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Abstract—The maximum a posteriori (MAP) threshold cor-
responds to the fundamental limit that one can hope to
achieve with the given channel code ensemble. Apart from
theoretical interests, finding this limit is also desirable since
spatial-coupled code ensembles approach this MAP threshold
due to phenomenon termed as threshold saturation. However
finding this MAP threshold, in general, is known to be
computationally prohibitive. This work proposes a tractable
method for estimating the MAP threshold for various families
of sparse-graph code ensembles over non-binary complex-
input additive white Gaussian noise (AWGN) channel. Towards
this, we provide a method to approximate the extended belief
propagation generalized extrinsic information transfer (EBP-
GEXIT) chart and estimate the MAP threshold by applying
the Maxwell construction to it. To illustrate the validity of our
method, we study spatial coupling for serially-concatenated
turbo-codes and numerically observe threshold saturation of
these codes to the MAP thresholds estimated via our method.

Index Terms—EBP-GEXIT charts, Maxwell construction,
MAP threshold, Spatially-coupled codes, Threshold saturation,
Generalized and doubly-generalized LDPC codes, Serially
concatenated turbo codes

I. INTRODUCTION

For a given channel code ensemble, there are three funda-
mental limits on the channel parameter above which reliable
communication is not possible; Shannon threshold, MAP
threshold, and belief-propagation (BP) threshold. While
Shannon threshold (limit due to channel capacity) is asso-
ciated with any arbitrary rate R code ensemble, MAP and
BP thresholds are associated with a rate R code ensemble
that also share some structural properties (e.g. LDPC code
ensemble specified by a degree distribution for variable and
check nodes). For the given code ensemble, MAP threshold
is the fundamental limit that one can hope to achieve with
this ensemble. However in practice, MAP threshold might
not be achievable and hence one settles for BP threshold
that corresponds to the limit achievable via BP decoding.
While finding the Shannon and BP thresholds are possible,
finding the MAP threshold, in general, is known to be
computationally prohibitive [1]–[3]. While spatial coupling
strategies provides a way to approach this fundamental limit
via BP decoding [4]–[10], this approach is computationally
cumbersome. Apart from theoretical interests, therefore the
problem of estimating the MAP threshold is very important.

Méasson et al. [2], [11] have proposed an analytical
method to estimate the MAP threshold of LDPC and parallel

turbo codes over any binary memoryless symmetric (BMS)
channel. In this method, the MAP threshold is obtained by
applying the Maxwell construction to the EBP-GEXIT chart
of the given code ensemble (details can be found in [1,
Sec. 3.20], [3]). While finding this EBP-GEXIT chart is
possible for the BEC, obtaining it for general BMS chan-
nels becomes computationally prohibitive for numerically
involved codes such as generalized LDPC (GLDPC), doubly
generalized LDPC (DGLDPC), and serially-concatenated
turbo-codes (SC-TC). One can also estimate the MAP
threshold of the given uncoupled code by finding the BP
threshold of its spatially-coupled version of large enough
length (this phenomenon is termed as threshold saturation).
However this threshold saturation is guaranteed only when
the length of the code tends to infinity and for finite length
case, one needs to validate the estimated MAP threshold
with respect to the MAP threshold estimated analytically.
It is thus desirable to provide a computationally tractable
analytical method for estimating the MAP threshold.

In this work, we provide a method for obtaining an
approximate EBP-GEXIT chart of the given code ensemble,
which is then used to estimate the MAP threshold via
Maxwell construction. In our conference papers [12] and
[13], we have proposed a method to find an approximate
EBP-GEXIT chart for LDPC/GLDPC/DGLDPC codes and
SC-TC respectively over binary-input AWGN (BAWGN). In
this paper, we extend this method for non-binary complex-
input AWGN channel, which in turn allows us to incorporate
the system when codewords are modulated by any arbitrary
modulation scheme. The main contributions of our work are
summarized below.

• We first consider the system when codewords are
mapped according the Gray mapping. In this case,
we consider the equivalent bit-interleaved coded-
modulation (BICM) channel and provide a method to
find an approximate EBP-GEXIT chart (see Section III,
[12], [13]).

• We then consider the system when codewords are
mapped according to an arbitrary mapping. In this case,
we first derive an expression for the GEXIT function
(by extending the results of [2], [14]) and then provide
a method for its tractable estimation (see Section IV,
Theorems 1 and 2).

