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MPC-based optimal parameter scheduling of LPV controllers:
Application to Lateral ADAS Control*

Ariel Medero1,2, Marcelo M. Morato2,3, Vicenc Puig1 and Olivier Sename2

Abstract— In this paper, we propose an optimal online tuning
scheme for design-related scheduling parameters of adaptive
Linear Parameter Varying (LPV) control systems. Specifically,
the method is conceived within the Model Predictive Control
(MPC) framework, which we demonstrate to ensure an input-
to-state stable closed-loop and a recursively feasible optimisa-
tion program. The major advantage of the proposed solution is
that it automatically determines the LPV scheduling parameters
online, without the need to for the designer to develop any
scheduling function (which is often a repetitive and obscure
task). Moreover, it offers a direct and simple tuning procedure,
able to directly incorporate multi-objective performance goals
into a single quadratic cost. The proposed method is tested for
an LPV Advanced Driver Assistance System, showing enhanced
performances when compared to state-of-the-art methods based
on nonlinear scheduling functions.

I. INTRODUCTION

Linear Parameter Varying (LPV) approaches are nowadays
a mature topic in the control systems literature [1], with
results seen for a wide range of applications, e.g. [2], [3].
Through the LPV toolkit, important results obtained for
the control and observation of Linear Time-Invariant (LTI)
systems can be extended to the scope Linear Time Varying
(LTV) systems. The same is also true for many nonlinear
systems, where the LPV approach is enabled by means of
the so-called “linear embeddings” [4].

The key idea when using LPV models is that the non-
linear/TV is neatly encompassed within bounded scheduling
parameters ρ. There are many ways to classify LPV systems,
however, we focus henceforth in their sorting w.r.t. the nature
of these varying parameters, as follows: (i) dynamics-related
parameters, or (ii) design-related parameter.

In the case of dynamics-related scheduling variables, as
the name indicates, their variations are given according to
the dynamics of the system itself, therefore requiring them
to be either measured or estimated. As for design-related
varying parameters, these are additional variables introduced
by the control designer, usually chosen in order to formulate
adaptive control laws using the LPV framework. This latter
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class of LPV systems is often related to robust control
methods, for which a non exhaustive list of examples is [5],
[6], [7].

In the case of design-related parameters, an important as-
pect to be mentioned is that the online scheduling is defined
by the control designer. Therefore, a key issue that arises
is how to define a proper scheduling function in accordance
with performance objectives. The most common approach,
as seen in the prior references, is to develop some function
that maps the varying parameter according to measured
system variables (such as states and inputs). Even though
these scheduling laws are independent of the LPV controller
synthesis itself, the choice of the scheduling function and
the tuning of its parameters becomes an additional design
step. Usually, developing a coherent scheduling function is
quite tedious, inherently empirical, and often offers very little
insight w.r.t. to control objectives. Moreover, small variations
in the scheduling of the design varying parameter may cause
important changes in the performance of the closed-loop
system, and thus this task is of uttermost importance.

Taking into account the previous discussion, the main
contribution of this work is to propose a new method to
automatically determine design-related scheduling parame-
ters. Specifically, the proposed method is based on Model
Predictive Control (MPC1), which makes use of the closed-
loop dynamics and the (previously designed) LPV control
law to make an optimal choice of the scheduling variable
(online). By taking into account the system dynamics along
a prediction horizon and by using a quadratic cost, the
proposed strategy exhibits a significant advantage over the
standard function-development methods, requiring only sim-
ple tuning of performance-related weights, which are able to
encompass multi-objective goals.

