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A dynamical model for stock forecasting via deep
recurrent dictionary learning

Shalini Sharma, Émilie Chouzenoux, IEEE Senior Member, Víctor Elvira, IEEE Senior Member, and Angshul
Majumdar

Abstract—State-space models (SSM) and recurrent neural
networks (RNN) are widely used approaches for dynamical
system modeling. In the case of SSMs, they include explicit
modeling of all components, including the noise characterization,
and thus allow for interpretability and uncertainty quantification.
However, the underlying dynamical model parameters need to be
specified and closed-form inference is possible only in a few sim-
ple cases. RNNs, on the other hand, can learn, through supervised
training, rather complex nonlinearities from the data but lack the
aforementioned advantages of SSMs. In this work, we combine
the benefits of both approaches by introducing a Gaussian SSM
whose state and evolution operators can be learnt from the
data. In order to deal with the ill-posedness of this parameter
estimation problem, we propose an innovative factorized form
of both the state and observation operators, reminiscent from
deep nonnegative matrix factorization models. An expectation-
maximization method combined with a block alternating strategy
is introduced to estimate each of the involved positive latent
factors, while jointly performing the probabilistic state inference.
Our resulting formulation and inference tool is called deep
recurrent dictionary learning (DRDL). We then specialize DRDL
for the problem of stock forecasting, by proposing an online
training strategy and a probabilistic assessment of the trading
decision. Numerical experiments on a problem of stock market
data inference shows its superiority among several state-of-the-
art dynamic modeling tools.

Index Terms—Time series analysis; State space models; Deep
nonnegative matrix factorization; Kalman filtering; Bayesian
smoothing; EM algorithm; Stock forecasting; Stock trading.

I. INTRODUCTION

Modeling dynamical systems has been a topic of interest to
signal processing, machine learning and control engineering
researchers for more than five decades. Applications range in
areas as diverse as financial market analysis to electric demand
forecasting. We propose a new dynamical recurrent modeling
technique that combines the advantages of state-of-the-art deep
learning tools with those of traditional state-space models. The
proposed tool is then particularized to the processing of stock
market time series. In the following, we review the literature
of dynamic modeling around this particular application and
we describe the contributions of the paper.
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A. State-of-the-art review

Modeling the stock market is a well-known challenging
problem [1]. The difficulty lies in the non-stationary and
non-linearity of the underlying dynamical process. Moreover,
financial markets are not only influenced by consumer be-
havior but also by a myriad of external factors like natural
disasters, administrative policies, political decisions, interna-
tional relations, etc., to name a few. Therefore developing
reliable algorithmic models for stock trading still remains a
challenging yet interesting topic from the point of view of
both finance and machine learning/signal processing [2], [3].

Auto-regressive moving average (ARMA) models have been
used to model stock market [4], [5]. ARMA assumes the
stochastic process to be stationary; this turns out to be too
simplistic and consequently unrealistic for the stock market.
This limitation was partially overcome by autoregressive in-
tegrated moving average (ARIMA) [6] models (also referred
as Box-Jenkins model). ARIMA has been used in the past
for stock forecasting and trading [7], [8]. However, Box-
Jenkins/ARIMA methods could not model non-smooth vari-
ations in time series [9], [10]. ARIMA with regressors were
introduced to overcome the limitations, leading to ARIMAX
[11], [12]. Unfortunately, ARIMAX introduced other problems
such as over/under-fitting because of the handling of extra
predictors and variables.

SSM is another classical approach for modeling and
analysing time-series. Many studies used SSMs for stock
forecasting, and analysis [13], [14]. The celebrated Kalman
filter is a solution to the inference of a linear SSM where
the noise is assumed to be Gaussian [15]. The literature
illustrates its minimal use in stock forecasting [16] but found
its application in other financial analyses, see for example [17].
To overcome the restrictive linearity assumption, extended
Kalman filter (EKF) [18], unscented Kalman filter (UKF) [19]
were introduced. Particle filters [20], [21] further relaxed the
Gaussianity assumption. The advantage of SSM is that it can
model uncertainty in the estimate [21], [22], [23]. Uncertainty
is crucial for financial markets since it gives a measure of
the associated risk [24]. The main drawback of the aforesaid
signal processing-based forecasting approaches is that they
need the model’s specification. Unfortunately, specifying an
underlying model for the stock market is difficult, if not
impossible. Several works in the literature have thus inves-
tigated the learning of model parameters in SSMs. In the
case of linear-Gaussian state-space models (LG-SSMs), see for
instance the methods in [25], [26], [27], and [28, Chapter 12].



JOURNAL OF LATEX CLASS FILES, VOL. X, NO. Y, 2022 2

All these works consider the observation and state operators
to be unknown and estimated from data using expectation-
maximization (EM) methods. However, the aforementioned
works can only consider linear models and do not account
for any prior knowledge on the involved operators. Inferring
model parameters for non-linear SSMs has been explored in
more generic algorithms, e.g., particle MCMC methods [29],
SMC2 [30], and nested PFs [31]. In all these cases, the infer-
ence is costly, as they use Monte-Carlo sampling methods, and
thus do not generally scale well. The problem of scalability
in SSM model inference has been midly explored. Let us
mention our two recent works [23], [32], both focusing on
LG-SSMs. In [23], a sparsity prior in introduced on the linear
matrices to infer, providing an interpretable and compressible
model. Though this method is promising, it does not allow
easily an explicit control of the final dimension of the model,
and as such, still requires an increased computational time
at inference. In [32], we proposed an online (still EM-based)
estimation approach in the context of stock market time series
processing. The online processing allows a reduced complexity
and memory burden, while being beneficial to the capture of
non-linear phenomena in such volatile time series. However,
the parametric estimation step lacked of robustness, probably
by lack of sufficient imposed structured on the estimated
factors.

Neural network (NN) models represent another family of
approaches for time series modeling. By construction, these
methods excel when model specification is missing, as they
learn implicitly the model from the data through the training
phase. In particular, the approximation capability of recurrent
neural networks (RNNs) for dynamical systems allows to learn
the underlying phenomena given enough training data [33],
[34]. RNN and its subsequent versions are used in several
studies for stock price forecasting [35], [36]. Deeper neu-
ral network architectures are known to yield better results
than their shallow counterparts [37], [38]. They are engi-
neered to approximate highly non-linear function in high-
dimensional spaces and are supposed to be more suitable for
challenging problems [39], [40]. 1-D CNN performs better
when compared to LSTM and RNN owing to their ease of
training. There are studies, such as [41], that use them as
financial forecasting. However, 1-D CNNs cannot process
streaming data. Hence some works have recently proposed
the combination of RNN with 1-D CNN in order to model
time-series signals [42]. It must be noted that deep neural
networks are computationally intensive [43]. Furthermore,
deep neural networks only provide data estimates for each time
step and do not provide uncertainty quantification, while such
information would be necessary for stock forecasting to assess
risks. Therefore, recent works have been dedicated to combine
probabilistic forecasting and deep learning techniques, so as
to predict the probability distribution of future events in the
time series given its past/historical recordings [44], [45]. Deep
factor model based on dropout-based heuristic and complex
semantics have also been considered in [46]. These techniques
provide probability distributions as outputs, thanks to specific
learning strategies inherited from the Bayesian NN litterature.
However, these works, up to our knowledge, do not mention

any explicit strategy to estimate uncertainty/confidence score
on future predictions/decisions that would help to assess their
reliability. Standard (non deep) machine learning models have
also been combined to statistical time series modeling tools.
For instance, the work [47] uses ARIMA and support vector
machine. Another work uses a combination of ARIMA and
random forests for the same task [48]. Finally, several works,
such as [49], [50], [51], use information mined from news
articles and blogs via natural language processing for stock
forecasting. Strictly speaking, this is not artificial intelligence
since these are dependent on human cognizance.

