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Unmatched Preconditioning of the Proximal
Gradient Algorithm

Marion Savanier, Emilie Chouzenoux, Jean-Christophe Pesquet, and Cyril Riddell

Abstract

This work addresses the resolution of penalized least-squares problems using the proximal gradient algorithm (PGA). PGA
can be accelerated by preconditioning strategies. However, typical effective choices of preconditioners may correspond to intricate
matrices that are not easily inverted, leading to increased complexity in the computation of the proximity step. To relax these
requirements, we propose an unmatched preconditioning approach where two metrics are used in the gradient step and the
proximity step. We provide convergence conditions for this new iterative scheme and characterize its limit point. Simulations for
tomographic image reconstruction from undersampled measurements show the benefits of our approach for various simple choices
of metrics.

Index Terms

Computed tomography, convergence analysis, image reconstruction, matrix approximation, proximal methods.

I. INTRODUCTION

First-order optimization methods are attractive tools for solving a broad class of (possibly nonsmooth) optimization problems

due to their scalability and flexibility. Among them is the proximal gradient algorithm (PGA) [13], [16], also called forward-
backward splitting method. However, first-order optimization methods often converge slowly [6], bringing into question their
relevance for high-dimensional applications. Inertial extensions [1], [25] improve the theoretical convergence rate of these
methods, but they may only lead to moderate practical accelerations. In an attempt to reach greater accelerations, several authors
have explored preconditioning strategies [7], [26] to improve the conditioning of the gradient step in PGA [2], [5], [8], [15].
Preconditioning PGA consists of performing a change of metric to reduce the condition number of the linear operator (typically,
Hessian) involved in updating the smooth part of the cost function. Preconditioning does not affect the fixed points of PGA. The
main issue with this strategy is that the preconditioning metric used in the gradient term must theoretically also be included, via
its inverse, in the proximity operator, thus increasing the computational cost of PGA iterations. Computationally cheap metrics
resulting from rough approximations to the Hessian operator can be conveniently inverted (e.g., diagonal matrices), but they
may fail to achieve significant acceleration. Moreover, the proximity operator might no longer have a closed form in the chosen
metric. In this case, the proximity operator must be computed through inner iterations so that the extra computations needed
outweigh the benefit in terms of convergence rate. Designing both effective and efficient preconditioners is then especially
challenging for proximal methods [12].
This work investigates the use of unmatched preconditioners in PGA for penalized least-squares problems. Our contributions
focus on (i) showing that convergence of PGA can be established when different preconditioners are used for the gradient and
proximity steps, (ii) providing associated error bounds, and (iii) illustrating the good performance of our approach for image
reconstruction in Computed Tomography (CT). Section II of this work introduces the considered objective function as well as
the general form of the preconditioned PGA. Section III reformulates an iteration of this algorithm with decoupled metrics
and investigates its new stability conditions. Numerical simulations are presented in Section IV, and Section V summarizes
our findings.

II. PROXIMAL GRADIENT ALGORITHM

a) Notation: Along this work, the underlying signal space is the N-dimensional Euclidean space R"Y endowed with the
standard scalar product (-,-) and norm || - ||. Moreover, |||L||| denotes the spectral norm of a square matrix L associated to
the vector norm || - ||, Ker L designates its nullspace, L is its pseudoinverse, and |L|/r its Frobenius norm. Let Q € S¥
(resp. D;{,) be a symmetric positive-definite (resp. diagonal matrix with positive elements) in RY*" . We define the proximity
operator of a proper, lower semicontinuous, convex function ¢ : RY s R U {+00} (i.e., ¥ € To(RY)) at z € RY, relative to
the metric induced by @, and denoted by proxg(z) [21], as the unique minimizer of 1 + £|| - —z|\2Q Here, || - || denotes the

