2zk−1 + v1,k,

xk = H0H1H2zk + v2,k.
(1)

where D0 ∈ [0,+∞)Nz×Nz , D1 ∈ [0,+∞)Nz×Nz , and D2 ∈ [0,+∞)Nz×Nz193

are three positive-valued linear factors leading to a multi-linear state oper-194

ator D0D1D2. Similarly, H0 ∈ [0,+∞)Nx×Nz , H1 ∈ [0,+∞)Nz×Nz , H2 ∈195
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[0,+∞)Nz×Nz are three positive-valued linear factors yielding the multi-linear196

observation model H0H1H2. 1 The process noise (v1,k)1≤k≤K is assumed to197

have a Gaussian distribution with zero-mean and symmetric definite positive198

covariance matrix Q ∈ RNz×Nz . The observation noise (v2,k)1≤k≤K , is also as-199

sumed zero-mean Gaussian with symmetric definite positive covariance matrix200

R ∈ RNx×Nx . We consider z0 ∼ N (z̄0,P0) as the initial state, with z̄0 ∈ R201

and P0 ∈ RNz×Nz defined as definite symmetric positive matrix. The model202

in Eq. (1) can be interpreted as a multi-linear Gaussian model involving a se-203

quence of K hidden states represented by (zk)1≤k≤K . As discussed earlier, clas-204

sical inference approaches for SSM require specifying every model parameters.205

In the model above, this would mean setting the positive latent factor matri-206

ces matrices {D0,D1,D2,H0,H1,H2} involved in both state and observation207

models. In practical applications such as stock market analysis, these param-208

eters are unknown and must be learnt from the observed data. The objective209

is thus to provide a point-wise estimate of the positive latent factor matrices210

{D0,D1,D2,H0,H1,H2} and a probabilistic estimate of sequence (zk)1≤k≤K ,211

given the observed sequence (xk)1≤k≤K . This can be seen as solving jointly (i)212

two deep NMF problems, (ii) a filtering/smoothing problem.213

2.2. Discussion on the model214

We now discuss the main characteristics of the proposed DRDL method.215

The model is mathematically described in Eq. (1) and displayed in Fig. 1. The216

top equation describes the hidden state evolution, assuming Markovianity be-217

tween two consecutive hidden states. The second equation links the hidden and218

observed states. A first interesting aspect, inherited from the SSM paradigm,219

is that two Gaussian noise terms are explicitly introduced in DRDL to cope220

with model uncertainty, which is in contrast with most deep learning models for221

1Throughout the paper, we consider three-terms factorizations, for the sake of readibility.

The 3-layers modeling and inference methodology has the great advantage of being generic

enough to be straightforwardly extended to any number, greater or equals to one, of factors.
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time series processing (e.g., LSTM). A second novel feature of (1) lies in using222

deep NMF models instead of generic matrices (in the linear case) or functions223

(in the non-linear case), as it is usually the case in SSMs Andrieu et al. (2010);224

Chopin et al. (2013); Crisan & Miguez (2018), taking advantage on the acknowl-225

edged representation power of deep NMF De Handschutter et al. (2021). One226

important benefit of the proposed approach w.r.t. most existing methods in the227

literature is that we avoid Monte Carlo simulation or complex optimization pro-228

cedure, which is known to suffer more severely the curse of dimensionality. In229

our method, each latent factor can be understood as representations in abstract230

spaces of the phenomena occurring between both pairs of variables. Third, in231

contrast with the typical usage of deep NMF in machine learning, relying on232

backpropagation for their model training Chen et al. (2021); Flenner & Hunter233

(2017), DRDL model allows the construction of an handcrafted training strat-234

egy (see the next section), which benefits from a low computational cost, sound235

optimality guarantees (in terms of Bayesian estimator), and enables uncertainty236

quantification.

Zk-2 Zk-1

Xk-2
Xk-1

Zk

Xk

D0 D1 D2

H0

H1

H2

H0
H0

H1 H1

H2 H2

D0 D1 D2

Figure 1: Schematic Diagram for Deep Recurrent Dictionary Learning
237

2.3. DRDL inference algorithm238

Using SSM models for time series processing (e.g., for a prediction task)239

amounts to solving the so-called smoothing/filtering problem, i.e., the proba-240

bilistic estimation of the hidden state (zk)1≤k≤K . In our context, as the deep241

NMF factors {D0,D1,D2,H0,H1,H2} involved in the construction of the state242
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transition and the observation transition models are most often unknown, we243

must also infer them from the observed data, jointly with the hidden states244

(through the aforementioned filtering/smoothing procedure). To do so, we pro-245

pose an expectation-maximization (EM) approach (see (Särkkä, 2013, chap.12)246

and Shumway & Stoffer (1982)). The EM method alternates iteratively be-247

tween the probabilistic inference of the state (zk)1≤k≤K , while the positive248

factors {D0,D1,D2,H0,H1,H2} are fixed (E-step), and the update of these249

factors, assuming fixed state (M-step). More precisely, the E-step consists in250

fixing the linear operators obtained in the previous M-step and applying the251

classical Kalman/RTS recursions, for obtaining the filtered/smooth distribu-252

tions p(zk|x1:k) and p(zk,x1:K), respectively. Then, the M-step updates the253

operators {D0,D1,D2,H0,H1,H2} by maximizing an upper bound of:254

φK(D0,D1,D2,H0,H1,H2)

= log p(x1:K |D0,D1,D2,H0,H1,H2). (2)

We explicit hereafter the construction of the i+1-th EM update, given estimates255

from the previous iteration i.256

2.3.1. E-step: Kalman/RTS inference257

At this step, we considered the factors D
[i]
0 ,D

[i]
1 ,D

[i]
2 ,H

[i]
0 ,H

[i]
1 ,H

[i]
2 to be258

fixed (either from the previous M-step or from the initialization at the first259

iteration), and the goal is the probabilistic estimation of the latent states. As we260

aforementioned, (1) is a multi-linear Gaussian model whose observation operator261

H0H1H2, evolution/state operator D0D1D2, and hidden state (zk)1≤k≤K must262

be estimated. For each k ∈ {1, . . . ,K}, the probabilistic estimate of the latter263

conditioned to all available data up to time k, is provided by the Kalman filter264

through the following Gaussian filtering distribution:265

p(zk|x1:k) = N (zk; z̄k,Pk). (3)

For every k, the mean z̄k and the covariance Pk are given by the Kalman266

iterations:267
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For k = 1, . . . ,K:268

Predict state:269  zk|k−1 = D
[i]
0 D

[i]
1 D

[i]
2 z̄k−1,

Pk|k−1 = D
[i]
0 D

[i]
1 D

[i]
2 Pk−1(D

[i]
0 D

[i]
1 D

[i]
2 )⊤ +Q.