B. Contributions compared to existing literature

As a summary, SSMs are valuable tools for probabilistic
time series modeling and inference. But there is a crucial need
for new strategies to cope with the curse of dimensionality
in the learning of SSM model parameters. In this work, we
propose to impose a structured prior on the observation/state
operators involved in an LG-SSM. We introduce deep nonneg-
ative matrix factorized (deep NMF) models for both operators.
Deep NMF [52] is a generalized form of NMF [53] that
models latent representations from complex data through a
product of a (usually small) number of linear operators (called
latent factors) satisfying positivity constraints. Deep NMF has
been employed with success on various unsupervised machine
learning tasks [54], [55], [56], [57], [58]. When embedded
into an NN structure, it leads to the so-called deep ReLu
networks [59], [60], [61]. Deep NMF shares connections with
the recently introduced deep dictionary learning (deep DL)
[62], [63], the main difference being in the priors imposed
in the latent factors (positivity, in the case of deep NMF,
low-rank/sparsity in the case of deep DL). In our work, deep
NMF is neither used for unsupervised representation learning
nor in an NN framework. In contrast, it is embedded into
a Gaussian SSM to model, allowing to track and predict
complex latent phenomena in time series. A novel algorithm is
proposed, that learns the positive latent factors jointly with the
probabilistic state inferential task induced by our SSM. We call
this modelling and inference tool Deep Recurrent Dictionary
Learning (DRDL). We further specialize this tool, to make it
practically efficient in the context of large and volatile time
series arising in stock market data. In particular, we perused
the online training strategy we previously introduced in [32].
Contributions in a nutshell. In this work, we:

• Introduce an LG-SSM model involving deep positive
latent factors;

• Propose a new EM-based inference method to jointly
perform the time series prediction task and the deep linear
positive factors estimation;

• Devise efficient implementation strategies for practical
use of the method in the context of stock market time
series analysis;

• Investigate through experiments and benchmark compar-
isons on real financial data the performance of the novel
DRDL approach.
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C. Paper organization

The rest of the paper is organized as follows. The proposed
DRDL model and its inference is presented in the following
Section II. The practical implementation of DRDL in the
context of stock market data analysis is discussed in Section
III. The experimental results and their analysis are described
in Section IV. The conclusions of this work are discussed in
section V.

II. PROPOSED WORK

A. Considered model

Let us consider an observed sequence (xk)1≤k≤K of vectors
of size Nx ≥ 1. We aim to estimate (zk)1≤k≤K , a sequence
of unknown hidden/latent vectors of size Nz ≥ 1. The DRDL
approach relies on the following re-parametrized LG-SSM:
For every k ∈ {1, . . . ,K},{

zk = D0D1D2zk−1 + v1,k,
xk = H0H1H2zk + v2,k.

(1)

where D0 ∈ [0,+∞)Nz×Nz , D1 ∈ [0,+∞)Nz×Nz , and
D2 ∈ [0,+∞)Nz×Nz are three positive-valued linear fac-
tors leading to a multi-linear state operator D0D1D2. Sim-
ilarly, H0 ∈ [0,+∞)Nx×Nz , H1 ∈ [0,+∞)Nz×Nz , H2 ∈
[0,+∞)Nz×Nz are three positive-valued linear factors yielding
the multi-linear observation model H0H1H2. 1 The process
noise (v1,k)1≤k≤K is assumed to have a Gaussian distribution
with zero-mean and symmetric definite positive covariance
matrix Q ∈ RNz×Nz . The observation noise (v2,k)1≤k≤K ,
is also assumed zero-mean Gaussian with symmetric defi-
nite positive covariance matrix R ∈ RNx×Nx . We consider
z0 ∼ N (z̄0,P0) as the initial state, with z̄0 ∈ R and P0 ∈
RNz×Nz defined as definite symmetric positive matrix. The
model in Eq. (1) can be interpreted as a multi-linear Gaussian
model involving a sequence of K hidden states represented
by (zk)1≤k≤K . As discussed earlier, classical inference ap-
proaches for SSM require specifying every model parameters.
In the model above, this would mean setting the positive latent
factor matrices matrices {D0,D1,D2,H0,H1,H2} involved
in both state and observation models. In practical applications
such as stock market analysis, these parameters are unknown
and must be learnt from the observed data. The objective is
thus to provide a point-wise estimate of the positive latent
factor matrices {D0,D1,D2,H0,H1,H2} and a probabilistic
estimate of sequence (zk)1≤k≤K , given the observed sequence
(xk)1≤k≤K . This can be seen as solving jointly (i) two deep
NMF problems, (ii) a filtering/smoothing problem.

B. Discussion on the model

We now discuss the main characteristics of the proposed
DRDL method. The model is mathematically described in
Eq. (1) and displayed in Fig. 1. The top equation describes
the hidden state evolution, assuming Markovianity between

1Throughout the paper, we consider three-terms factorizations, for the sake
of readibility. The 3-layers modeling and inference methodology has the great
advantage of being generic enough to be straightforwardly extended to any
number, greater or equals to one, of factors.

two consecutive hidden states. The second equation links the
hidden and observed states. A first interesting aspect, inherited
from the SSM paradigm, is that two Gaussian noise terms are
explicitly introduced in DRDL to cope with model uncertainty,
which is in contrast with most deep learning models for time
series processing (e.g., LSTM). A second novel feature of (1)
lies in using deep NMF models instead of generic matrices (in
the linear case) or functions (in the non-linear case), as it is
usually the case in SSMs [29], [30], [31], taking advantage on
the acknowledged representation power of deep NMF [52].
One important benefit of the proposed approach w.r.t. most
existing methods in the literature is that we avoid Monte
Carlo simulation or complex optimization procedure, which is
known to suffer more severely the curse of dimensionality. In
our method, each latent factor can be understood as represen-
tations in abstract spaces of the phenomena occurring between
both pairs of variables. Third, in contrast with the typical usage
of deep NMF in machine learning, relying on backpropagation
for their model training [57], [58], DRDL model allows the
construction of an handcrafted training strategy (see the next
section), which benefits from a low computational cost, sound
optimality guarantees (in terms of Bayesian estimator), and
enables uncertainty quantification.