Q-weighted norm, i.e., for every z € RY, ||z]|g = /(2 | Q2). proxfzi is the original form of the proximity operator [22].
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b) Model: We consider the reconstruction of a vector Z € R from an observation y € RX according to
y=Hz+0D, 1)

where H € REXN ig a linear operator, and b € R¥ is a noise term assumed to be additive zero-mean, and Gaussian with
precision matrix W € S}}. To estimate T, we rely on the well-known penalized least-squares criterion:

.. 1 K
minimize —||y — Hz||}, + =||z||* + g(z), 2)
zeRN 2 2

where € [0, +00[ and g € To(RY) is a suitable, possibly non-smooth, regularization function.
c) Preconditioned PGA: For solving Problem (2), PGA preconditioned by Q) € SK, [5] reads, for every n € N,

Tpt+1 = (1 - en)-rn + anroxgg($n - VQ_I(M-TWL - HTW@/)), (3)
where M is the Hessian of the smooth part of the cost function:
M=H"WH+xId . 4)

If 6, € [e,1] with € €]0,1] and v €]0,2/a[, where « is the Lipschitz constant of the preconditioned gradient operator
QY M- —H"Wy), ie. a = [||Q"Y2MQ~/?|||, then the sequence (x,)nen generated by Algorithm (3) converges to a
solution to Problem (2) when such a solution exists [11], [17]. The basic form of PGA is recovered when Q = Id [16].

We see that the convergence of PGA depends on the norm of the Hessian of the quadratic part of the objective function, and
more particularly on its maximum eigenvalue. A large value results in small gradient steps leading to a slow convergence.
The criteria for identifying a good preconditioner () are twofolds: (i) the action of @) and Q' on an element 2 € R" should be
easily computed; (ii) the conditioning number of @~ M should be small. These criteria often limit the use of preconditioning
to a simple form of regularizer g, e.g. a positivity constraint [4], an ¢; or quadratic penalty. In CT reconstruction, most
preconditioners were proposed in the case when no proximity operator is involved [18]-[20], [27], [29]. More details can be
found in Appendix A.

III. PRECONDITIONING WITH UNMATCHED METRICS

The standard form of preconditioned PGA with matrix () is appealing because it converges in a reduced number of iterations
for a suitably chosen ) and simple regularization choice. However, as we pointed out, such a choice may lead to severe
limitations. To include a more generic prior, we introduce a second matrix P € RNV*N guch that PM = 0, that leads to a
relaxed version of Iteration (3) which reads

Tni1 = (1 = Op)n + Opprox$ (v, — yP(Mz, — H Wy)). (5)

We say that P and () are matched when P(Q) = Id, hence we recover (3). Note that Iteration (5) can be viewed as an inexact
version of (3) where the error involved in the argument of the proximity operator is e(x,,) with

(Vz e RY) e(z) =~(Q ' — P)(Mxz — H"Wy). (6)

However, the assumption of summability of the error often adopted in the literature [16], [28] is generally not satisfied in our
context.

A. Cocoercivity conditions

By introducing the nonlinear operator
T,: RN = RY: 2+ prox$,((Id —yL)z +vPH Wy), )
Iteration (5) can be expressed more concisely as
Tpgp1 = (1 = 0p)zy + 0,1 2y,
with L=PH"WH+kId) = PM € RV*N, (8)
We also define Lo = QY/2LQ™1/2. Tt results from simple algebra that
|Lollg _

L]l = sup [ILelll ©

sery [7lle

and the adjoint of L in metric || - || is
L* = Q—ILTQ — Q_1/2L(—5Q1/2' (10)



Let us introduce the following quantities which will play a prominent role in our analysis:

Amin = inf (2| La)o = inf (z|Lqz), (11)
llelig=1 llwl=1
)\:;in = inf (| Lox), Amax = sup (z | Lgz), (12)
z€(Ker L)L zeRN
lel=1 llzl=1
1 . 1 -
B=35IIL~ L*lle = 5lliLq — Lelll- (13)

Note that A\ i, (resp. Apax) is the minimum (resp. maximum) spectral value of (LQ —i—Lg) /2 . Recall also that cocoercivity,
as defined below, is a key concept in fixed point theory [14]:

Definition IIL.1 Let 7 €]0, +oo|. L is n-cocoercive in (R,

Ilg) it . 2
(Vzr e RY) (x| Lx)g = nllLz|lo. (14)

We now provide conditions for this property to be satisfied.