In this work, the proposed MPC-based approach is used to
extend the preliminary result obtained by the Authors in [12],
regarding an Advanced Driver Assistance System (ADAS)
for the lateral control of vehicles. Specifically, we consider an
LPV ADAS (H∞) controller, for which a hyperbolic function
was previously used to map the design-related scheduling
parameter w.r.t. a residual signal related to driver errors.
Herein, the proposed MPC is implemented instead, which
optimally maps the ADAS varying parameter (of the LPV

1MPC is a very wide-spread technique for the regulation of constrained
processes [8]. With wide applicability, including results for nonlinear and
LPV systems [9], [10], the MPC framework offers a very direct method to
optimally determine decision variables along a rolling horizon. We stress
that the focus of this paper is not the synthesis of an LPV MPC algorithm, as
in recent works [10], [11], but rather the exploitation of the MPC framework
in the context of defining design-related LPV scheduling parameters.



state feedback control K(ρ)) automatically, as illustrated in
the scheme presented in Fig. 1.

Fig. 1. Driver plus ADAS Closed-Loop System

Paper organisation. Sec. II covers the MPC-based optimal
scheduling method for the selection of the varying design
parameter. Sec. III briefly explains how the LPV state
feedback H∞ ADAS control K(ρ) was designed as in [12].
In Sec. IV, simulation results are presented in order to
illustrate the performances obtained with the proposed MPC-
based scheduling parameter tuning; moreover, advantages
of the proposed optimal parameter scheduling approach are
discussed. Finally, Sec. V presents some conclusions.
Notation. The index set N[a,b] represents {i ∈ N | a ≤ i ≤
b}, with 0 ≤ a ≤ b.The predicted value of a given variable
v(k) at time instant k+i, computed based on the information
available at instant k, is denoted as v(k + i|k). K refers to
the class of positive and strictly increasing scalar functions
that pass through the origin. ‖ · ‖ denotes the 2-norm.

II. THE PROPOSED MPC STRATEGY

A. Preliminaries
As previously stated, the main contribution of this work is

to propose an MPC-based setup for the automatic definition
of design-related scheduling parameters of adaptive LPV
control schemes. Specifically, we consider the problem of
rendering coherent scheduling parameters for an LPV lateral
ADAS steering control strategy. In this system, the MPC
framework should enable a direct tuning of the envisioned
trade-off between conflicting driving performances objec-
tives.

Lateral ADAS control systems are subjected to constraints.
Moreover, the dynamics of the driver of the vehicle also
affect the lateral motions as explained in section III. More-
over, as illustrated in Fig. 1, we point out that the ADAS
closed-loop system, whose dynamics are given by Eq. (1),
is assumed to operate under an adaptive LPV H∞ control
system, for which ρ is a design-related scheduling parameter.

Therefore, we consider the following closed-loop discrete-
time model, which includes nominal driver, vehicle dy-
namics, performance weighting functions and ADAS state
feedback gain:

xP (k + 1) = ACL(ρ(k))xP (k) +Bww(k) , (1)

where xP are the states of the generalised plant P (ρ), which
describes the ADAS H∞ control problem, and w(k) is the

vector of exogenous inputs. In Sec. III (and in particular Fig
3), more details are given, including parameters and synthesis
choices of the corresponding LPV control layer.

Note that ACL(ρ) is a closed-loop matrix within which the
control input of the system is embedded; thus, we use:

ACL(ρ) := A+BuK(ρ) , (2)

where A and Bu are open-loop matrices related to the vehicle
and driver dynamics, and K(ρ) is a feedback gain related
to the known LPV controller. Specifically, we use an affine
parameter feedback representation, for which:

K(ρ) := K0 +K1ρ , (3)

where ρ ∈ Ω ⊂ R is the scheduling variable related to
the LPV controller, to be defined via the proposed MPC
framework, and K0 and K1 are known control matrices.

Remark 1: We stress that this state-feedback LPV con-
troller is assumed to be already known and previously
synthesised. The goal here is not control design itself, but
rather to focus on the problem of correctly scheduling this
adaptive LPV control scheme online. Full details on the
ADAS controller synthesis are given in [12], and a summary
is presented in section III.