• The key idea of our method consists of making use of
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the consistent Gaussian assumption for all the densities
involved in computation of the GEXIT function. This
enables us to compute the EBP-GEXIT chart banking
upon the EXIT charts of the constituent codes, which
are much easier to find and are typically known.

• Finally, we provide a detailed complexity analysis com-
paring the computation cost of finding the EBP-GEXIT
chart via its direct computation versus our simplified
method (see Section V, Propositions 1 and 2).

• The numerical results consists of MAP threshold esti-
mates for a variety of LDPC, GLDPC, DGLDPC, and
SC-TC ensembles. As an illustration of validity of our
method, we also verify our estimated MAP thresholds
of SC-TC ensembles via spatial coupling.

II. SYSTEM MODEL AND PRELIMINARIES

A. System model

LDPC(λ, ρ) denotes LDPC code ensemble, where λ(x) =∑
i λix

i−1 and ρ(x) =
∑
j ρjx

j−1 denote the edge perspec-
tive degree distributions for variable nodes (VNs) and check
nodes (CNs) respectively [1]. Let Λ(x) and P (x) be the
corresponding node perspective degree distribution pairs for
VNs and CNs respectively. While for LDPC codes, every
CN operation correspond to a single parity check code and
every VN operation corresponds to a repetition code, for
GLDPC codes some of the CN operations correspond to
an arbitrary linear code and for DGLDPC codes both VN
and CN operations correspond to a general linear code [15].
We assume that all VNs are unpunctured and have degrees
strictly greater than one. For SC-TC, we denote the outer
and inner convolutional codes by O and I respectively and
the corresponding ensemble by S(O, I).

We consider the digital communication system illustrated
in Fig. 1. The binary channel code used at the transmitter
is either an LDPC code or SC-TC. Message bit sequence b
is encoded to get a codeword sequence c = [c1 c2 . . . cn]
of length n. The encoded bits are then interleaved to get
an interleaved sequence of codebits c′ = [c′1 c

′
2 . . . c′n].

For a 2m-ary modulation scheme, coded bit sequence c′ is
first divided into N = n/m vectors each of length m and
denoted by c′ = [c′(1) c′(2) . . . c′(N)], where c′(t) =
[c′(t−1)m+1 c

′
(t−1)m+2 . . . c′tm] for t = 1, 2, . . . , N . Let us

denote the entries in c′(t) as c′(t) = [c′t,1 c
′
t,2 . . . c′t,m].

Modulated symbols are denoted by x = [x1 x2 . . . xN ],
where each xt is a complex modulated symbol corre-
sponding to c′(t). Let X = {ξ1, ξ2, . . . , ξ|X|} denotes the
set of complex constellation symbols. The constellation of
modulated symbols can be labeled according to any arbitrary
mapping rule.

The noise is introduced by non-binary complex-input
AWGN channel with variance σ2. The noise affected version
yt of the t-th transmitted symbol xt is given by yt = xt+nt,
where each noise sample nt is chosen independently and
identically distributed (i.i.d.) according to the complex nor-
mal distribution CN(0, σ2), for t = 1, 2, . . . , N . In this
work, it is convenient to parameterize the channel using
its entropy, denoted by h = H(X), (h ∈ [0, |X|]) [16].

The family of AWGN channels parameterized by h is
denoted by {AWGN(h)}h and as in [1], [2], we assume
that {AWGN(h)}h is ordered by physical degradation and
it is smooth with respect to h. At the receiver, detector
computes the sequence L′ of log-likelihood ratios (LLR) of
the interleaved bit sequence c′ and i-th entry in L′ is given
by L′i := log

P[c′i=0|y]
P[c′i=1|y] , for i = 1, 2, . . . , n. The deinterleaved

LLR sequence L is then given to the channel decoder to
get decoded message bits b̂. Note that in practice, iterative
schemes are considered within the channel decoder (in the
case of LDPC or SC-TC) or between the detector and the
decoder (in the case of BICM).