Proposition IIL2 L is cocoercive in (RN || - ||q) with n €]0, +ool if and only if

)\min =20 (15)
Ker(Lqg + L¢) = Ker Lq. (16)
Then, the maximum cocoercity constant of L is
_ 2
n= T T T\1/2)2° a7
II(d +(Lg — Lo)(Lo + Lo)N)(Lo + L) V2|
2
In particular, L is cocoercive in (RN, | - |\q) with constant 1 = 1/(\/)\max + 5/ )\;in) <7
Proof. For z € RV, by setting 2z = Q~'/22, it follows that Condition (14) is equivalent to
(V2 €RY) (2|12 > nllLozl as)
In other words, L is n-cocoercive in (RY, || - ||g) if and only if L¢ is n-cocoercive in RY. The result then follows from [9,

Proposition 3.4], which provides cocoercivity conditions for Lg. O
From (8) and (10), some special cases are worth being considered:
(i) If P = Q™' (matched preconditioning) then Lo = Q~/2MQ~'/2 and B = 0, which leads to 7
(i) If M is invertible and P = M~' (Newton preconditioning) then L = Id, Lo = Q'/2Q~'/2? =
leads toj =1 = 1.

=n=1/[||Lqlll-
Id, and 8 = 0, which

B. Fixed points of T,

Let Z be a solution to Problem (2). Then, 7 satisfies the following first-order optimality condition:
0€Q '9g(@)+Q Mz —Q 'H "Wy, (19)
where dg(Z) denotes the subdifferential of g at Z. Similarly, for every v € 0, +o0[, the fixed point set of operator T is
F={7eR" | 0eQ '09(7)+ L7 — PH Wy}. (20)

One can notice that F is no longer the set of minimizers of the objective function in (2). We first characterize the existence
and uniqueness of a fixed point of T7,.

Proposition II1.3 Assume that Conditions (15)-(16) hold.
(i) F is nonempty if domdg = RY and the function defined as

(Ve e RY)  h(z) = %(m | Lz)g + g(z) (1)

is coercive, i.e., lim| ;| 400 N(x) = +00.
(i) F is a singleton if g is strongly convex or Ay, > 0 .

Proof.



(i) According to (8) and (20), T € F if and only if Z = Q~ /2% and
QYV2PH Wy e Q™ Y209(QV%2) + LoZ. (22)

To prove the existence of a solution to this inclusion, let us define the auxiliary function h as
~ 1
hex— h(QV2z) = §<x | Lox) + 9(Q™ %), (23)

If domdg = RY and h (hence h, since Q~'/2 is invertible) is coercive, the cocoercivity of Lg allows us to apply [9,
Proposition 3.10(iv)(a-b)] that establishes the surjectivity of d(g o Q~'/2) + L. Given that Q=20 0go Q™2 + Lg =
d(g 0 Q~'/?) + Ly, this shows the existence of Z in (22).

(ii) According to (22), £ € F is uniquely defined if and only if Z is. From the assumption of convexity made on g, and
the cocoercivity of Lg, it follows from [3, Corollary 23.37] that Z is unique if either J(g o Q=2 or Lg is strongly
monotone [3]. This holds in particular if g is strongly convex or A, > 0.

C. Convergence results

The unmatched preconditioned scheme (5) benefits from convergence results similar to those existing for the standard
preconditioned PGA. However, there usually exists a discrepancy between the limit point Z of (5) and any minimizer = of the
objective function in (2).

Proposition IIL.4 ! Suppose that F # @. Assume that Conditions (15) and (16) hold. Let 7 be defined by (17), let v €]0, 27,
let 6 =2 —~/(27), and let (0)nen be a sequence in [0, 8] such that , _x 0n(0 — 0,) = 4+00. Then any sequence (X )nen
generated by Iteration (5) converges to a point T € F.