Zk-2 Zk-1

Xk-2
Xk-1

Zk

Xk

D0 D1 D2

H0

H1

H2

H0
H0

H1 H1

H2 H2

D0 D1 D2

Fig. 1: Schematic Diagram for Deep Recurrent Dictionary
Learning

C. DRDL inference algorithm

Using SSM models for time series processing (e.g., for
a prediction task) amounts to solving the so-called smooth-
ing/filtering problem, i.e., the probabilistic estimation of the
hidden state (zk)1≤k≤K . In our context, as the deep NMF fac-
tors {D0,D1,D2,H0,H1,H2} involved in the construction
of the state transition and the observation transition models
are most often unknown, we must also infer them from the
observed data, jointly with the hidden states (through the
aforementioned filtering/smoothing procedure). To do so, we
propose an expectation-maximization (EM) approach (see [28,
chap.12] and [26]). The EM method alternates iteratively
between the probabilistic inference of the state (zk)1≤k≤K ,
while the positive factors {D0,D1,D2,H0,H1,H2} are
fixed (E-step), and the update of these factors, assuming
fixed state (M-step). More precisely, the E-step consists
in fixing the linear operators obtained in the previous M-
step and applying the classical Kalman/RTS recursions, for
obtaining the filtered/smooth distributions p(zk|x1:k) and
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p(zk,x1:K), respectively. Then, the M-step updates the op-
erators {D0,D1,D2,H0,H1,H2} by maximizing an upper
bound of:

ϕK(D0,D1,D2,H0,H1,H2)

= log p(x1:K |D0,D1,D2,H0,H1,H2). (2)

We explicit hereafter the construction of the i + 1-th EM
update, given estimates from the previous iteration i.

1) E-step: Kalman/RTS inference: At this step, we con-
sidered the factors D

[i]
0 ,D

[i]
1 ,D

[i]
2 ,H

[i]
0 ,H

[i]
1 ,H

[i]
2 to be fixed

(either from the previous M-step or from the initialization at
the first iteration), and the goal is the probabilistic estimation
of the latent states. As we aforementioned, (1) is a multi-linear
Gaussian model whose observation operator H0H1H2, evo-
lution/state operator D0D1D2, and hidden state (zk)1≤k≤K
must be estimated. For each k ∈ {1, . . . ,K}, the probabilistic
estimate of the latter conditioned to all available data up to
time k, is provided by the Kalman filter through the following
Gaussian filtering distribution:

p(zk|x1:k) = N (zk; z̄k,Pk). (3)

For every k, the mean z̄k and the covariance Pk are given by
the Kalman iterations:
For k = 1, . . . ,K:
Predict state:{

zk|k−1 = D
[i]
0 D

[i]
1 D

[i]
2 z̄k−1,

Pk|k−1 = D
[i]
0 D

[i]
1 D

[i]
2 Pk−1(D

[i]
0 D

[i]
1 D

[i]
2 )> + Q.

(4)
Update state:

yk = xk −H
[i]
0 H

[i]
1 H

[i]
2 zk|k−1,

Sk = H
[i]
0 H

[i]
1 H

[i]
2 Pk|k−1(H

[i]
0 H

[i]
1 H

[i]
2 )> + R,

Kk = Pk|k−1(H
[i]
0 H

[i]
1 H

[i]
2 )>S−1k ,

z̄k = zk|k−1 + Kkyk,
Pk = Pk|k−1 −KkSkK

>
k .

(5)

Hereabove, yk represents the measurement pre-fit residual,
Sk represents the pre-fit covariance, Kk represents Kalman
gain, z̄k represents the updated (a posteriori) state estimate,
Pk represents the updated (a posteriori) covariance estimate.
The backward recursion from the RTS smoother allow to build
the smoothing distribution p(zk|x1:K).
For k = K, . . . , 1
Backward Recursion:

z−k+1 = D
[i]
0 D

[i]
1 D

[i]
2 z̄k,

P−k+1 = D
[i]
0 D

[i]
1 D

[i]
2 Pk(D

[i]
0 D

[i]
1 D

[i]
2 )> + Q,

Gk = Pk(D
[i]
0 D

[i]
1 D

[i]
2 )>[P−k+1]−1,

zsk = z̄k + Gk[zsk+1 − z−k+1],
Ps
k = Pk −Gk[Ps

k+1 −P−k+1]G>k .

(6)

Consequently, for every time step k ∈ {1, . . . ,K}, the RTS
smoother provides:

p(zk|x1:K) = N (zk; zsk,P
s
k). (7)

2) M-step: Evolution operators update: The M-step per-
forms an optimization step to increase the likelihood of the
positive latent factors {D0,D1,D2,H0,H1,H2}, given the
smoothing distribution obtained in the E-step. It proceeds by
building the upper-bound:

ϕk(D0,D1,D2,H0,H1,H2)

≥ Q(D0,D1,D2,H0,H1,H2; Θ[i]). (8)

Hereabove, Θ[i] = {Σ[i],Φ[i],B[i],C[i],∆[i]} gathers five
quantities defined from the outputs of the E-step described
in Sec. II-C1):

Q(D0,D1,D2,H0,H1,H2; Θ[i]) =

− K

2
tr
(
Q−1Σ[i] −C[i](D0D1D2)> −D0D1D2(C[i])>

+D0D1D2Φ
[i](D0D1D2)>

)
− K

2
tr
(
R−1∆[i] −B[i](H0H1H2)> −H0H1H2(B[i])>

+H0H1H2Σ
[i](H0H1H2)>

)
, (9)

with:

Σ[i] =
1

K

K∑
k=1

Ps
k + zsk(zsk)>,

Φ[i] =
1

K

K∑
k=1

Ps
k−1 + zsk−1(zsk−1)>,

B[i] =
1

K

K∑
k=1

xk(zsk)>, (10)

C[i] =
1

K

K∑
k=1

Ps
kG
>
k−1 + zsk(zsk−1)>,

∆[i] =
1

K

K∑
k=1

xkx
>
k .

The updates {D[i+1]
0 ,D

[i+1]
1 ,D

[i+1]
2 ,H

[i+1]
0 ,H

[i+1]
1 ,H

[i+1]
2 }

given the knowledge of Θ[i], amounts to maximizing
Q(·; Θ[i]) under positivity constraints on the factors. In con-
trast with the linear unconstrained model case studied in [28,
Chapter 12], the maximization problem here does not have a
closed-form solution. It is highly non-convex due to the multi-
linearity of our model. Luckily, it happens to be convex with
respect to each of the factors. We thus propose to resort to the
following alternating maximization step:

D
[i+1]
0 = argmax

D0≥0
Q(D0,D

[i]
1 ,D

[i]
2 ,H

[i]
0 ,H

[i]
1 ,H

[i]
2 ;Θ[i])

D
[i+1]
1 = argmax

D1≥0
Q(D[i+1]

0 ,D1,D
[i]
2 ,H

[i]
0 ,H

[i]
1 ,H

[i]
2 ;Θ[i])

D
[i+1]
2 = argmax

D2≥0
Q(D[i+1]

0 ,D
[i+1]
1 ,D2,H

[i]
0 ,H

[i]
1 ,H

[i]
2 ;Θ[i])