(4)

Update state:270 

yk = xk −H
[i]
0 H

[i]
1 H

[i]
2 zk|k−1,

Sk = H
[i]
0 H

[i]
1 H

[i]
2 Pk|k−1(H

[i]
0 H

[i]
1 H

[i]
2 )⊤ +R,

Kk = Pk|k−1(H
[i]
0 H

[i]
1 H

[i]
2 )⊤S−1

k ,

z̄k = zk|k−1 +Kkyk,

Pk = Pk|k−1 −KkSkK
⊤
k .

(5)

Hereabove, yk represents the measurement pre-fit residual, Sk represents the271

pre-fit covariance, Kk represents Kalman gain, z̄k represents the updated (a272

posteriori) state estimate, Pk represents the updated (a posteriori) covariance273

estimate. The backward recursion from the RTS smoother allow to build the274

smoothing distribution p(zk|x1:K).275

For k = K, . . . , 1276

Backward Recursion:277 

z−k+1 = D
[i]
0 D

[i]
1 D

[i]
2 z̄k,

P−
k+1 = D

[i]
0 D

[i]
1 D

[i]
2 Pk(D

[i]
0 D

[i]
1 D

[i]
2 )⊤ +Q,

Gk = Pk(D
[i]
0 D

[i]
1 D

[i]
2 )⊤[P−

k+1]
−1,

zsk = z̄k +Gk[z
s
k+1 − z−k+1],

Ps
k = Pk −Gk[P

s
k+1 −P−

k+1]G
⊤
k .

(6)

Consequently, for every time step k ∈ {1, . . . ,K}, the RTS smoother provides:278

p(zk|x1:K) = N (zk; z
s
k,P

s
k). (7)

2.3.2. M-step: Evolution operators update279

The M-step performs an optimization step to increase the likelihood of the280

positive latent factors {D0,D1,D2,H0,H1,H2}, given the smoothing distribu-281

tion obtained in the E-step. It proceeds by building the upper-bound:282
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φk(D0,D1,D2,H0,H1,H2)

≥ Q(D0,D1,D2,H0,H1,H2;Θ
[i]). (8)

Hereabove, Θ[i] = {Σ[i],Φ[i],B[i],C[i],∆[i]} gathers five quantities defined from283

the outputs of the E-step described in Sec. 2.3.1):284

Q(D0,D1,D2,H0,H1,H2;Θ
[i]) =

− K

2
tr
(
Q−1Σ[i] −C[i](D0D1D2)

⊤ −D0D1D2(C
[i])⊤

+D0D1D2Φ
[i](D0D1D2)

⊤
)

− K

2
tr
(
R−1∆[i] −B[i](H0H1H2)

⊤ −H0H1H2(B
[i])⊤

+H0H1H2Σ
[i](H0H1H2)

⊤
)
, (9)

with:285

Σ[i] =
1

K

K∑
k=1

Ps
k + zsk(z

s
k)

⊤,

Φ[i] =
1

K

K∑
k=1

Ps
k−1 + zsk−1(z

s
k−1)

⊤,

B[i] =
1

K

K∑
k=1

xk(z
s
k)

⊤, (10)

C[i] =
1

K

K∑
k=1

Ps
kG

⊤
k−1 + zsk(z

s
k−1)

⊤,

∆[i] =
1

K

K∑
k=1

xkx
⊤
k .

The updates {D[i+1]
0 ,D

[i+1]
1 ,D

[i+1]
2 ,H

[i+1]
0 ,H

[i+1]
1 ,H

[i+1]
2 } given the knowledge286

of Θ[i], amounts to maximizing Q(·;Θ[i]) under positivity constraints on the287

factors. In contrast with the linear unconstrained model case studied in (Särkkä,288

2013, Chapter 12), the maximization problem here does not have a closed-form289

solution. It is highly non-convex due to the multi-linearity of our model. Luckily,290

it happens to be convex with respect to each of the factors. We thus propose291
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to resort to the following alternating maximization step:292

D
[i+1]
0 = argmax

D0≥0
Q(D0,D

[i]
1 ,D

[i]
2 ,H

[i]
0 ,H

[i]
1 ,H

[i]
2 ;Θ[i])

D
[i+1]
1 = argmax

D1≥0
Q(D

[i+1]
0 ,D1,D

[i]
2 ,H

[i]
0 ,H

[i]
1 ,H

[i]
2 ;Θ[i])

D
[i+1]
2 = argmax

D2≥0
Q(D

[i+1]
0 ,D

[i+1]
1 ,D2,H

[i]
0 ,H

[i]
1 ,H

[i]
2 ;Θ[i])

H
[i+1]
0 = argmax

H0≥0
Q(D

[i+1]
0 ,D

[i+1]
1 ,D

[i+1]
2 ,H0,H

[i]
1 ,H

[i]
2 ;Θ[i])

H
[i+1]
1 = argmax

H1≥0
Q(D

[i+1]
0 ,D

[i+1]
1 ,D

[i+1]
2 ,H

[i+1]
0 ,H1,H

[i]
2 ;Θ[i])

H
[i+1]
2 = argmax

H2≥0
Q(D

[i+1]
0 ,D

[i+1]
1 ,D

[i+1]
2 ,H

[i+1]
0 ,H

[i+1]
1 ,H2;Θ

[i])

This approach ensures by construction the following inequality:293

Q(D
[i+1]
0 ,D

[i+1]
1 ,D

[i+1]
2 ,H

[i+1]
0 ,H

[i+1]
1 ,H

[i+1]
2 ;Θ[i])

≥ Q(D
[i]
0 ,D

[i]
1 ,D

[i]
2 ,H

[i]
0 ,H

[i]
1 ,H

[i]
2 ;Θ[i]), (11)

which is key to guarantee the convergence properties for the EM iteration. In-294

deed, the proposed updates yield an increase of the lower bound of the marginal295

likelihood, so as a consequence, an increase of the marginal log-likelihood itself.296