For the correct regulation of this system, we use the
following constraints in order to represent admissibility:
xP (k) ∈ X , u(k) = K(ρ(k))xP (k) ∈ U and ρ(k) ∈ Ω,
δρ(k + 1) := (ρ(k + 1)− ρ(k)) ∈ δΩ, ∀k ≥ 0, where:


X := {xP ∈ Rnx : ‖xj‖ ≤ xj ,∀j ∈ N[1,nx]} ,
U := {u ∈ Rnu : ‖ui‖ ≤ ui,∀i ∈ N[1,nu]} ,
Ω := {ρ ∈ R : ‖ρ‖ ≤ ρ} ,
δΩ := {δρ ∈ R : ‖δρ‖ ≤ δρ} .

(4)

Assumption 1: The dynamics of the closed-loop model
in Eq. (1) are asymptotically stable, in the sense that all
eigenvalues of ACL(ρ) are found within the unitary circle
for frozen values of ρ ∈ Ω.

B. The MPC Setup

The goal of the proposed MPC is to determine the
scheduling parameter ρ that tunes the LPV controller such
that the following objectives are obtained: (i) the closed-loop
states xP are steered to some steady-state target xr, despite
the presence of the load disturbances w; (ii) the scheduling
parameter is maximised2, so that the lateral ADAS is used
as little as possible; (iii) all system constraints, as given in
Eq. (4), are respected. Therefore, we propose the following
multi-objective cost function:

J(xP (k)) =

Np∑
i=1

` (xP (k + i|k)− xr, ρ(k + i− 1|k)) (5)

=

Np∑
i=1

(‖xP (k + i|k)− xr‖Q − ‖ρ(k + i− 1|k)‖R) ,

2In the considered ADAS control strategy, a maximisation of ρ corre-
sponds to a less aggressive steering correction upon the driver’s steering.
Further discussion is given in Sec. III.



being `(xP − xr, ρ) a quadratic stage cost which weights
the performance along the horizon. We consider Q and R
as positive definite weighting matrices, used to imply the
envisioned trade-off between state regulation (objective (i))
and scheduling parameter maximisation (objective (ii)). The
prediction horizon Np determines the size of the (rolling)
future window of closed-loop states which are taken into
account.

Now, let consider that Assumption 1 holds. Then, the pro-
posed MPC is operated as follows, during the implementa-
tion: at each sampling instant k, the closed-loop states xP (k)
are measured, and the following optimisation problem, which
embeds the performance objectives (i)-(ii), as well as the
operational constraints (iii), is solved:

min
Θk

J(xP (k)) , (6)

s.t. xP (k + j + 1|k) = ACL(ρ(k + j|k))xP (k + j|k)

xP (k + j + 1|k) + Bww(k + j|k) ,∀j ∈ N[0,Np−1],
xP (k + j + 1|k) ∈ X ,∀j ∈ N[0,Np−1] ,
(K(ρ(k + j|k))xP (k + j|k)) ∈ U , , ∀j ∈ N[0,Np−1] ,
ρ(k + j|k) ∈ Ω , , ∀j ∈ N[0,Np−1] ,
(ρ(k + j|k)− ρ(k + j − 1|k)) ∈ δΩ , , ∀j ∈ N[0,Np] ,

where Θk = col{ρ(k + j|k)} ,∀j ∈ N[0,Np−1] gives the
sequence of scheduling parameters actions along the predic-
tion horizon. Note that xP (k|k) = xP (k) and ρ(k − 1|k) =
ρ(k−1) are the known initial conditions of this optimisation.

Let J? (xP (k)) be the optimal solution of the procedure in
Eq. (6) at instant k, from which Θ?

k is the optimal sequence
of control inputs. Then, the corresponding MPC-generated
scheduling parameter law at time instant k is the first entry
of Θ?

k, i.e. ρ?(k|k), which is passed to the LPV control loop.
Remark 2: In the proposed formulation, we consider that

the future load disturbance variables w(k + j|k),∀j ∈
N[0,Np−1] are constant, for simplicity. This is a reasonable
approximation since the rate of change for w is slower than
the rate of the MPC operation. In any case, the proposed
formulation can also be used for the case of rapidly chang-
ing disturbances, where their future values (or estimates)
w(k + j|k),∀j ∈ N[0,Np−1] can be plugged directly to the
optimisation.