For BMS channels, the input alphabet set is given by
X = {+1,−1} and in this case, the distribution of L under
the condition X = +1 is referred to as L-density, denoted
by cBMS(h) [2, Sec. II]. For the BAWGN channel, the
L-density is given by cBAWGN(h) = N(2/σ2, 4/σ2) [1,
Ex. 4.21] and its entropy H(cBAWGN(h)) is given by [2,
Sec. II],

H(cBAWGN(h)) =

∫ ∞
−∞

exp
[
− (l−(2/σ2))2

8/σ2

]
√

2π(4/σ2)
log2(1 + e−l)dl

=: 1− J(2/σ), (1)

where the definition of function J(.) is inspired from [17].
Channel with non-binary inputs is known to be asymmetric
and L-density cannot be defined in this case [18] and entropy
of such channels is computed numerically ( [14, Sec.III-A]).

B. EBP-GEXIT charts of LDPC codes over BAWGN [2]

We first recall density evolution (DE) equations for the BP
decoding of LDPC codes. The DE equations for LDPC(λ, ρ)
code ensemble are given by [1, Thm. 4.97, Sec. 4.5.2]

aBP,l = cBAWGN(h) ? λ(ρ(aBP,l−1)), (2)

where aBP,l is the density of a randomly chosen VN to
CN message in the l-th iteration of BP decoding, λ(a) =∑
i a
?(i−1), and ρ(a) =

∑
i a

~(i−1). The operators ? and ~
denote the convolutions over R and the group F2× [0,+∞]
respectively [1, Sec. 4.1.4]. The operations a?(i−1) and
a~(i−1) denote the respective convolutions of density a with
itself (i− 1) times.

For defining the EBP-GEXIT chart, we need to consider a
complete fixed-point (FP) family [2, Sec. VII-A]. The family
of densities {ax}x and {cx}x parameterized by x ∈ [0, 1] is
called a complete FP family if (i) cx ∈ {BAWGN(h)}h for
some h ∈ [0, 1], (ii) for any x ∈ [0, 1], ax = cx ? λ(ρ(ax))
({ax, cx} is a FP density pair), (iii) H(ax) = x, and (iv)
{ax}x and {cx}x are smooth with respect to x. The EBP-
GEXIT function gEBP (x) for LDPC(λ, ρ) is defined as

gEBP (x) :=

∫ ∞
−∞

Λ(ρ(ax))(z)lcx(z)dz, (3)

where lcx(z) is called the GEXIT kernel [1, Ch.4].
For the BAWGN channel with L-density cBAWGN(h) =
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Fig. 1: Block diagram of a digital communication system considered in this paper.

N(2/σ2, 2/σ2), an expression for lcBAWGN(h)(z) is given
by [2, Example 7]

lcBAWGN(h)(z) =∫ ∞
−∞

e
− (w−(2/σ2))2

8/σ2

1 + ew+z
dw

/∫ ∞
−∞

e
− (w−(2/σ2))2

8/σ2

1 + ew
dw

 .

(4)
The EBP-GEXIT chart is the curve obtained by plotting
gEBP (x) versus cx ∀x ∈ [0, 1].

III. EBP-GEXIT CHART OVER THE AWGN CHANNEL
WITH GRAY MAPPING

In this section, we consider the situation when modulated
symbols are mapped according to the Gray mapping and
study the situation of any arbitrary mapping in the next
section.

A. Equivalent bit-channels for Gray mapping

In the presence of an interleaver between the channel
coded bits and the modulator, in Fig. 1 one can consider
an equivalent channel, termed as the BICM channel, formed
by the interleaver, modulator, AWGN channel, detector, and
deinterleaver [16]. For obtaining the EBP-GEXIT chart, we
parameterize this BICM channel by its entropy h, denoted
as BICM(h). An ideal interleaver implies that the set of
random variables corresponding to {L1, L2, . . . , Ln} are in-
dependent and hence this BICM channel can be equivalently
seen as a set of n parallel independent BMS [19]. While
for some modulation schemes (such as BPSK) the exact
distribution of each Li is known, finding this distribution for
an arbitrary modulation scheme may become difficult. Hence
in the literature good approximations for its distribution are
suggested [20]–[23]. Typically for the Gray mapping, the
density cBICM(h) of a randomly chosen Li can be well
approximated by a mixture of consistent Gaussian densities.
For an integer M suppose cBICM(h) is given by

cBICM(h) =
M∑
j=1

djN(lj , 2lj), (5)

where lj is the mean of the j-th constituent density and
each dj ∈ [0, 1] such that d1 + . . .+ dM = 1. This implies
that H(cBICM(h)) =

∑M
j=1 dj

[
1 − J(

√
2lj)

]
. While for

BPSK we have M = 1, d1 = 1 and l1 = 2/σ2, for other
modulation schemes we use the approximations suggested
in [23].