The overall procedure is thus guaranteed to yield a monotonic increase of the297

marginal log-likelihood function φK and classical results about majorization-298

minimization methods allow to ensure convergence guarantees to a stationary299

point of φK Jacobson & Fessler (2007). The six sub-problems are quadratic pro-300

gramming (convex) problems and can be solved through several available solvers.301

We decided to use the simple and fast alternating least squares approach Ci-302

chocki et al. (2009), reminiscent from the literature of deep nonnegative matrix303

factorization Chen et al. (2021), and the deep ReLu neural networks models304

Daubechies et al. (2022), both showing a satisfactory behavior in preliminary305

experiments. We start by computing each subproblem solution ignoring the pos-306

itivity constraints, and then capped the negative entries of the obtained factors.307

This yields the following analytic updates:308
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309

D
[i+1]
0 = ReLu

(
C[i](D

[i]
2 )⊤(D

[i]
1 )⊤(D

[i]
1 D

[i]
2 Φ[i](D

[i]
2 )⊤(D

[i]
1 )⊤)†

)
,

D
[i+1]
1 = ReLu

(
((D

[i+1]
0 )⊤Q−1D

[i+1]
0 )†(D

[i+1]
0 )⊤Q−1C[i](D

[i]
2 )⊤

×(D
[i]
2 Φ[i](D

[i]
2 )⊤)†

)
,

D
[i+1]
2 = ReLu

(
((D

[i+1]
1 )⊤(D

[i+1]
0 )⊤Q−1D

[i+1]
0 D

[i+1]
1 )†(D

[i+1]
1 )⊤

×(D
[i+1]
0 )⊤Q−1C[i](Φ[i])−1

)
,

H
[i+1]
0 = ReLu

(
B[i](H

[i]
2 )⊤(H

[i]
1 )⊤(H

[i]
1 H

[i]
2 Σ[i](H

[i]
2 )⊤(H

[i]
1 )⊤)†

)
,

H
[i+1]
1 = ReLu

(
((H

[i+1]
0 )⊤R−1H

[i+1]
0 )†(H

[i+1]
0 )⊤R−1B[i](H

[i]
2 )⊤

×(H
[i]
2 Σ[i](H

[i]
2 )⊤)†

)
,

H
[i+1]
2 = ReLu

(
((H

[i+1]
1 )⊤(H

[i+1]
0 )⊤R−1H

[i+1]
0 H

[i+1]
1 )†

×(H
[i+1]
1 )⊤(H

[i+1]
0 )⊤R−1B[i](Σ[i])−1

)
. (12)

310

Hereabove, (·)† denotes the pseudo-inverse operator. Moreover, ReLu (·)311

states for the rectified linear unit function, that projects each entry of its input312

to the positive orthant.313

2.4. The DRDL algorithm summarized314

We summarize in Alg. 1 the DRDL algorithm, for the probabilistic inference315

of the sequence of hidden state (zk)1≤k≤K , jointly with the point-wise estimation316

of the latent factors {D0,D1,D2,H0,H1,H2}, assuming the data follows the317

DRDL model (1). In practice, DRDL algorithm is ran for a maximum number318

of iterations imax, set so as to reach stabilisation of the latent factors.319

320

3. Application to Stock Trading321

We now particularize the DRDL inference algorithm to the stock trading322

applications. In particular, we address the forecasting/trading tasks given a set323

of K daily (i.e., k is a day index) observations of stock market data.324
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Algorithm 1. DRDL (3 layers) inference algorithm.

Inputs. Prior parameters (z0,P0) ; model noise covariance matrices

Q, R ; set of observations {xk}1≤k≤K .

Initialization. Set positive latent factors

{D(0)
0 ,D

(0)
1 ,D

(0)
2 ,H

(0)
0 ,H

(0)
1 ,H

(0)
2 }.

Recursive step. For i = 0, 1, . . . , imax:

(E step) Run the Kalman filter (4)-(5) and RTS smoother (6) using latent

factors {D(i)
0 ,D

(i)
1 ,D

(i)
2 ,H

(i)
0 ,H

(i)
1 ,H

(i)
2 }.

Calculate (Σ(i),Φ(i),B(i),C(i),∆(i)) using (10).

(M step) Compute {D(i+1)
0 ,D

(i+1)
1 ,D

(i+1)
2 ,H

(i+1)
0 ,H

(i+1)
1 ,H

(i+1)
2 } using

(12).

Output. State filtering/smoothing pdfs (3) and (7) along with point-

wise estimates of the latent factor from (12).

3.1. Online implementation325

First, in order to better cope with high volatility of stock market quantities326

and allow immediate feedback to the users for on-the-fly trading, we propose327

here an online implementation of our DRDL approach. We make use of sliding328

windows of size of τ ∈ {1, . . . ,K} time steps. The model parameters are inferred329

for every k ∈ {0, . . . ,K−τ} using the last τ data points observed in the window,330

i.e. Xk = {xj}k+τ
j=k+1, then followed by the EM approach described in detail331

above. The sliding window approach leverages two advantages. First, it helps332

in faster processing of the sequence as one can choose a small number τ of333

data points in the window. Second, it might provide better modeling, since the334
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constant linear factors assumption is likely to better model the time series if τ335

is small. However, a too small τ might also degrades the inference capabilities.336

Hence, it is essential to find a tradeoff in finding an optimal τ , as we will337

show in our experiments. When implementing the online strategy, a warm start338

approach is employed for the Kalman filter initialization. The observation/state339

factors are set to their most recent values, and the mean/covariance of the state340

for processing Xk+1 are initialized using the results of the processing of Xk. Let341

us note that, when we set τ = K, we retrieve the offline version of the algorithm,342

where the EM inference tool is ran only once.343

3.2. Modeling and post-processing for stock market analysis tasks344

Stock market data processing typically amounts to solving two distinct ap-345

plicative problems, namely daily stock price forecasting and stock trading deci-346

sion (among 3 options: buy/hold/sell) estimation. We hereafter explain how to347

post-process DRDL results to tackle both above-stated problems.348

3.2.1. Stock forecasting349

Let us first specify the observation model in stock forecasting. For a given350

window size τ > 0, for each k ∈ {0, . . . ,K−τ}, we observe (xj)k+1≤j≤k+τ ∈ R15,351

gathering 14 technical indicators 2 as well as the adjusted close price. Running352

our DRDL on the considered window yields the following mean estimate of the353

15 quantities for the next time step indexed as k + τ + 1:354

x̂k+τ+1 = H0H1H2zk+τ |k+τ−1, (13)