Remark 3: The optimisation in Eq. (6) is nonlinear by
definition, since the term ACL(ρ)xP in the prediction model
yields (A+B(K0 +K1ρ))xp, where both ρ and xP are deci-
sion variables. Nevertheless, this nonlinearity can be readily
suppressed by solving the optimisation using a bisection
mechanism over the bi-linear plane ρxP .

Remark 4: In many cases, the rate of decision of the
scheduling variable does not necessarily have to match the
sampling rate of the process itself. Under these conditions,
the MPC can operate less often, thus allowing more time for
the optimisation to be solved. For the discrete-time samples
when the MPC does not operate, the scheduling variable are
simply kept constant.

C. MPC Properties
From Assumption 1, we already establish that the closed-

loop is stable. Nonetheless, we detail next how the proposed
MPC renders a recursively feasible optimisation problem,
for any feasible starting condition xP (0). Moreover, we
demonstrate how the stability of the closed-loop system is
maintained and thus not affected by any possible value of ρ
generated by the proposed MPC scheme.

Definition 1: Positive Invariant Set
Assume that there exists a set Xf . Xf is a positively
invariant set for the LPV system in Eq. (1) iff, for any
xP ∈ Xf and ρ ∈ Ω, it follows that x+

P ∈ Xf , where
the successor state x+

P is given by ACL(ρ)x.
Assumption 2: It is implied that: (i) The state set X is

closed, contains the origin, and represents an admissible
positive invariant set; and that (ii) the MPC cost J(xP )
is continuous and positive for all xP ∈ X . Moreover J(·)
represents a control Lyapunov function for the LPV system
in Eq. (1), meaning that there exist constants b > 0 and
σ > 1 such that J(xP ) ≤ b|xP |σ . It is implied, thus, that
J(ACL(ρ)xP ) − J(xP ) ≤ `(xP − xr, ρ), for all ρ ∈ Ω and
J(x1 − xr)− J(x2 − xr) ≤ αr (|x1 − x2|)

The following Theorem gives sufficient conditions for
the closed-loop to be stable and for the optimisation to be
recursively feasible.

Theorem 1: Stability and Recursive Feasibility
Consider that Assumptions 2 holds. Consider that the LPV
system in Eq. (1) has the scheduling parameter ρ defined
through an MPC, as rendered through the optimisation Eq.
(6). Then, asymptotic stability is ensured if the following
conditions hold ∀ρ ∈ Ω:
(C1) The origin xP − xr = 0 lies in the interior of X ;
(C2) X is a positively invariant set;
(C3) The discrete Lyapunov equation is verified within this
invariant set, this is, ∀xP − xr ∈ X and ∀ ρ ∈ Ω:
J
(
x+
P − xr,

)
− J (xP − xr) ≤ −`(xP − xr, ρ).

(C4) The terminal scheduling parameter is admissible, i.e.
ρ ∈ Ω.

Assuming that the initial solution of the MPC problem
P ?(k) is feasible, then, the MPC is recursively feasible,
steering e(k) = xP (k)− xr to the origin.

Proof: This proof is standard; refer to [13].
Proposition 1 (Stability): Let there exist a solution posi-

tive cost J(xP ). Then, the closed-loop LPV system (1) is
stable for any MPC-generated input ρ ∈ Ω. That is, for
any feasible initial condition xP (0) and constant steady-state
reference xr, such that xP − xr ∈ X , it is implied that
‖xP (k) − xr‖ ≤ β(‖P (0)‖, k), where β is a K-function
which passes through the origin.