B. EBP-GEXIT chart for GLDPC/DGLDPC codes over the
BICM channel

We first extend the EBP-GEXIT chart proposed for LDPC
codes over BAWGN channel to GLDPC and DGLDPC
over BICM channel. Let fC(.) and fV (.) be the density
transfer functions corresponding to CN and VN processing
respectively. Then similar to Eq. (2), the DE equation is
given by aBP,l = cBICM(h) ? fV (fC(aBP,l−1)). Note that
for an irregular LDPC code, fC(.) = ρ(.) and fV = λ(.) [1,
Thm. 4.97] and for GLDPC and DGLDPC codes, fC(.) and
fV (.) need to be obtained numerically [24], [25]. To find a
FP density pair corresponding to the given BICM channel
with the L-density cBICM(h), we need to find all possible
densities a that satisfy

a = cBICM(h) ? fV (fC(a)). (6)

For the given fixed-density pair {a, cBICM(h)}, the EBP-
GEXIT function is given by

gEBP (h) :=

∫ ∞
−∞

Λ(fC(a))(z)lcBICM(h)(z)dz, (7)

where lBICM(h)(z) is the GEXIT kernel for BICM(h). From
Eq. (5) we have lcBICM(h)(z) =

∑M
j=1 aj l

cBAWGN(hj)(z),
where hj = 1− J(

√
2lj) and lcBAWGN(hj)(z) is defined in

Eq. (4).
For tractable computation of the EBP-GEXIT chart, we

next find Eq. (6) and Eq. (7) efficiently.
1) Numerical computation of FP density in Eq. (6):

We assume that the density a in Eq. (6) is consistent
normal, i.e., a = N(ma, 2ma) for some real number ma.
This consistent Gaussian assumption proposed by Chung et
al. [26] is also used for classical EXIT charts analysis [17].
Using the consistent Gaussian assumption for a is the key
idea that simplifies the operations required towards finding
the EBP-GEXIT curve. Similar to the EXIT-chart analysis,
we consider the mutual information (MI) IEv between the
LLRs and their corresponding VNs bits. It is given by
IEv = J(

√
2ma) where 2ma is the variance of the density

a and J(.) is defined in Eq. (1). Since J(.) is a one-to-one
function, the density a can be uniquely determined from it.
Similarly, let IEc be the MI corresponding to the density
fC(a) and suppose IEc = ΓC(IEv ), where ΓC(.) is the
MI transfer function corresponding to CN processing. Note
that in notation ΓC(.), we have used the alphabet Γ to
indicate the MI transfer function and the superscript C for
the CN processing. The MI corresponding to the VN to CN
message is a function of h and IEc , denoted by ΓV (IEc , h).
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Using this the FP density equations Eq. (6) can be efficiently
approximated using a classical EXIT-like mono-dimensional
FP equation as

IEv = ΓV
(

ΓC
(
IEv
)
, h
)
. (8)

The FP density pairs now consists of all those consistent nor-
mal densities a such that the corresponding IEv = J(

√
2ma)

satisfy Eq. (8). Observe that the FP density in Eq. (6) is now
represented by a FP equation Eq. (8) since both IEv and
h are scalars. All possible pairs {a, cBICM(h)} that satisfy
Eq. (6) can be found efficiently via a grid search by varying
IEv and h in the range [0, 1]. For LDPC codes, ΓC(.) and
ΓV (., .) can be simplified as

ΓC(IEv ) =
∑
j

ρj

(
1− J

[√
(j − 1)[J−1(1− IEv )]2

])
ΓV (IEc , h) =

∑
i

λi
M∑
j=1

djJ

[√
(i− 1)

[
J−1(IEc)

]2
+ 2lj

]
,

(9)
where IEc = ΓC(IEv ) and 2lj is the variance of the j-th
constituent density in the mixture cBICM(h). For GLDPC
and DGLDPC codes, ΓC(.) and ΓV (., .) are evaluated point-
wise by means of Monte Carlo simulations and stored before
computation of Eq. (8) [24], [25].