H
[i+1]
0 = argmax

H0≥0
Q(D[i+1]

0 ,D
[i+1]
1 ,D

[i+1]
2 ,H0,H

[i]
1 ,H

[i]
2 ;Θ[i])

H
[i+1]
1 = argmax

H1≥0
Q(D[i+1]

0 ,D
[i+1]
1 ,D

[i+1]
2 ,H

[i+1]
0 ,H1,H

[i]
2 ;Θ[i])

H
[i+1]
2 = argmax

H2≥0
Q(D[i+1]

0 ,D
[i+1]
1 ,D

[i+1]
2 ,H

[i+1]
0 ,H

[i+1]
1 ,H2;Θ

[i])
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This approach ensures by construction the following in-
equality:

Q(D
[i+1]
0 ,D

[i+1]
1 ,D

[i+1]
2 ,H

[i+1]
0 ,H

[i+1]
1 ,H

[i+1]
2 ; Θ[i])

≥ Q(D
[i]
0 ,D

[i]
1 ,D

[i]
2 ,H

[i]
0 ,H

[i]
1 ,H

[i]
2 ; Θ[i]), (11)

which is key to guarantee the convergence properties for
the EM iteration. Indeed, the proposed updates yield an
increase of the lower bound of the marginal likelihood, so
as a consequence, an increase of the marginal log-likelihood
itself. The overall procedure is thus guaranteed to yield a
monotonic increase of the marginal log-likelihood function ϕK
and classical results about majorization-minimization methods
allow to ensure convergence guarantees to a stationary point
of ϕK [64]. The six sub-problems are quadratic programming
(convex) problems and can be solved through several available
solvers. We decided to use the simple and fast alternating
least squares approach [53], reminiscent from the literature of
deep nonnegative matrix factorization [57], and the deep ReLu
neural networks models [60], both showing a satisfactory
behavior in preliminary experiments. We start by computing
each subproblem solution ignoring the positivity constraints,
and then capped the negative entries of the obtained factors.
This yields the following analytic updates:

D
[i+1]
0 = ReLu

(
C[i](D

[i]
2 )>(D

[i]
1 )>(D

[i]
1 D

[i]
2 Φ[i](D

[i]
2 )>(D

[i]
1 )>)†

)
,

D
[i+1]
1 = ReLu

(
((D

[i+1]
0 )>Q−1D

[i+1]
0 )†(D

[i+1]
0 )>Q−1C[i](D

[i]
2 )>

×(D[i]
2 Φ[i](D

[i]
2 )>)†

)
,

D
[i+1]
2 = ReLu

(
((D

[i+1]
1 )>(D

[i+1]
0 )>Q−1D

[i+1]
0 D

[i+1]
1 )†(D

[i+1]
1 )>

×(D[i+1]
0 )>Q−1C[i](Φ[i])−1

)
,

H
[i+1]
0 = ReLu

(
B[i](H

[i]
2 )>(H

[i]
1 )>(H

[i]
1 H

[i]
2 Σ[i](H

[i]
2 )>(H

[i]
1 )>)†

)
,

H
[i+1]
1 = ReLu

(
((H

[i+1]
0 )>R−1H

[i+1]
0 )†(H

[i+1]
0 )>R−1B[i](H

[i]
2 )>

×(H[i]
2 Σ[i](H

[i]
2 )>)†

)
,

H
[i+1]
2 = ReLu

(
((H

[i+1]
1 )>(H

[i+1]
0 )>R−1H

[i+1]
0 H

[i+1]
1 )†

×(H[i+1]
1 )>(H

[i+1]
0 )>R−1B[i](Σ[i])−1

)
. (12)

Hereabove, (·)† denotes the pseudo-inverse operator. More-
over, ReLu (·) states for the rectified linear unit function, that
projects each entry of its input to the positive orthant.

D. The DRDL algorithm summarized

We summarize in Alg. 1 the DRDL algorithm, for the prob-
abilistic inference of the sequence of hidden state (zk)1≤k≤K ,
jointly with the point-wise estimation of the latent factors
{D0,D1,D2,H0,H1,H2}, assuming the data follows the
DRDL model (1). In practice, DRDL algorithm is ran for
a maximum number of iterations imax, set so as to reach
stabilisation of the latent factors.

Algorithm 1. DRDL (3 layers) inference algorithm.
Inputs. Prior parameters (z0,P0) ; model noise covariance ma-
trices Q, R ; set of observations {xk}1≤k≤K .
Initialization. Set positive latent factors
{D(0)

0 ,D
(0)
1 ,D

(0)
2 ,H

(0)
0 ,H

(0)
1 ,H

(0)
2 }.

Recursive step. For i = 0, 1, . . . , imax:
(E step) Run the Kalman filter (4)-(5) and RTS smoother (6) using latent

factors {D(i)
0 ,D

(i)
1 ,D

(i)
2 ,H

(i)
0 ,H

(i)
1 ,H

(i)
2 }.

Calculate (Σ(i),Φ(i),B(i),C(i),∆(i)) using (10).
(M step) Compute {D(i+1)

0 ,D
(i+1)
1 ,D

(i+1)
2 ,H

(i+1)
0 ,H

(i+1)
1 ,H

(i+1)
2 }

using (12).
Output. State filtering/smoothing pdfs (3) and (7) along with point-
wise estimates of the latent factor from (12).

III. APPLICATION TO STOCK TRADING

We now particularize the DRDL inference algorithm to
the stock trading applications. In particular, we address the
forecasting/trading tasks given a set of K daily (i.e., k is a
day index) observations of stock market data.

A. Online implementation

First, in order to better cope with high volatility of stock
market quantities and allow immediate feedback to the users
for on-the-fly trading, we propose here an online implementa-
tion of our DRDL approach. We make use of sliding windows
of size of τ ∈ {1, . . . ,K} time steps. The model parameters
are inferred for every k ∈ {0, . . . ,K − τ} using the last τ
data points observed in the window, i.e. Xk = {xj}k+τj=k+1,
then followed by the EM approach described in detail above.
The sliding window approach leverages two advantages. First,
it helps in faster processing of the sequence as one can choose
a small number τ of data points in the window. Second,
it might provide better modeling, since the constant linear
factors assumption is likely to better model the time series
if τ is small. However, a too small τ might also degrades
the inference capabilities. Hence, it is essential to find a
tradeoff in finding an optimal τ , as we will show in our
experiments. When implementing the online strategy, a warm
start approach is employed for the Kalman filter initialization.
The observation/state factors are set to their most recent values,
and the mean/covariance of the state for processing Xk+1 are
initialized using the results of the processing of Xk. Let us
note that, when we set τ = K, we retrieve the offline version
of the algorithm, where the EM inference tool is ran only once.

B. Modeling and post-processing for stock market analysis
tasks

Stock market data processing typically amounts to solving
two distinct applicative problems, namely daily stock price
forecasting and stock trading decision (among 3 options:
buy/hold/sell) estimation. We hereafter explain how to post-
process DRDL results to tackle both above-stated problems.