Proof: Assume that X is a positive invariant set for the
closed-loop dynamics in Eq. (1). Let there be an MPC cost
J(·) such that Assumption 2 holds. Let the LPV controller
ensure closed-loop stability for all ρ ∈ Ω (Assumption 1).
Since `(·) is a quadratic stage cost, (C3) of Theorem 1 is
satisfied, thus establishing stability.

Proposition 2 (Recursive Feasibility): Consider that X is
indeed a positively invariant set. Consider an initial con-



dition xP (0) ∈ X . Consider an optimal sequence Θ?
0 =

{ρ(0)?, ρ(1)?, . . . , ρ(Np − 1)? Then, given xP (0), Θc
1 =

{ρ(1)?, . . . , ρ(Np − 1)?, ρ(Np − 1)} define feasible (candi-
date) solution of the MPC problem in Eq. (6), which means
that the optimisation is recursively feasible.

Proof: This proof is standard. Let Assumption 2 hold.
Then, from stability and the conditions from Theorem 1, we
can infer that the optimisation in (6) is recursively feasible.

D. Major Advantages

Before giving further details of LPV lateral ADAS control
strategy (Sec. III), we stress the major advantages of the pro-
posed MPC-based scheduling parameter generation scheme
(main result of this work):
• It provides a direct and simple cost function (see (6)),

able to provide an easy-to-tune trade-off between con-
flicting objectives ((i) and (ii)). The designer must only
choose the tuning matrices Q and R.

• It automatically generates a coherent scheduling param-
eter, online. So, the designer do not need to determine
any nonlinear function ρ(k) = fρ(xP (k)) to correctly
map the scheduling parameter according to objectives,
which could be tedious and often repetitive task.

• The resulting optimisation ensures that the closed-loop
remains stable, as long as Assumption 1 is satisfied (i.e.
the LPV control is properly working). Moreover, for any
feasible initial condition xP (0), the following solutions
will also be feasible.

III. LPV H∞ LATERAL ADAS CONTROL STRATEGY

In this Section, we summarise the main contribution from
the preliminary work [12]. The main goal of such a strategy
is to determine an auxiliary steering command that will not
be felt invasive by the driver, and thus shall only act when
needed to maintain vehicle and passenger safety. We note
that most of the details from the preliminary work have been
here omitted for the sake of brevity.

The closed-loop formed by the ADAS-Driver-Vehicle sys-
tem is illustrated in Fig. 2. The nominal driver is modeled
using a first-order LTI driver model, with:
• Inputs: lateral error of the vehicle ye ∈ R, curvature of

the path ahead in terms of ψ̇ref ∈ R.
• States: xd ∈ R
• Output: driver steering action δ0 ∈ R

and the vehicle dynamics considered are the lateral vehicle
dynamics in the form of the well known “bicycle model”
[5], [14] with:
• Inputs: steering action δ ∈ R.
• States: xv = [vy, ψ̇]T ∈ R2, the vehicle lateral velocity

and yaw rate respectively
• Output: xv

Notice in Fig. 2 that the LPV state-feedback controller
K(ρ) acts in parallel to the driver. The generalized plant
interconnection P (ρ) used to describe the LPV H∞ control
design problem is given in Fig. 3. Two weights are introduced

Fig. 2. Driver plus ADAS Closed-Loop System

to determine the performance of the controller. The tracking
performance weight We is given by a first-order LTI system
with:

• Inputs: yaw rate error eψ̇ ∈ R.
• States: xe ∈ R
• Output: tracking performance output z1 ∈ R

The actuator performance weight Wδ is a second-order
bandpass LTI system with:

• Inputs: ADAS steering action δk.
• States: xu ∈ R2

• Output: actuator performance output z2 ∈ R
Two main features of Wδ allow it to minimize the intrusive-
ness of K(ρ) to the driver:

1) Wδ is multiplied by the design-related varying pa-
rameter ρ. With this parameter, for large values of ρ,
the control action is heavily penalized, whereas for
small ρ, the assistance steering will gain in control
authority. As detailed in Sec. II, it is the objective of
scheduling the appropriate choice of ρ(k) in order to
avoid unnecessary intrusions (objective (ii)).