2We retained the relative strength index (RSI), the William percentage range, the

absolute price oscillator (APO), the commodity channel index, the Chande momen-

tum oscillator (CMO), the directional movement Indicator (DMI), the ultimator os-

cillator, the WMA, the exponential moving average (EMA), the Simple Moving Av-

erage (SMA), the triple EMA, the moving average convergence (MAC), the percent-

age price oscillator, the rate of change (ROC). Detailed definitions can be found in

https://www.investopedia.com/terms/t/technicalindicator.asp
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with the covariance matrix355

Sk+τ+1 = H0H1H2(D0D1D2Pk+τ (D0D1D2)
⊤ +Q) +R. (14)

Hereabove, {D0,D1,D2,H0,H1,H2} are the factors estimated during the M-356

step of our EM-based inference method, and (zk+τ |k+τ−1,Pk+τ ) are byproducts357

of the Kalman prediction step (4)-(5), computed during the E-step of the EM.358

The proposed methodology aims at predicting the entire 15-dimensional vector.359

However, stock forecasting is typically focused on the prediction of a single360

quantity such as the adjusted close price.361

3.2.2. Stock trading362

In stock trading, a different set of inputs are passed to the model. For each363

window index k ∈ {0, . . . ,K − τ}, the observed data points (xj)k+1≤j≤k+τ ∈364

R17, xj [i], for i ∈ {1, . . . , 14}, are the same 14 technical indicators as in stock365

forecating. Additionally, [xj [15], xj [16], xj [17]] ∈ {0, 1}3 gathers the decisions366

“hold”, “buy”, or “sell”, which are calculated for each stocks for every day so as367

to maximize the annualized returns. The labels are further turned into soft hot368

encoded vectors as explained in (Sharma et al., 2021, Sec. 3.3.2). The mean369

and covariance of these 17 quantities can be estimated for next day following370

(13) and (14). We then define our class label for next time step as371

ℓk+τ+1 = argmaxi∈{1,2,3} x̂k+τ+1[i+ 14]. (15)

3.3. Probabilistic assessment of stock trading decision372

We now describe the procedure to assess the uncertainty quantification as-373

sociated to the DRDL predictions. Let k ∈ {0, . . . ,K− τ} be the window index374

on which Algorithm 1 has been run. The probabilistic estimation of the quan-375

tities of interest for the next time step (i.e., one-day ahead prediction) xk+τ+1376

conditioned to the data observed in the window xk:k+τ , reads as a multivariate377

Gaussian distribution378

p(xk+τ+1|xk:k+τ ) = N (xk+τ+1; x̂k+τ+1,Sk+τ+1) , (16)

17



with mean and covariance (x̂k+τ+1,Sk+τ+1), given by (13) and (14), respec-379

tively. Equation (16) assigns a probability score to any decision (e.g., trading)380

based on the prediction output of the DRDL method. Let us focus on the381

particular example of assessing the uncertainty of the stock trading decision at382

time index k + τ + 1, given observations at indexes j ∈ {k + 1, . . . , k + τ}. The383

trading decision relies on the discrete maximization step (15). Let us express384

the probability mass function (pmf) of this decision, from the gaussian predic-385

tive probability density function (pdf) of the observed data points in Eq. (16).386

The pmf can here be summarized as pk+τ+1 ∈ [0, 1]3 where each pk+τ+1[i],387

i ∈ {1, 2, 3} is a probability, and
∑3

i=1 pk+τ+1[i] = 1. Each pk+τ+1[i] represents388

the probability inferred by DRDL that the true value xk+τ+1[i+ 14] is greater389

than xk+τ+1[j + 14], for j = {1, 2, 3} \ i. According to Eqs. (16) and (15),390

pk+τ+1 can be obtained through391

(∀i ∈ {1, 2, 3}) pk+τ+1[i] =∫
Yi

N (y; x̂k+τ+1[15 : 17],Sk+τ+1[15 : 17, 15 : 17])dy, (17)

with392

Yi =
{
y ∈ R3 | y[i] ≥ y[j], j = {1, 2, 3} \ i

}
. (18)

Due to the intricate form of the constrained set in (18), the integral in (17)393

is intractable. It can be easily approximated with high precision by direct394

simulation. In practice, we sampled 104 three-dimensional sample from a normal395

standard distribution. The samples can be re-used for all time steps using396

coloring and shifting according to the covariance and mean, respectively. Thanks397

to this procedure, we can infer pk+τ+1 for every k, and then assess the next day398

stock trading outcome by using the standard cross-entropy loss:399

log-loss =
1

K − τ + 1

K−τ∑
k=0

3∑
i=1

−(Lk+τ+1[i] log(pk+τ+1[i])), (19)

where the true labels are denoted Lk+τ+1 ∈ {0, 1}3 for each time k + τ + 1400

(hereagain, we use soft hot encoding representation).401
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3.4. Summarized pipeline402

We provide in Alg. 2 the summary of our proposed pipeline for applying403

DRDL, in Algorithm 1, in the context of stock forecasting (steps a-b with Nx =404

15) and trading (steps a-b-c-d with Nx = 17).405

Algorithm 2. DRDL (3 layers) method for stock forecasting and

trading.

Inputs. Prior parameters (z0,P0) ; model noise covariance matrices

Q, R ; set of observations {xk}1≤k≤K ; windows size τ .

Initialization. Set positive latent factors

{D(0)
0 ,D

(0)
1 ,D

(0)
2 ,H

(0)
0 ,H

(0)
1 ,H

(0)
2 }.

Window processing. For k = 0, 1, . . . ,K − τ :

a. Run DRDL algorithm 1 on sequence (xj)k+1≤k≤k+τ , initialized

with estimates from k − 1th window (warm start).

b. Calculate one-step ahead predicted mean x̂k+τ+1 and its covari-

ance Sk+τ+1 using (13)-(14).

c. Compute one-step ahead predicted label ℓk+τ+1 using (15).

d. Compute pk+τ+1 using (17)-(18).