1) Stock forecasting: Let us first specify the observation
model in stock forecasting. For a given window size τ > 0, for
each k ∈ {0, . . . ,K − τ}, we observe (xj)k+1≤j≤k+τ ∈ R15,
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gathering 14 technical indicators 2 as well as the adjusted close
price. Running our DRDL on the considered window yields
the following mean estimate of the 15 quantities for the next
time step indexed as k + τ + 1:

x̂k+τ+1 = H0H1H2zk+τ |k+τ−1, (13)

with the covariance matrix

Sk+τ+1 = H0H1H2(D0D1D2Pk+τ (D0D1D2)>+Q)+R.
(14)

Hereabove, {D0,D1,D2,H0,H1,H2} are the factors esti-
mated during the M-step of our EM-based inference method,
and (zk+τ |k+τ−1,Pk+τ ) are byproducts of the Kalman pre-
diction step (4)-(5), computed during the E-step of the EM.
The proposed methodology aims at predicting the entire 15-
dimensional vector. However, stock forecasting is typically
focused on the prediction of a single quantity such as the
adjusted close price.

2) Stock trading: In stock trading, a different set of
inputs are passed to the model. For each window in-
dex k ∈ {0, . . . ,K − τ}, the observed data points
(xj)k+1≤j≤k+τ ∈ R17, xj [i], for i ∈ {1, . . . , 14}, are the
same 14 technical indicators as in stock forecating. Addition-
ally, [xj [15], xj [16], xj [17]] ∈ {0, 1}3 gathers the decisions
“hold”, “buy”, or “sell”, which are calculated for each stocks
for every day so as to maximize the annualized returns. The
labels are further turned into soft hot encoded vectors as
explained in [32, Sec. 3.3.2]. The mean and covariance of
these 17 quantities can be estimated for next day following
(13) and (14). We then define our class label for next time
step as

`k+τ+1 = argmaxi∈{1,2,3} x̂k+τ+1[i+ 14]. (15)

C. Probabilistic assessment of stock trading decision

We now describe the procedure to assess the uncertainty
quantification associated to the DRDL predictions. Let k ∈
{0, . . . ,K − τ} be the window index on which Algorithm 1
has been run. The probabilistic estimation of the quantities of
interest for the next time step (i.e., one-day ahead prediction)
xk+τ+1 conditioned to the data observed in the window
xk:k+τ , reads as a multivariate Gaussian distribution

p(xk+τ+1|xk:k+τ ) = N (xk+τ+1; x̂k+τ+1,Sk+τ+1) , (16)

with mean and covariance (x̂k+τ+1,Sk+τ+1), given by (13)
and (14), respectively. Equation (16) assigns a probability
score to any decision (e.g., trading) based on the prediction
output of the DRDL method. Let us focus on the particular
example of assessing the uncertainty of the stock trading
decision at time index k+τ+1, given observations at indexes
j ∈ {k + 1, . . . , k + τ}. The trading decision relies on the

2We retained the relative strength index (RSI), the William percent-
age range, the absolute price oscillator (APO), the commodity channel
index, the Chande momentum oscillator (CMO), the directional move-
ment Indicator (DMI), the ultimator oscillator, the WMA, the exponential
moving average (EMA), the Simple Moving Average (SMA), the triple
EMA, the moving average convergence (MAC), the percentage price os-
cillator, the rate of change (ROC). Detailed definitions can be found in
https://www.investopedia.com/terms/t/technicalindicator.asp

discrete maximization step (15). Let us express the probability
mass function (pmf) of this decision, from the gaussian
predictive probability density function (pdf) of the observed
data points in Eq. (16). The pmf can here be summarized
as pk+τ+1 ∈ [0, 1]3 where each pk+τ+1[i], i ∈ {1, 2, 3}
is a probability, and

∑3
i=1 pk+τ+1[i] = 1. Each pk+τ+1[i]

represents the probability inferred by DRDL that the true
value xk+τ+1[i + 14] is greater than xk+τ+1[j + 14], for
j = {1, 2, 3} \ i. According to Eqs. (16) and (15), pk+τ+1

can be obtained through

(∀i ∈ {1, 2, 3}) pk+τ+1[i] =∫
Yi

N (y; x̂k+τ+1[15 : 17],Sk+τ+1[15 : 17, 15 : 17])dy,

(17)

with

Yi =
{
y ∈ R3 | y[i] ≥ y[j], j = {1, 2, 3} \ i

}
. (18)

Due to the intricate form of the constrained set in (18), the
integral in (17) is intractable. It can be easily approximated
with high precision by direct simulation. In practice, we
sampled 104 three-dimensional sample from a normal standard
distribution. The samples can be re-used for all time steps
using coloring and shifting according to the covariance and
mean, respectively. Thanks to this procedure, we can infer
pk+τ+1 for every k, and then assess the next day stock trading
outcome by using the standard cross-entropy loss:

log-loss =
1

K − τ + 1

K−τ∑
k=0

3∑
i=1

−(Lk+τ+1[i] log(pk+τ+1[i])),

(19)
where the true labels are denoted Lk+τ+1 ∈ {0, 1}3 for
each time k + τ + 1 (hereagain, we use soft hot encoding
representation).

D. Summarized pipeline

We provide in Alg. 2 the summary of our proposed pipeline
for applying DRDL, in Algorithm 1, in the context of stock
forecasting (steps a-b with Nx = 15) and trading (steps a-b-
c-d with Nx = 17).

Algorithm 2. DRDL (3 layers) method for stock forecasting and trading.
Inputs. Prior parameters (z0,P0) ; model noise covariance ma-
trices Q, R ; set of observations {xk}1≤k≤K ; windows size τ .
Initialization. Set positive latent factors
{D(0)

0 ,D
(0)
1 ,D

(0)
2 ,H

(0)
0 ,H

(0)
1 ,H

(0)
2 }.

Window processing. For k = 0, 1, . . . ,K − τ :
a. Run DRDL algorithm 1 on sequence (xj)k+1≤k≤k+τ , initial-

ized with estimates from k − 1th window (warm start).
b. Calculate one-step ahead predicted mean x̂k+τ+1 and its co-

variance Sk+τ+1 using (13)-(14).
c. Compute one-step ahead predicted label `k+τ+1 using (15).
d. Compute pk+τ+1 using (17)-(18).
Output. Forecasting/trading predictions and log-loss value (19).
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IV. EXPERIMENTAL RESULTS

A. Dataset

The finance dataset used for experiments is curated from
Yahoo finance repository.3 We curated data for 180 stocks
which comprises stocks from USA, UK, India and China.
The data is prepared by scrapping daily adjusted close prices,
open price, volume, high price, low price for a span of twenty
years (i.e., 01/01/1998 to 01/10/2019) using yahoo finance
API for Python. Having stocks from different market cap
is always advisable by the traders, as it gives them breadth
while investing in advanced as well as emerging markets [65].
The diversification also allows to assess the model robustness
to various trends [66]. From the knowledge of the close
prices, we build two observation sequences associated to the
resolution of two specific problems, namely stock forecasting
and stock trading, as described in Sec. III-B. The data is scaled
by normalising the 14 technical indicator values. For both
problems, we will compare DRDL and several state-of-the-art
methods arising from signal processing and machine learning
literature. In all experiments, each of the 180 observed time
series is split into two parts, namely a train phase made of
the first recorded 2546 days, and a test phase made of the
next 2882 days. The train phase is used to learn the models
parameters (for instance, the linear factors involved in DRDL),
while the test phase is used to evaluate the performance of
the learnt models, their parameters being fixed. More details
about DRDL and the retained benchmark methods setting are
provided in the next subsection. Figure 2 displays the evolution
of 4 of the 14 technical indicators used as input of the inference
tools, during the test phase. One can notice the high volatility
in the observed data.
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Fig. 2: Evolution of four (among 14) observed technical
indicators during the test phase.