In addition, let v € [0,400| be such that g = h +v/2| - ||, where h € Do(RY).2 If v > 0 or Apin > 0, then

neN

”e@)”Q ] (24)
velo.2ql 1+ yv — ||| 1d —yLgl]|

17 —2Zllo <

It is worthy to note that the symmetry and positiveness of P are not mandatory to ensure the convergence of (5).

Usually, the regularization function g depends on some parameter vector w. The previous analysis assumes that w is set to the
same value for the exact and unmatched preconditioned PGA. A better strategy may be to adjust w in the unmatched case to
reduce the discrepancy between T and Z.

IV. NUMERICAL EXPERIMENTS

Hereafter, in Model (1), y represents limited tomographic measurements, H is the projector in parallel-beam geometry, and
T is the ground truth phantom. The projector and the backprojector H ' are the most computation-intensive operations. To
limit the number of PGA iterations and thus of multiplications with these operators, we use an effective preconditioner P for
the gradient step. The numerical experiments were carried out in MATLAB with the ASTRA Toolbox [32].

a) Tomographic geometry: Reference image 7 is a slice of size N = 256 x 256 extracted from a computerized tomographic
scan of an abdomen with values belonging to [1000,2100]. The image contains simulated small structures of comparatively
high intensity (3000). We simulate 60 projections at uniformly spaced angular positions within the interval [0°,180°]. The
detector has 363 ~ \/5 x 256 bins of the same size as the pixels, so that the data is not truncated and K = 60 x 363. Operator
H is based on the line-length model, which corresponds to ASTRA GPU implementation [31]. For the measurement y, we
simulate a noise-free sinogram and add some low level of noise b drawn from the Gaussian distribution A/(0,100 x Id), so
that W =102 x Id.

b) Regularization: For such an underdetermined problem, we adopt an Ivanov variational formulation [23] combined
with a total variation (TV) bound [10]: an estimate p > 0 of the value range for the TV bound of our target image is
supposed to be known. Thus, in (2), ¢ = tp, ,(0.p)(V:), where V is the 2D discrete spatial gradient operator and (g, ,
is the indicator function of the ball of radius p associated with the £; 5 norm || - |12 as defined in [48]. More precisely,
B12(0,p) = {u € R?" | ||lull12 < p}. Even without any metric, the proximity operator of g does not have a closed form
and is computed by the dual forward-backward (DFB) algorithm [13] with a maximum of 500 iterations and a warm restart
procedure.

IThe proof of this proposition is given in Appendix B.
2y is the strong convexity modulus of g in (RY, || - [lo).



¢) Parameter selection: Except otherwise stated, we choose p equal to p = ||VZ||1 2. Parameter « in (4) is set to 1075,
which implies that M is invertible and we set P = M L. In order to compute products between P and any vector, we use the
conjugate gradient algorithm with a tolerance of 10~* initialized with the previous iterate (warm restart). Preconditioning the
gradient term with P might require extra projections and backprojections per iteration due to the CG inner loop. However, we
demonstrate in the sequel that this inversion of the Hessian effectively accelerates the method, especially when combined with
a simpler preconditioner for the proximity operator. Following Proposition III.2, the cocoercivity constant of L equals 1. In
addition, Ay, = 1 and the conditions in Proposition II1.3(ii) are satisfied; F is thus a singleton. In PGA, the step size 7 is set
to 0.9 which, according to Proposition III.4, guarantees the convergence of Algorithm (5). In the DFB iterations, the metric )
weighting the proximity operator is inverted. Setting @ = P~! = M would require using CG again in the DFB step, which
would be computationally heavy. Several other choices of proximity metrics are considered instead, as described hereafter.

10"

—(3)with Q,
(5) with Q,
—cp

llzn — =11 /11l

10° 10" 10° 10?
Execution time (s)

Fig. 1: Evolution of the NRMSE along iterations for Algorithms (3) and (5), p = p, and Q = Q1.