Output. Forecasting/trading predictions and log-loss value (19).

406
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4. Experimental Results407

4.1. Dataset408

The finance dataset used for experiments is curated from Yahoo finance409

repository.3 We curated data for 180 stocks which comprises stocks from USA,410

UK, India and China. The data is prepared by scrapping daily adjusted close411

prices, open price, volume, high price, low price for a span of twenty years (i.e.,412

01/01/1998 to 01/10/2019) using yahoo finance API for Python. Having stocks413

from different market cap is always advisable by the traders, as it gives them414

breadth while investing in advanced as well as emerging markets Fawaz et al.415

(2019). The diversification also allows to assess the model robustness to various416

trends Kumar & Shah (2009). From the knowledge of the close prices, we build417

two observation sequences associated to the resolution of two specific problems,418

namely stock forecasting and stock trading, as described in Sec. 3.2. The data419

is scaled by normalising the 14 technical indicator values. For both problems,420

we will compare DRDL and several state-of-the-art methods arising from signal421

processing and machine learning literature. In all experiments, each of the 180422

observed time series is split into two parts, namely a train phase made of the423

first recorded 2546 days, and a test phase made of the next 2882 days. The train424

phase is used to learn the models parameters (for instance, the linear factors425

involved in DRDL), while the test phase is used to evaluate the performance of426

the learnt models, their parameters being fixed. More details about DRDL and427

the retained benchmark methods setting are provided in the next subsection.428

Figure 2 displays the evolution of 4 of the 14 technical indicators used as input429

of the inference tools, during the test phase. One can notice the high volatility430

in the observed data.431

3https://yahoo.finance.com
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Figure 2: Evolution of four (among 14) observed technical indicators during the

test phase.

4.2. Practical Settings432

4.2.1. DRDL settings433

As described in Sec. 3.2, DRDL can be specified to tackle both stock fore-434

casting problem, in which case Nx = 15, and stock trading problem where435

Nx = 17. Three variants of DRDL will be compared, depending on the number436

of linear factors (i.e., layers) in the multi-linear model. More specifically, we437

will distinguish in our experiments:438

DRDL (1 layer): D0 = D1 = D2 = Id and H1 = H2 = Id fixed and {H0} is439

estimated;440

DRDL (2 layers): D0 = D1 = D2 = Id and H2 = Id fixed and {H0,H1}441

are estimated;442

DRDL (3 layers): D0 = D1 = D2 = Id and {H0,H1,H2} are estimated.443

Note that, ignoring the positivity constraint, DRDL (1 layer) would identify with444

our previously published method RDL Sharma et al. (2021). We implement the445

sliding window approach described in Sec. 3.1, for various choices of τ described446

hereafter. In all experiments, the initial value are set as ; z̄0 is an all zero447
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vector; P0=10−7Id, Q=10−2Id and R=10−2Id, where Id states for the identity448

matrix. Moreover, we set the dimension of the state as Nz = 14, which also449

corresponds to the number of measured technical indicators, we observed better450

performance of the model. The entries of the linear factors to estimate are451

initialized at time 0 using independent realizations of a uniform distribution on452

[0, 10−1]. As mentioned in Sec. 3.1, to initialize the next processed windows, we453

used warm start strategy. The estimation of the linear factors (i.e. M-step of454

the EM method) is only conducted during the training phase. A maximum of455

50 iterations of the EM loop are used in Alg. 1, which was observed sufficient to456

reach stability of the estimated factors. During the test phase, the linear latent457

factors are fixed, and only the Kalman/RTS inference is ran (i.e., we inhibit458

M-step in Alg. 1). The scores shown are arithmetic means of 10 random trials,459

and are computed only during the test phase.460

4.2.2. Compared methods461

The proposed DRDL approach is analyzed by comparing with state-of-the-462

art-methods deep learning namely Multi-filter neural network Long et al. (2019),463

Long short term memory Fischer & Krauss (2018), 2-D deep CNN (CNN-TA)464

Sezer & Ozbayoglu (2018) and ARIMA Ariyo et al. (2014). We select the state-465

of-the-art methods for each task for a fair comparison. For stock forecasting, the466

comparison is done with ARIMA and LSTM. The ARIMA parameter value are467

set to (p, d, q) = (5, 1, 5). The LSTM is customized from its original version to468

carry out regression tasks by replacing the softmax output layer with an affine469

layer. The Adam optimizer is used with learning rate 10−4 and 200 epochs.470

We used a mini-batch strategy where batch-size is fixed to 16 to reduce the471

objective function’s mean square error (MSE). The evaluation of the methods472

is done using metrics like mean absolute error (MAE), root means square error473

(RMSE), SMAPE (Symmetric mean absolute percentage error), and Pearson474

correlation factor.475

For the stock trading task, the comparison is made with CNN-TA, Multi-476

filter neural network, and LSTM implemented with their original architecture477
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Figure 3: Ground truth and inferred adjusted close price on the test phase for

four different stocks, using DRDL with 1 to 3 layers, LSTM or ARIMA.

and parameter values set to the specified ones in the respective paper Sezer478

& Ozbayoglu (2018), Long et al. (2019) and Fischer & Krauss (2018). The479

evaluation of the methods is done using classification metrics such as the F1-480

score, recall, precision for each class. We also performed trading simulation481

experiments in terms of annualized returns. We additionally present the log-482

loss values provided by DRDL (see Sec. 3.3) to illustrate how the probabilistic483

assessment can be used to let the researchers analyze market sentiments and484

diversify a balanced portfolio.485
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4.2.3. Hardware and Software descriptions486