B. Practical Settings

1) DRDL settings: As described in Sec. III-B, DRDL can
be specified to tackle both stock forecasting problem, in which
case Nx = 15, and stock trading problem where Nx = 17.

3https://yahoo.finance.com

Three variants of DRDL will be compared, depending on the
number of linear factors (i.e., layers) in the multi-linear model.
More specifically, we will distinguish in our experiments:

DRDL (1 layer): D0 = D1 = D2 = Id and H1 = H2 = Id
fixed and {H0} is estimated;

DRDL (2 layers): D0 = D1 = D2 = Id and H2 = Id fixed
and {H0,H1} are estimated;

DRDL (3 layers): D0 = D1 = D2 = Id and {H0,H1,H2}
are estimated.

Note that, ignoring the positivity constraint, DRDL (1
layer) would identify with our previously published method
RDL [32]. We implement the sliding window approach de-
scribed in Sec. III-A, for various choices of τ described
hereafter. In all experiments, the initial value are set as ; z̄0
is an all zero vector; P0=10−7Id, Q=10−2Id and R=10−2Id,
where Id states for the identity matrix. Moreover, we set the
dimension of the state as Nz = 14, which also corresponds
to the number of measured technical indicators, we observed
better performance of the model. The entries of the linear
factors to estimate are initialized at time 0 using independent
realizations of a uniform distribution on [0, 10−1]. As men-
tioned in Sec. III-A, to initialize the next processed windows,
we used warm start strategy. The estimation of the linear
factors (i.e. M-step of the EM method) is only conducted
during the training phase. A maximum of 50 iterations of the
EM loop are used in Alg. 1, which was observed sufficient to
reach stability of the estimated factors. During the test phase,
the linear latent factors are fixed, and only the Kalman/RTS
inference is ran (i.e., we inhibit M-step in Alg. 1). The scores
shown are arithmetic means of 10 random trials, and are
computed only during the test phase.

2) Compared methods: The proposed DRDL approach is
analyzed by comparing with state-of-the-art-methods deep
learning namely Multi-filter neural network [42], Long short
term memory [51], 2-D deep CNN (CNN-TA) [41] and
ARIMA [6]. We select the state-of-the-art methods for each
task for a fair comparison. For stock forecasting, the compari-
son is done with ARIMA and LSTM. The ARIMA parameter
value are set to (p, d, q) = (5, 1, 5). The LSTM is customized
from its original version to carry out regression tasks by
replacing the softmax output layer with an affine layer. The
Adam optimizer is used with learning rate 10−4 and 200
epochs. We used a mini-batch strategy where batch-size is
fixed to 16 to reduce the objective function’s mean square
error (MSE). The evaluation of the methods is done using
metrics like mean absolute error (MAE), root means square
error (RMSE), SMAPE (Symmetric mean absolute percentage
error), and Pearson correlation factor.

For the stock trading task, the comparison is made with
CNN-TA, Multi-filter neural network, and LSTM implemented
with their original architecture and parameter values set to
the specified ones in the respective paper [41], [42] and [51].
The evaluation of the methods is done using classification
metrics such as the F1-score, recall, precision for each class.
We also performed trading simulation experiments in terms
of annualized returns. We additionally present the log-loss
values provided by DRDL (see Sec. III-C) to illustrate how

https://yahoo.finance.com
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Fig. 3: Ground truth and inferred adjusted close price on the
test phase for four different stocks, using DRDL with 1 to 3
layers, LSTM or ARIMA.
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Fig. 4: Pearson correlation graph between ground truth ad-
justed close price and predicted one with DRDL (3 layers),
during test phase, for four different stocks.
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the probabilistic assessment can be used to let the researchers
analyze market sentiments and diversify a balanced portfolio.

3) Hardware and Software descriptions: We curated the
data using the python API. The data curation and experimental
results for the DRDL model are computed using Python 3.6
code. The implementation is done using the potential python
libraries like NumPy, scikit-learn and pandas. In contrast,
CNN-TA is implemented in its original version using the
keras. MFNN and LSTM are implemented with PyTorch.
The technical indicators are evaluated using the libraries Ta-
lib4 and Ta4j5. Provided computational times correspond to
codes running on Xeon E3-1225V5 clocked at 3.3GHz, with
a 4Gb GPU (GeForce GT 730), 16GB RAM, 200GB HDD
and Ubuntu OS.

C. Numerical results for stock forecasting problem

1) Influence of window size: The choice of window size is
an essential aspect as it can enhance and limit the method-
ology’s potential. To understand the model behavior, we
present Table I which provides detailed information on the
performance of the model on varying window sizes. The table
offers an analysis of various metrics like Pearson correlation
(r), RMSE (Root Mean Square Error), MAE (Mean Absolute
Error), and SMAPE (Symmetric mean absolute percentage
error) for different window sizes τ . The model’s performance
improves as the window size increases till a stabilization point.
We can see that a balanced choice is τ = 650 to reach
stabilized performance on this particular task and dataset. We
further use this value in upcoming experiments.

Window size τ r RMSE ↓ MAE (%) ↓ SMAPE (%) ↓
250 0.45 29.43 0.47 31.8
300 0.49 27.81 0.23 28.6
350 0.53 21.61 0.29 25.5
500 0.69 13.79 0.13 23.4
650 0.71 13.35 0.11 18.4
700 0.72 13.62 0.10 18.5

TABLE I: Results of DRDL (3 layers) on stock forecasting
problem for different window size. Scores averaged on test
phase, on all the 180 stocks.

Model r RMSE↓ MAE(%) ↓ SMAPE(%)↓
ARIMA 0.13 78.6 1.23 65.5
LSTM 0.24 297.5 6.12 47
DeepAR 0.40 73.89 0.43 58.13
Nbeats 0.38 95.52 0.57 63.75
TFT 0.52 35.79 0.35 38.25
DRDL (1 layer) 0.65 23.24 0.19 35.3
DRDL (2 layers) 0.69 14.2 0.15 23.2
DRDL (3 layers) 0.71 13.35 0.11 18.4

TABLE II: Comparative analysis of DRDL against state-
of-the-art methods for stock forecasting problem: Pearson
correlation score (r), MAE, RMSE and SMAPE scores on the
estimation of next time step adjusted close price, averaged
over the data in the test set and the stocks.

.