Fig. 2: From left to right: =, reconstructed images for p = p with Alg. (3) using @1, and with Alg. (5) using Q1.

d) Matched versus unmatched preconditioning: We first set metric () to the diagonal majorant matrix proposed in [24]:

Q = Wdiag(ST1y)+x1d, where 1y =[1,...,1]" € RN and S = (|sz| Sy [ Hip| e tencre Ve also compare
\Z\ 1AV
PGA schemes (3) and (5) to the Chambolle-Pock (CP) primal-dual algorithm [49]. CP is a competing proximal-based method

to minimize our cost function involving neither sub-iterations nor preconditioning. We assess the performance of the three
methods in Figure 1 showing the overall normalized reconstruction reconstruction error NRMSE = ||z, — Z||/||Z|| as a
function of the execution time in seconds. We notice that Algorithm (5) converges faster than both Algorithm (3) and CP.
The convergence curve of CP oscillates in the first iterations. After only 10 seconds, the reconstruction error associated with
Algorithm (5) is lower than the error corresponding to the estimate delivered by Algorithm (3) at convergence. Interestingly,
the resulting fixed point was observed to be closer to the ground truth T than the minimizer of Problem (2). The reconstructed
solutions are displayed in Figure 2. Residual deconvolution artifacts (undershooting) and subsampling streaks are present in
the estimate produced by Algorithm (3) with (J; but not in the one yielded by our unmatched scheme.
e) Alternative choices for (): Four additional approximations to M in S]J\r, have been tested for metric (), namely )5 = Id,

@3 the inverse of 2D Laplacian filter,> Q4 = Diag ((M;,;)1<i<n) the Jacobi preconditioner,* Q5 = argmin .+ QY2 —Q~'/2M| 2
and Q)¢ a tridiagonal approximation to M i.e., the symmetric matrix whose elements on the main diagonal are (M, ;)1<i<n
and those on the next upper / lower diagonals are %(MH_M + Miit1)1<i<N—1-

Table I (first row) contains the NRMSE values after 1000 iterations obtained with Algorithm (5) for the different metrics,
and p = p. First, we see that all choices are competitive compared to the baseline Algorithm (3) and their NRMSE values are

3The cone filter is decomposed into a local Laplacian operator coupled with a non local logarithmic kernel filtering [30].
4The entries of H correspond to line integrals between a ray and a pixel, which are positive. Since Amin > 0, the entries of M are strictly positive.



close. Metric (); leads to the best quantitative results. Metric (3 provides the poorest reconstruction with the highest NRMSE
and a patchy look (see Appendix C).

f) Sensitivity to p: Table I also shows the sensitivity of the reconstruction to the TV bound when performing sets of
trials reconstructions for p € {p_,p;+}, with p; = 1.1 x 5, p— = 0.9 x p. We observe that p_ generally leads to lower
reconstruction errors. () is consistently associated with the lowest NRMSE. The choice of () = ()2 was noticeably shown to
rank second-best for the lowest bound p_.

Q1 Q1 Q2 Q3 Q4 Qs Qs
D 0.0621 0.0543 0.0562 0.0622 0.0558 0.0559  0.0560
p— 0.0559 | 0.0484 0.0489 0.0544 0.0494 0.0494 0.0490
P+ 0.0664 | 0.0614 0.0622 0.0708 0.0621 0.0628  0.0626

TABLE I: NRMSE after 1000 iterations for Algorithms (3) (first column) and (5) (all other columns), for various choices of @ and p.

V. CONCLUSION

In this article, we have addressed the problem of accelerating the convergence of PGA through unmatched preconditioning.
By leveraging recent tools of fixed point theory, we have characterized the resulting solutions, calculated error bounds, and
provided convergence conditions for our modified PGA. Our experimental results on a CT imaging inverse problem prove that
satisfactory solutions can be obtained in reduced time, when the metric in the proximity term has lower complexity than the
gradient preconditioner.