We curated the data using the python API. The data curation and experi-487

mental results for the DRDL model are computed using Python 3.6 code. The488

implementation is done using the potential python libraries like NumPy, scikit-489

learn and pandas. In contrast, CNN-TA is implemented in its original version490

using the keras. MFNN and LSTM are implemented with PyTorch. The tech-491

nical indicators are evaluated using the libraries Ta-lib4 and Ta4j5.Provided492

computational times correspond to codes running on Xeon E3-1225V5 clocked493

at 3.3GHz, with a 4Gb GPU (GeForce GT 730), 16GB RAM, 200GB HDD and494

Ubuntu OS.495

4.3. Numerical results for stock forecasting problem496

4.3.1. Influence of window size497

The choice of window size is an essential aspect as it can enhance and limit498

the methodology’s potential. To understand the model behavior, we present499

Table 1 which provides detailed information on the performance of the model on500

varying window sizes. The table offers an analysis of various metrics like Pearson501

correlation (r), RMSE (Root Mean Square Error), MAE (Mean Absolute Error),502

and SMAPE (Symmetric mean absolute percentage error) for different window503

sizes τ . The model’s performance improves as the window size increases till504

a stabilization point. We can see that a balanced choice is τ = 650 to reach505

stabilized performance on this particular task and dataset. We further use this506

value in upcoming experiments.507

4.3.2. Comparison with benchmark models508

To understand better, we present table 2 which provides comprehensive anal-509

ysis on performance estimation on the stock forecasting problem using DRDL,510

LSTM, ARIMA, DeepAR Salinas et al. (2020), Nbeats Oreshkin et al. (2019),511

and TFT Lim et al. (2019). Table 2 presents comparison in terms of Pearson512

4http://ta-lib.org
5http://www.ta4j.org
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Window size τ r RMSE ↓ MAE (%) ↓ SMAPE (%) ↓

250 0.45 29.43 0.47 31.8

300 0.49 27.81 0.23 28.6

350 0.53 21.61 0.29 25.5

500 0.69 13.79 0.13 23.4

650 0.71 13.35 0.11 18.4

700 0.72 13.62 0.10 18.5

Table 1: Results of DRDL (3 layers) on stock forecasting problem for different

window size. Scores averaged on test phase, on all the 180 stocks.

Model r RMSE↓ MAE(%) SMAPE(%)

ARIMA 0.13 78.6 (1.89) 1.23(0.56) 65.5

LSTM 0.24 297.5 (2.64) 6.12 (0.65) 47

DeepAR 0.40 73.89 (1.85) 0.43(0.34) 58.13

Nbeats 0.38 95.52 (1.99) 0.57 (0.12) 63.75

TFT 0.52 35.79(1.56) 0.35(0.019) 38.25

DRDL (1 layer) 0.65 23.24 (1.64) 0.19(0.02) 35.3

DRDL (2 layers) 0.69 14.2 (1.43) 0.15(0.006) 23.2

DRDL (3 layers) 0.71 13.35(0.37) 0.11(0.003) 18.4
.

Table 2: Comparative analysis of DRDL against state-of-the-art methods for

stock forecasting problem: Pearson correlation score (r), MAE, RMSE , SMAPE

scores and their respective std. deviation on the estimation of next time step

adjusted close price, averaged over the data in the test set and the stocks.

correlation factor r, RMSE, MAE and SMAPE. We can see that DRDL (3 lay-513

ers) architecture outperforms DRDL (2 layers), DRDL (1 layer) as well as the514

other benchmarks models. We also notice that the average performance of TFT515

is comparable to DRDL (1 layer) architecture. Fig A.4 in appendix section516
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Method Train Time cost (h.) Test Time cost (min.)

DRDL (3 layers) 2.37h 20 min

DRDL (2 layers) 2.12h 18.4 min

DRDL (1 layer) 1.78h 15.8 min

ARIMA 2.01h 36 min

LSTM 8 days 45 min

DeepAR 2.45h 20 min

TFT 2.25h 27 min

Nbeats 3.12h 25 min

Table 3: Averaged time over 10 random runs for processing the dataset

(train(hrs) and test(min)), for DRDL and its competitors.

Method Sharpe Ratio T-test

DRDL (3 layers) 2.14 0.63

DRDL (2 layers) 1.99 0.78

DRDL (1 layer) 1.84 0.83

ARIMA 1.03 0.89

LSTM 0.88 1.34

DeepAR 2.06 0.58

TFT 1.22 0.67

Nbeats 1.33 0.54

Table 4: Comparison of Sharpe ratio and T-test score, for DRDL and its com-

petitors averaged over 180 stocks.

Appendix A displays the Pearson correlation analysis between ground truth517

daily adjusted close price time series and predicted ones along test phase, using518

DRDL (3 layers) for four representive stock cases. Table 4 presents the statisti-519

cal test (t-test) and stock market simulation (Sharpe Ratio) on the forecasting520

results. We observe that the proposed method with 3 layers architecture gives521

better performance as its average score for 185 stocks is smallest as compared to522

other state-of-the-art methods hence we can conclude that more similarity exists523
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between the actual closing prices and predicted closing prices when compared524

for different state-of-the art methods. We also present an average analysis of525

Sharpe ratio for proposed method and its competitors which gives more infor-526

mation on the risk- adjusted return on the investment. A higher Sharpe ratio527

indicates good investment returns, likewise we see that the forecast estimation528

from DRDL (3 layers) and DeepAR yields a higher Sharpe ratio as compared529

to other state-of-the-art method.530

Method
F1 Score Precision Recall Training time Testing Time

Hold Sell Buy Hold Sell Buy Hold Sell Buy (in hrs) (in min)

DRDL (3 layers) 0.61 0.30 0.29 0.85 0.26 0.29 0.51 0.54 0.54 4.12 10.17

DRDL (2 layers) 0.61 0.32 0.34 0.83 0.23 0.26 0.48 0.51 0.53 3.56 12.50

DRDL (1 layer) 0.59 0.19 0.23 0.88 0.15 0.12 0.45 0.52 0.51 2.00 11.56

MFNN 0.58 0.11 0.06 0.79 0.11 0.04 0.47 0.37 0.16 5.34 14.23

LSTM 0.86 0.05 0.05 0.84 0.07 0.06 0.89 0.05 0.05 12.53 13.50

CNN-TA 0.85 0.08 0.09 0.84 0.11 0.09 0.85 0.07 0.10 4.57 14.36

Table 5: Comparison of classification scores of different methods on the stock

trading problem. All scores are averaged over 180 stocks and over the days of

the test phase.

Window size (τ)
F1 Score Precision Recall

Hold Sell Buy Hold Sell Buy Hold Sell Buy

250 0.61 0.23 0.19 0.91 0.15 0.12 0.46 0.51 0.50

300 0.61 0.23 0.19 0.91 0.15 0.12 0.46 0.50 0.51

350 0.61 0.26 0.27 0.89 0.18 0.19 0.47 0.53 0.52

500 0.61 0.26 0.27 0.89 0.18 0.19 0.47 0.52 0.53

650 0.61 0.30 0.29 0.85 0.26 0.29 0.51 0.54 0.54

700 0.61 0.30 0.29 0.87 0.21 0.20 0.48 0.53 0.54

Table 6: Classification scores of DRDL (3 layers) for varying window size.