4http://ta-lib.org
5http://www.ta4j.org

Method Train Time cost (h.) Test Time cost (min.)
DRDL (3 layers) 2.37h 20 min
DRDL (2 layers) 2.12h 18.4 min
DRDL (1 layer) 1.78h 15.8 min

ARIMA 2.01h 36 min
LSTM 8 days 45 min

DeepAR 2.45h 20 min
TFT 2.25h 27 min

Nbeats 3.12h 25 min

TABLE III: Averaged time over 10 random runs for process-
ing the dataset (train(hrs) and test(min)), for DRDL and its
competitors.

2) Comparison with benchmark models: To understand bet-
ter, we present table II which provides comprehensive analysis
on performance estimation on the stock forecasting problem
using DRDL, LSTM, ARIMA, DeepAR [44], Nbeats [67],
and TFT [68]. Table II presents comparison in terms of
Pearson correlation factor r, RMSE, MAE and SMAPE. We
can see that DRDL (3 layers) architecture outperforms DRDL
(2 layers), DRDL (1 layer) as well as the other benchmarks
models. We also notice that the average performance of TFT
is comparable to DRDL (1 layer) architecture. Fig 4 displays
the Pearson correlation analysis between ground truth daily
adjusted close price time series and predicted ones along test
phase, using DRDL (3 layers) for four representive stock cases.

Table III presents the computational time for forecasting
the next day closing price for our dataset. We distinguish the
time required to train the methods (on the first ten years)
and to test them (on the next ten years) using the walk-
forward method described in [32, Section 4.2.1]. We observed
the highest computational time with the LSTM approach.
The other methods have rather similar computational time,
DRDL (1 layer) being the fastest. The computational time
of DRDL (3 layers), reaching the best performance metrics,
stays reasonable, and is comparable with the one of DeepAR
and TFT. Here, we must recall that, in contrast with most
of its competitors (except ARIMA), our implementation of
DRDL method (for both train/test phases) does not exploit
GPU facilities such as PyTorch. Complexity reductions could
certainly occur if this was the case.

The stock forecasting results are presented in Fig. 3.
The comparison is carried out between the proposed DRDL
for different layer number, LSTM, ARIMA, DeepAR, TFT,
Nbeats method. We observed that in some cases (c-d), LSTM
approach failed to reach satisfying results which might be due
to vanishing gradient issues. In cases (a-b), ARIMA performs
quite good when compared to its performance in other cases
(c-d). In contrast, DRDL (3 layers) reaches stable and satisfac-
tory outcomes. DRDL (2 layers) outperforms DRDL (1 layer)
and both benchmark methods but remains lower quality than
its 3-layers variant.

D. Numerical results for the stock trading problem

1) Influence of the window size: The challenging task with
the DRDL approach is to preserve a balance between the
computational time and optimal predictions. We experimented

http://ta-lib.org
http://www.ta4j.org
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Method F1 Score Precision Recall Training time Testing Time
Hold Sell Buy Hold Sell Buy Hold Sell Buy (in hrs) (in min)

DRDL (3 layers) 0.61 0.30 0.29 0.85 0.26 0.29 0.51 0.54 0.54 4.12 10.17
DRDL (2 layers) 0.61 0.32 0.34 0.83 0.23 0.26 0.48 0.51 0.53 3.56 12.50
DRDL (1 layer) 0.59 0.19 0.23 0.88 0.15 0.12 0.45 0.52 0.51 2.00 11.56

MFNN 0.58 0.11 0.06 0.79 0.11 0.04 0.47 0.37 0.16 5.34 14.23
LSTM 0.86 0.05 0.05 0.84 0.07 0.06 0.89 0.05 0.05 12.53 13.50

CNN-TA 0.85 0.08 0.09 0.84 0.11 0.09 0.85 0.07 0.10 4.57 14.36

TABLE IV: Comparison of classification scores of different methods on the stock trading problem. All scores are averaged
over 180 stocks and over the days of the test phase.

Window size (τ ) F1 Score Precision Recall
Hold Sell Buy Hold Sell Buy Hold Sell Buy

250 0.61 0.23 0.19 0.91 0.15 0.12 0.46 0.51 0.50
300 0.61 0.23 0.19 0.91 0.15 0.12 0.46 0.50 0.51
350 0.61 0.26 0.27 0.89 0.18 0.19 0.47 0.53 0.52
500 0.61 0.26 0.27 0.89 0.18 0.19 0.47 0.52 0.53
650 0.61 0.30 0.29 0.85 0.26 0.29 0.51 0.54 0.54
700 0.61 0.30 0.29 0.87 0.21 0.20 0.48 0.53 0.54

TABLE V: Classification scores of DRDL (3 layers) for varying window size.

Window size (τ ) F1 Score Precision Recall
Hold Sell Buy Hold Sell Buy Hold Sell Buy

250 0.61 0.21 0.19 0.91 0.14 0.12 0.47 0.49 0.48
300 0.61 0.24 0.20 0. 90 0.16 0.13 0.47 0.50 0.49
350 0.62 0.25 0.24 0.89 0.17 0.16 0.48 0.51 0.52
500 0.62 0.25 0.24 0.89 0.17 0.16 0.48 0.52 0.51
650 0.61 0.32 0.34 0.83 0.23 0.26 0.48 0.51 0.53
700 0.59 0.33 0.32 0.84 0.20 0.23 0.46 0.53 0.51

TABLE VI: Classification scores of DRDL (2 layers) with varying window size.

Window size (τ ) F1 Score Precision Recall
Hold Sell Buy Hold Sell Buy Hold Sell Buy

250 0.84 0.10 0.10 0.85 0.10 0.10 0.85 0.12 0.12
300 0.80 0.10 0.12 0.85 0.10 0.10 0.74 0.17 0.14
350 0.68 0.15 0.15 0.82 0.10 0.10 0.62 0.30 0.31
500 0.59 0.18 0.22 0.86 0.15 0.14 0.46 0.51 0.51
650 0.59 0.19 0.23 0.88 0.15 0.12 0.45 0.52 0.51
700 0.59 0.24 0.22 0.90 0.16 0.14 0.46 0.51 0.52

TABLE VII: Classification scores of DRDL (1 layer) with varying window size.

Stock symbols DRDL (3 layers) DRDL (2 layers) DRDL (1 layer) CNN-TA MFNN LSTM
WIPRO.BO -13.89 -23.26 -29.14 -18.14 -27.81 -47.74
AAPL 19.12 11.3 10.14 0 12.92 0
AMZN -13.23 -11.92 21.23 30.64 -20.85 -0.15
IOC.BO -13.48 -23.28 -2.68 -3.03 -26.42 -3.1
TATACHEM.BO 1.23 3.83 2.19 -1.54 -8.32 0
SPICEJET.BO 11.92 10.17 -8.63 -24.08 -28.21 0
ATML -4.13 -5.78 -10.19 -33.25 -27.07 -33.82
DOM.L 4.56 9.34 2.83 0.11 8.22 0.47
INDRAMEDCO.BO -5.78 -10.34 -3.65 -14.22 -3.53 -50.86
Average on all 180 stocks 3.87 2.67 2.34 -5.08 -11.45 -13.02

TABLE VIII: Annualized returns resulting from the stock trading decisions of different methods during the test phase.

with various window sizes to analyze and preserve the best
parameter for our future experiments. We present Table V
which depicts the experimental performance of DRDL (3
layers) architecture, Table VI depicts the experimental per-
formance of DRDL (2 layers) architecture, Table VII depicts
the experimental performance of DRDL (1 layer) architecture
for different window sizes. The empirical results state that the

performance of the approach increases as it feeds more data to
the model for better understanding. We can preserve a balance
parameter τ = 650, which indicates stabilized performance.
We further use this value in upcoming experiments.