APPENDIX A
PRECONDITIONING IN CT RECONSTRUCTION

This section bricfly reviews the family of preconditioners used in CT reconstruction. We show that existing accelerated
reconstruction algorithms can be reformulated as unmatched preconditioned algorithms. Our framework thus clarifies the
convergence properties of these accelerated algorithms.

In CT reconstruction, diagonal preconditioners [35], [39] provide limited acceleration. Fourier preconditioners are used instead
[18]-[20], [27], [33], [34], [40]. Preconditioning PGA when the precision matrix W = Id in Problem (2) derives from the
Fourier-slice theorem, which states that the continuous version of the normal operator M =H " H is a convolutional circulant
operator.

This theorem provides two filters associated with the Caldéron operator [45]. The first is the 2D cone filter, which is applied
after the backprojector H ', yielding a potential choice of preconditioner P in Algorithm (5). However, it requires infinite
support and is considered computationally expensive. Many variants have been proposed to simplify [44] or improve it by
taking into account the underlying sampling in H " H. Improved filters were obtained by approximating the SIRT algorithm
[43], or in a learning framework [42], [46].

The second choice is the 1D ramp filter, which is simpler to compute and does not require infinite support. However, since it
is applied prior to H ", it does not fit exactly the form of Algorithm (5): the product PAM = PH " H is replaced by the more
general structure HTH. Both filters are particularly efficient because they provide a close approximate inversion of H.
Regularized Iterative Filtered Backprojection (i-FBP) [37] (and Iterative Feldkamp-Davis-Kress i-FDK methods for cone-bean
geometry [36]) speeds up convergence by using this approximate inversion. This method consists in applying H ' H rather than
HT H in the gradient step, followed by an unweighted proximity step [38], [41]. Regularization behaves as a filtering process
whose behavior and strength are independent of the acquisition model H. The output of the regularization becomes easily
predictable [47]. These methods relate to our unmatched preconditioned Algorithm (5) with () = Id, for which we establish
conditions of convergence to a fixed point.

APPENDIX B
PROOF OF PROPOSITION III.4

In the renormed space (R™, || - ), Algorithm (5) with L defined by (8) takes the same form as the algorithm investigated
in [9], although for other purposes than preconditioning. The convergence thus follows from [9, Proposition 3.15].
The existence of a unique point & € F is a direct consequence of Proposition II1.3(ii). Let T be a solution to Problem (2) and
let v € ]0, +00[. We have

From properties of the proximity operator [13], since v > 0, for every z € RV, prox%(x) = pron7 h(%w) Since
T+
Q

~
14+~v h

$ (T —~vP(Mz—H"Wy)), (25)

=P ~
9 (@ —7Q (MZ — H'Wy)). (26)

rox
prox

8]) |

prox is nonexpansive in (R, || - ||), we deduce from (25) and (26) that

~ o~ Y -1 ~ T
1-— T — < —-PYMz—-H' W
A =7z ~Zlle < 5 er||(C2 )(Mz Yo



with 7

_ 1 Lo
1

_ ll1d —vLolll
+yv 1+~yv

. In addition, according to [9, Proposition 3.9], for Apin > 0 or v > 0, if v €]0, 27],

then 7, < 1.
In summary, if v < 27 and either A\p,;, > 0 or v > 0,

le@le  _ (@l
A—m)1+7) 143w —[1d Lol

17 —Zllo <

which leads to (24).

APPENDIX C
COMPARISON OF THE EFFECT OF METRICS (3 AND Q1 IN ALGORITHM (5)

Figure 3 displays two reconstructions obtained with our unmatched preconditioned scheme (5) using two choices of Q €
{Q1, @3} in the proximity operator. Algorithm (5) using metric Q3 yields patchy artifacts and an unnatural appearance.
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Fig. 3: Reconstructed images for p = p with Alg. (5) using Q3 (left) and Q1 (right).
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