Table 3 presents the computational time for forecasting the next day closing531

price for our dataset. We distinguish the time required to train the methods532

(on the first ten years) and to test them (on the next ten years) using the walk-533

forward method described in (Sharma et al., 2021, Section 4.2.1). We observed534
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Window size (τ)
F1 Score Precision Recall

Hold Sell Buy Hold Sell Buy Hold Sell Buy

250 0.61 0.21 0.19 0.91 0.14 0.12 0.47 0.49 0.48

300 0.61 0.24 0.20 0. 90 0.16 0.13 0.47 0.50 0.49

350 0.62 0.25 0.24 0.89 0.17 0.16 0.48 0.51 0.52

500 0.62 0.25 0.24 0.89 0.17 0.16 0.48 0.52 0.51

650 0.61 0.32 0.34 0.83 0.23 0.26 0.48 0.51 0.53

700 0.59 0.33 0.32 0.84 0.20 0.23 0.46 0.53 0.51

Table 7: Classification scores of DRDL (2 layers) with varying window size.

Window size (τ)
F1 Score Precision Recall

Hold Sell Buy Hold Sell Buy Hold Sell Buy

250 0.84 0.10 0.10 0.85 0.10 0.10 0.85 0.12 0.12

300 0.80 0.10 0.12 0.85 0.10 0.10 0.74 0.17 0.14

350 0.68 0.15 0.15 0.82 0.10 0.10 0.62 0.30 0.31

500 0.59 0.18 0.22 0.86 0.15 0.14 0.46 0.51 0.51

650 0.59 0.19 0.23 0.88 0.15 0.12 0.45 0.52 0.51

700 0.59 0.24 0.22 0.90 0.16 0.14 0.46 0.51 0.52

Table 8: Classification scores of DRDL (1 layer) with varying window size.

the highest computational time with the LSTM approach. The other methods535

have rather similar computational time, DRDL (1 layer) being the fastest. The536

computational time of DRDL (3 layers), reaching the best performance metrics,537

stays reasonable, and is comparable with the one of DeepAR and TFT. Here, we538

must recall that, in contrast with most of its competitors (except ARIMA), our539

implementation of DRDL method (for both train/test phases) does not exploit540

GPU facilities such as PyTorch. Complexity reductions could certainly occur if541

this was the case.542

The stock forecasting results are presented in Fig. 3. The comparison is543

carried out between the proposed DRDL for different layer number, LSTM,544

ARIMA, DeepAR, TFT, Nbeats method. We observed that in some cases (c-545
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Stock symbols DRDL (3

layers)

DRDL (2

layers)

DRDL (1

layer)

CNN-TA MFNN LSTM

WIPRO.BO -13.89 -23.26 -29.14 -18.14 -27.81 -47.74

AAPL 19.12 11.3 10.14 0 12.92 0

AMZN -13.23 -11.92 21.23 30.64 -20.85 -0.15

IOC.BO -13.48 -23.28 -2.68 -3.03 -26.42 -3.1

TATACHEM.BO 1.23 3.83 2.19 -1.54 -8.32 0

SPICEJET.BO 11.92 10.17 -8.63 -24.08 -28.21 0

ATML -4.13 -5.78 -10.19 -33.25 -27.07 -33.82

DOM.L 4.56 9.34 2.83 0.11 8.22 0.47

INDRAMEDCO.BO -5.78 -10.34 -3.65 -14.22 -3.53 -50.86

Average on all 180

stocks

3.87 2.67 2.34 -5.08 -11.45 -13.02

Table 9: Annualized returns resulting from the stock trading decisions of differ-

ent methods during the test phase.

d), LSTM approach failed to reach satisfying results which might be due to546

vanishing gradient issues. In cases (a-b), ARIMA performs quite good when547

compared to its performance in other cases (c-d). In contrast, DRDL (3 layers)548

reaches stable and satisfactory outcomes. DRDL (2 layers) outperforms DRDL549

(1 layer) and both benchmark methods but remains lower quality than its 3-550

layers variant.551

4.4. Numerical results for the stock trading problem552

4.4.1. Influence of the window size553

The challenging task with the DRDL approach is to preserve a balance be-554

tween the computational time and optimal predictions. We experimented with555

various window sizes to analyze and preserve the best parameter for our future556

experiments. We present Table 6 which depicts the experimental performance557

of DRDL (3 layers) architecture, Table 7 depicts the experimental performance558

of DRDL (2 layers) architecture, Table 8 depicts the experimental performance559

of DRDL (1 layer) architecture for different window sizes. The empirical results560

state that the performance of the approach increases as it feeds more data to the561

model for better understanding. We can preserve a balance parameter τ = 650,562
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which indicates stabilized performance. We further use this value in upcoming563

experiments.564

4.4.2. Classification metrics565

To explain the empirical analyses of the trading process (classification), we566

present confusion matrices. The trading process involves classifying the signal567

into three classes, namely "Buy," "hold," and "sell" classes. The summarized568

performance for 180 stocks by DRDL and other state-of-the-art methods is pre-569

sented in Fig. A.5 in Appendix A. Among the three classes, we see the predic-570

tion of hold class is captured efficiently when compared to the other classes. The571

LSTM approach predicts the best score over the other state-of-the-art methods572

when compared to false negatives scores. However, in LSTM and CNN-TA ap-573

proaches are highlighted many false positives for the "hold" class. It can be574

noted that these deep learning techniques have labeled most signals as hold575

class, jeopardizing the model behavior for the other classes ("buy," "sell"). The576

nature of the finance market is highly volatile and non-linear; hence we get to577

see a highly imbalanced dataset. However, we noticed that the DRDL approach578

handles it by imposing an activation function on the operators. These opera-579

tors are expected to evolute continuously as we grow deeper with time sequence.580

Table. 5 and Fig. A.5 add more weight to the analysis. The results state that581

the DRDL approach managed to predict the highly unbalanced data. The sen-582

sitivity score (Recall) is presented well by the DRDL approach compared to the583

state-of-the-art methods. The diagonals of the confusion matrix of the DRDL584

approach also takes the maximum values, which a valid classifier should expect.585