2) Classification metrics: To explain the empirical analyses
of the trading process (classification), we present confusion
matrices. The trading process involves classifying the signal
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Fig. 5: Confusion matrices on stock trading classification task
(averaged over days in test phase and over stocks) for DRDL
with 1 to 3 layers, and deep learning techniques MFNN, CNN-
TA and LSTM.

into three classes, namely "Buy," "hold," and "sell" classes.
The summarized performance for 180 stocks by DRDL and
other state-of-the-art methods is presented in Fig. 5. Among
the three classes, we see the prediction of hold class is captured
efficiently when compared to the other classes. The LSTM
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Fig. 5: Confusion matrices on stock trading classification task
(averaged over days in test phase and over stocks) for DRDL
with 1 to 3 layers, benchmark teqniques LSTM, MFNN and
CNN-TA.

approach predicts the best score over the other state-of-the-art
methods when compared to false negatives scores. However,
in LSTM and CNN-TA approaches are highlighted many false
positives for the "hold" class. It can be noted that these deep
learning techniques have labeled most signals as hold class,
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jeopardizing the model behavior for the other classes ("buy,"
"sell"). The nature of the finance market is highly volatile
and non-linear; hence we get to see a highly imbalanced
dataset. However, we noticed that the DRDL approach handles
it by imposing an activation function on the operators. These
operators are expected to evolute continuously as we grow
deeper with time sequence. The Table. IV and Fig. 5 adds
more weight to the analysis. The results state that the DRDL
approach managed to predict the highly unbalanced data. The
sensitivity score (Recall) is presented well by the DRDL
approach compared to the state-of-the-art methods. The diago-
nals of the confusion matrix of the DRDL approach also takes
the maximum values, which a valid classifier should expect.
When dealing with highly imbalanced dataset such as finance
dataset, it is more important to study classification metrics
like F1 Score, Precision and Recall for each class. This helps
in analyzing the model behavior for each class. The Table
IV presents analysis of these classification metrics for DRDL
compared to other deep learning state-of-the-art methods. We
conclude that DRDL outperforms the other methods stated.

In Table IV, we also present the computational times
(train and test) for conducting trading simulations for our
dataset. Hereagain, LSTM is the more demanding method
at training. All methods have rather comparable test times,
despite DRDL is implemented on CPU only. In particular,
besides its probabilistic output, DRDL is not more costly
than its competitors. Adding more layers to DRDL slightly
increases its train time, but does not affect much the test time.

3) Annualized Returns: Stock market aims to analyze and
evaluate the return on investment for a given stock. Every
trader is indeed interested in evaluating his investment returns
and taking risks accordingly. We simulate market scenarios
[41] by evaluating the annualized returns by the predicted
stock trading decisions provided by DRDL using 1 to 3
layers as well as the decisions from from the benchmark
models. Table VIII presents a detailed study of nine stocks for
DRDL methodology and state-of-the-art methods. We display
only empirical values for nine stocks and the average results
over the 180 stocks. To make it easy for readers we have
highlighted best annualized returns in bold. It is clearly evident
that the DRDL approach yields higher returns when tested
for a duration of 10 years when compared to annualized
returns obtained from deep learning state-of-the-art methods
predictions.

4) Portfolio diversification: Many researchers and traders
believe that it is essential to know the associated sentiments
associated with each stock to understand the stock market.
Traders support and recommend having a mix of stock senti-
ments in one’s portfolio. The market is very well divided into
three types of stock sentiments: small-cap, mid-cap, and large-
cap. To read about them in detail please refer to [32][section
4.4.4]. To evaluate this sentiment using the predicted signals
from the proposed approach, we calculated probabilistic quan-
tification, as explained in sec. III-C. The practitioner uses
this quantification score to have a well-diversified portfolio.
The score provides a confidence score that helps the investor
decide where to invest in the market to have a balance of

Stock symbols DRDL DRDL DRDL
3 layers 2 layers 1 layer

Sm
al

l-
ca

p ALOKTEXT.BO 1.04 1.20 1.09
ALKYLAMINE.BO 1.17 1.19 1.34
ZEEMEDIA6.BO 0.89 0.99 0.23

PVP.BO 1.34 1.98 2.78

M
id

-c
ap

IOC.BO 1.02 1.05 0.87
TATACHEM.BO 0.76 0.45 0.94
SPICEJET.BO 0.34 0.65 1.20

BHEL.BO 0.20 0.51 1.15

L
ar

ge
-c

ap

AAPL 1.13 0.98 1.11
AMZN 0.11 0.41 0.43

HINDZINC.BO 0.03 0.65 0.45
ONGC.BO 0.20 0.13 0.09

SIEMENS.NS 0.12 0.02 0.11

TABLE IX: Comparative analysis of uncertainty quantification
provided by DRDL using 1 to 3 layers. The quantification is
listed for stocks with market capitalization categories. The log-
loss is computed over the test phase.

market sentiments and maximize returns.
To understand further, we present Table IX which provides

a log-loss score. The log-loss score provides the confidence
score in terms of its volatility nature, where the smaller
value is considered, the better and less volatile. We evaluated
the confidence score for the proposed approach for different
configuration. The market capitalization of these stocks can
be found 6. The log-loss value provides the probabilistic
inference for the predictions. The inference tries to penalize
the events for which the method assigns a low probability. We
observed that the log-loss value reached a meager value which
indicated good prediction accuracy in large-cap stocks, which
are expected to be least volatile. In contrast, we achieved a
higher log-loss value for predictions associated with small-cap
stocks as they are highly unstable and new to the market.
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V. CONCLUSION

In our approach, time-series sequences are modeled with
a flexible Gaussian SSM. The transition matrices (state and
observation models) are unknown, and are estimated thanks
to an expectation-minimization strategy, assuming a particular
deep NMF structure. The DRDL approach inherits advantages
from sophisticated modeling techniques while quantifying the
uncertainty in the predictions. We have then adapted the DRDL
approach to deal with a challenging large scale financial time
series problem, to target stock forecasting and trading tasks.
In particular, the method is able to successfully operate in
an online processing manner, allowing to capture piece-wise
linear characteristics in the data. The results show that the
proposed method outperforms the state-of-the-art techniques.
Given these promising results, we plan as future work to delve
deeper into the area of financial forecasting, including the
application of our technique in forecasting derivatives.

6https://finance.yahoo.com/screener

https://finance.yahoo.com/screener
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