2) Wδ is shaped as a bandpass LTI system, extended from
[15], [5], to restrict the controller to act only in the
frequency range between f1 = 1Hz and f2 = 10Hz .
ADAS steering actions outside this range can be felt
as invasive and/or cause bothersome vibrations on the
steering wheel.

Fig. 3. Control Loop Interconnection for LPV/H∞ Design

Notice, the state-feedback law, δk = K(ρ)xP , makes use of
the full state xP from the generalized plant P (ρ), with xP
as:

xP :=
[
xTv xTe xTu xTd

]T ∈ R6 , (7)



Finally, the vector of exogenous inputs is given by:

w :=
[
ye ψ̇ref

]T ∈ R2 . (8)

For the synthesis of the controller K(ρ), the so-called
gridding approach is used, based on the use of parameter-
dependent Lyapunov functions [16]. In this work, a discrete-
time synthesis method was used to obtain a parameter
dependent state-feedback controller under the affine structure
presented in Eq. (3). Accordingly, the vector of selected grid
points for synthesis is ρ ∈ [0.1, 1, 100], with a parameter
varying rate upper bound of δρ = 400Ts. The sampling time
used for discretisation of the generalised plant at each grid-
point is Ts = 0.01 s.

IV. SIMULATION RESULTS

Simulations of the proposed ADAS strategy in Fig. 1
using the novel MPC optimal scheduling strategy combined
with the LPV H∞ controller, are here presented. Note
that the state variables xP are assumed to be available. In
practice, the states regarding the nominal driver and control
performance weights can be computed directly online, while
the vehicle dynamic states can be either directly measured or
estimated. Regarding the vector of exogenous inputs w(k), it
is assumed to be provided by the higher layer of the ADAS
stack which includes perception and planning strategies.

The simulation environment is the same as in [12]: a
realistic, nonlinear full-model of a Renault Megane car [5],
[14] is used to mimic the vehicles dynamics. The driver,
simulated using a driver model, must perform an emergency
double-lane change (DLC) maneuver at high speeds vx = 40
m/s. However the full method is designed with vx = 35 m/s
for robustness assessment.

In order to thoroughly evaluate the effectiveness of the
proposed MPC/ADAS strategy, we consider four scenarios:
• No MPC [12]: the ADAS assistance is enacted with the

scheduling strategy in [12], derived empirically from a
mathematical function.

• MPC (i), “lateral velocity” tuning, for which the MPC
penalises only the lateral velocity, thus using Q = Qi =
diag{1, 0, 0, 0, 0, 0} and R = 1 in (6).

• MPC (ii), “tracking error” tuning, for which the MPC
penalises only the tracking error performance state xe
from We, thus using Q = Qiv = diag{0, 0, 1, 0, 0, 0}
and R = 1 in (6).

• MPC (iii), “trade-off ”, for which the MPC is set to
penalise both vy and xe, thus using Q = Qi +Qii and
R = 1 in (6).

The proposed MPC scheduling strategy is synthesised with
a prediction horizon of Np = 8 samples, which, considering
the sampling time Ts = 0.01 s, amounts to 80 ms of previews
system dynamics. The constraints in X and U , from (4), are
chosen according to limitations in the actuator and vehicle
dynamics.