When dealing with highly imbalanced dataset such as finance dataset, it is more586

important to study classification metrics like F1 Score, Precision and Recall for587

each class. This helps in analyzing the model behavior for each class. The Table588

5 presents analysis of these classification metrics for DRDL compared to other589

deep learning state-of-the-art methods. We conclude that DRDL outperforms590

the other methods stated.591
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In Table 5, we also present the computational times (train and test) for592

conducting trading simulations for our dataset. Hereagain, LSTM is the more593

demanding method at training. All methods have rather comparable test times,594

despite DRDL is implemented on CPU only. In particular, besides its proba-595

bilistic output, DRDL is not more costly than its competitors. Adding more596

layers to DRDL slightly increases its train time, but does not affect much the597

test time.598

4.4.3. Annualized Returns599

Stock market aims to analyze and evaluate the return on investment for600

a given stock. Every trader is indeed interested in evaluating his investment601

returns and taking risks accordingly. We simulate market scenarios Sezer &602

Ozbayoglu (2018) by evaluating the annualized returns by the predicted stock603

trading decisions provided by DRDL using 1 to 3 layers as well as the decisions604

from from the benchmark models. Table 9 presents a detailed study of nine605

stocks for DRDL methodology and state-of-the-art methods. We display only606

empirical values for nine stocks and the average results over the 180 stocks. To607

make it easy for readers we have highlighted best annualized returns in bold.608

It is clearly evident that the DRDL approach yields higher returns when tested609

for a duration of 10 years when compared to annualized returns obtained from610

deep learning state-of-the-art methods predictions.611

4.4.4. Portfolio diversification612

Many researchers and traders believe that it is essential to know the asso-613

ciated sentiments associated with each stock to understand the stock market.614

Traders support and recommend having a mix of stock sentiments in one’s615

portfolio. The market is very well divided into three types of stock sentiments:616

small-cap, mid-cap, and large-cap. To read about them in detail please refer617

to Sharma et al. (2021)[section 4.4.4]. To evaluate this sentiment using the618

predicted signals from the proposed approach, we calculated probabilistic quan-619

tification, as explained in sec. 3.3. The practitioner uses this quantification620
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Stock symbols DRDL DRDL DRDL

3 layers 2 layers 1 layer

Sm
al

l-c
ap

ALOKTEXT.BO 1.04 1.20 1.09

ALKYLAMINE.BO 1.17 1.19 1.34

ZEEMEDIA6.BO 0.89 0.99 0.23

PVP.BO 1.34 1.98 2.78

M
id

-c
ap

IOC.BO 1.02 1.05 0.87

TATACHEM.BO 0.76 0.45 0.94

SPICEJET.BO 0.34 0.65 1.20

BHEL.BO 0.20 0.51 1.15

La
rg

e-
ca

p

AAPL 1.13 0.98 1.11

AMZN 0.11 0.41 0.43

HINDZINC.BO 0.03 0.65 0.45

ONGC.BO 0.20 0.13 0.09

SIEMENS.NS 0.12 0.02 0.11

Table 10: Comparative analysis of uncertainty quantification provided by DRDL

using 1 to 3 layers. The quantification is listed for stocks with market capital-

ization categories. The log-loss is computed over the test phase.

score to have a well-diversified portfolio. The score provides a confidence score621

that helps the investor decide where to invest in the market to have a balance622

of market sentiments and maximize returns.623

To understand further, we present Table 10 which provides a log-loss score.624

The log-loss score provides the confidence score in terms of its volatility nature,625

where the smaller value is considered, the better and less volatile. We evaluated626

the confidence score for the proposed approach for different configuration. The627

market capitalization of these stocks can be found 6. The log-loss value provides628

the probabilistic inference for the predictions. The inference tries to penalize629

6https://finance.yahoo.com/screener
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the events for which the method assigns a low probability. We observed that the630

log-loss value reached a meager value which indicated good prediction accuracy631

in large-cap stocks, which are expected to be least volatile. In contrast, we632

achieved a higher log-loss value for predictions associated with small-cap stocks633

as they are highly unstable and new to the market.634
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5. Conclusion639

In our approach, time-series sequences are modeled with a flexible Gaus-640

sian SSM.The transition matrices (state and observation models) are unknown,641

and are estimated thanks to an expectation-minimization strategy, assuming a642

particular deep NMF structure. The DRDL approach inherits advantages from643

sophisticated modeling techniques while quantifying the uncertainty in the pre-644

dictions.We have then adapted the DRDL approach to deal with a challenging645

large scale financial time series problem, to target stock forecasting and trading646

tasks. In particular, the method is able to successfully operate in an online647

processing manner, allowing to capture piece-wise linear characteristics in the648

data. The results show that the proposed method outperforms the state-of-the-649

art techniques. Given these promising results, we plan as future work to delve650

deeper into the area of financial forecasting, including the application of our651

technique in forecasting derivatives.652
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Appendix A. Results872

This section displays results from Confusion matrices and Pearson correlation873

graph. Due to space constraints we have attached additional results in appendix.874

0 50 100 150 200

Actual price
150

100

50

0

50

100

150

200

250

Pr
ed

ict
ed

 p
ric

e

Pearson correlation with r=0.935

0 10 20 30 40 50 60 70

Actual price

0

50

100

150

200

Pr
ed

ict
ed

 p
ric

e

Pearson correlation with r=0.906

(a) AAPL (b) ALOKTEXT.BO

50 100 150 200 250 300

Actual price
300

200

100

0

100

200

300

Pr
ed

ict
ed

 p
ric

e

Pearson correlation with r=0.741

10 20 30 40 50 60

Actual price
200

150

100

50

0

50

100

Pr
ed

ict
ed

 p
ric

e

Pearson correlation with r=0.67

(c) BHEL.BO (d) ANF

Figure A.4: Pearson correlation graph between ground truth adjusted close price

and predicted one with DRDL (3 layers), during test phase, for four different

stocks.
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Figure A.5: Confusion matrices on stock trading classification task (averaged

over days in test phase and over stocks) for DRDL with 1 to 3 layers, and deep

learning techniques MFNN, CNN-TA and LSTM.
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