Bearing in mind the previous discussion, Fig. 4 presents
the scheduling parameter ρ obtained for the different simula-
tion scenarios. Furthermore, the additional steering generated

by the ADAS scheme (under the LPV control law) is shown
in Fig. 5.
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Fig. 4. Scheduling Signal ρ(k)
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Fig. 5. LPV H∞ Controller Command δk , Under ρ(k) Scheduling

Meanwhile, Fig. 6 offers a comparison between all simu-
lation scenarios in terms of the vehicle trajectory and the
lateral velocity vy experienced by the passengers. In this
figure a new scenario is added showcasing the open-loop
case without ADAS assistance:
• No ADAS, “only driver” case, for which only the simu-

lated driver steers the vehicle, without ADAS assistance.
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Fig. 6. Global Vehicle Trajectory (Top), Vehicle Lateral Velocity (Bottom)

From these results, we first note that the maneuver poses a
great challenge to the driver. From the No ADAS trajectories
in Fig. 6, we can see that the vehicle is not stable under the
DLC situation, which thus causes a large lateral velocity,
something that could cause a dangerous accident due to



under-steering in a real scenario. In the No MPC [12] ADAS
case, this situation no longer occurs, even with a small
steering assistance as seen in Fig. 5, which already shows
how necessary an ADAS could be.

Then, when taking into account the results obtained with
the proposed MPC scheduling, we mention that the first
tuning MPC (i) (i.e. “lateral velocity”) exhibits the worse
performance of the four tested ADAS cases, in terms of
the vehicle trajectory and lateral velocity. This issue can
be, in parts, attributed to the mismatch between the design
and simulation longitudinal velocity vx, rendering the MPC
system model not accurate enough for the online scenario.
Therefore, when using the proposed strategy, special atten-
tion should be given to the robustness of the MPC prediction
with respect model uncertainties, meaning that a constraint
tightening/tube technique may be necessary [10].

We also note that the results obtained in cases No MPC
[12] and MPC (ii) are quite similar, as seen in the schdeling
of ρ in Fig. 4 and specially the controller steering in Fig. 5.
This means that the scheduling strategy used in [12] induces
the LPV H∞ controller to prioritise the minimisation of the
error signal eψ̇ . This issue is not at all evident, since the
scheduling strategy in [12] consist of a nonlinear function
mapped by an estimation of the driver’s error with respect
a nominal driver model, thus the connection with eψ̇ is not
immediately obvious. On the other hand, the results from the
“tracking error” MPC tuning are able to recover the (already
good) performances from [12], but with a clear intention on
the end result by the control designer, plus, the choice on
how much or less importance is given to minimising eψ̇ is
straightforward by modifying the Q matrix weight in the
MPC cost J(·).

Finally, we note the results for case MPC (iii), even though
they do not improve on the results from [12], showcases
how simple it is with the proposed optimal MPC scheduling
strategy to mix different performances by simply modifying
the MPC cost J(·). It can be easily seen in Fig. 5 and Fig.
6, the results for the case “trade-off ” are a middle ground
between the absolute strategies in the MPC (i), “lateral
velocity” and MPC (ii), “tracking error” cases.

V. CONCLUSIONS

In this work, we introduced an optimal scheduling scheme
for design-related varying parameters, to be used in an LPV
control framework. This scheme uses the knowledge from
the previously designed LPV control law and the system
dynamics as the prediction system model of the MPC-
based scheduler, with the tuning being made by means of
a quadratic cost minimisation. The scheme was tested for
a lateral ADAS problem, improving the previous results
obtained by the Authors [12], under adequate tuning. Most
importantly, we demonstrate that the MPC scheme is able to
enact a wide range of closed-loop behaviours, under different
tuning approaches, which is a feature that the designer
can intuitively exploit to achieve desired trade-off between
conflicting performance goals. This represents the major
advantage of the proposed strategy, which allows to combine

multiple performance objectives under a single cost function.
This is a significant advantage over most works present in the
literature dealing with adaptive LPV controllers, which rely
on the ad-hoc development of scheduling functions, where
the tuning becomes increasingly difficult when combining
multiple variables. Additionally, due to the flexibility of the
MPC-based optimal scheduling strategy, it can be extended
to most LPV control problems making use of design-related
varying parameter.
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