2) Numerical computation of the EBP-GEXIT function
provided in Eq. (7) : For the given BICM(h), let Sh be
the set of all possible IEv ∈ [0, 1] that satisfy Eq. (8).
Recall that corresponding to each IEv there is a density
a = N(ma, 2ma) with IEv = J(

√
2ma). Each a cor-

responding to IEv ∈ Sh provides a point on the EBP-
GEXIT curve that is computed using Eq. (7). We now
provide tractable computation of these equations. We first
explain calculations towards Λ(fC(a)) under our Gaussian
assumption. For any IEv ∈ Sh, suppose IEc = ΓC

(
IEv
)

and mb = [J−1(IEc)]
2/2. This implies that the density

fC(a) is consistent Gaussian with mean mb, i.e., fC(a) =
N(mb, 2mb). For a VN of degree j, the density obtained
by taking the convolution of the input density j times is
also a consistent Gaussian density of mean jmb. Let us
denote this density by bj = N(jmb, 2jmb). The density
Λ(fC(a)) is thus the mixture of densities bj given by
Λ(b)(fC(a)) =

∑
j Λjbj(z). Substituting this in Eq. (7) we

get,

gEBP (h) =

∫ ∞
−∞

[∑
j

Λjbj(z)
]
lcBICM(h)(z)dz

=
∑
j

ΛjEbj
[
lcBICM(h)(z)

]
,

(10)

where Ebj [.] is now expectation over the Gaussian density
bj . The expectation Ebj [lcBICM(h)(z)] can be computed
efficiently using the Gauss-Hermite quadrature weights as
follows [27]:

• Let Hd be the Hermite polynomial of degree d with
roots k1, k2, . . . , kd, for some d ∈ Z.

• Let zi =
√

4jmbki + jmb. Then an approximate value

of Ebj
[
l(cBICM(h)(z))

]
is given by

Ebj
[
l(cBICM(h)(z))

]
≈ 1√

π

d∑
i=1

2d−1d!
√
π

d2[Hd−1(ki)]2
lcBICM(h)(zi), (11)

where lcBICM(h)(zi) is defined in Eq. (7) and can either
be computed using numerical integration or using our
approximations provided in Appendix C.

To summarize, the consistent Gaussian assumption en-
ables the computation of the complete FP family (via grid
search) and the evaluation of the EBP-GEXIT function (via
Gauss-Hermite quadrature weights) computationally feasi-
ble. Detailed steps are provided in Algorithm 1.

Algorithm 1 Numerical computation of EBP-GEXIT chart

1) Choose h ∈ [0, 1] and let cBICM(h) be the L-density
corresponding to BICM(h).

2) Find Sh :=
{
IEv : s.t. IEv satisfies Eq. (8)

}
, via grid

search of IEv in the range [0, 1].
3) Compute gEBP (h) using Eq. (10) for the set of

densities a corresponding to each IEv ∈ Sh.
4) Plot all possible values gEBP (h) obtained in step (3)

versus the chosen h.
5) Repeat the process for various values of h ∈ [0, 1].

Remark 1. In Algorithm 1 instead of using a grid search,
one can approximate the function ΓV

(
ΓC
(
IEv
)
, h
)

and use
zero-crossing algorithms to find the complete fixed-point
family. Further, instead of following the procedure given in
Algorithm 1, one can also use the procedure provided in [2,
Sec. VIII] along with our proposed simplifications to obtain
the EBP-GEXIT chart. �

Remark 2. On contrary to the definition of complete FP
family (see Section II-B), a and cBICM(h) pairs obtained
using Algorithm 1 are not parameterized by some x ∈ [0, 1],
since we find these pairs exhaustively. However it can be
easily verified that H(a) = x for some x ∈ [0, 1] and the
set of a and cBICM(h) obtained do form a complete FP
family. �

Remark 3. The EBP-GEXIT chart for SC-TC can be ob-
tained in a similar way as that of Section III-B and we skip
the details (details can be found in [13]). �

IV. EBP-GEXIT CHART OVER THE AWGN CHANNEL
WITH NON-GRAY MAPPING

We now consider the case when modulated symbols are
mapped according to any non-Gray mapping. Note that for
any non-Gray mapping, the EXIT chart of the detector
is not flat and hence decoding of the system illustrated
in Fig. 1 becomes doubly iterative [28]. Thus for LDPC
codes one needs to iterate between VNs and CNs but also
between detector and decoder (similarly for SC-TC). Hence
for computing the EBP-GEXIT chart we need to consider
complex-input AWGN channel. We first extend the existing
results to obtain an expression for the GEXIT function for
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non-binary AWGN channel and then provide its tractable
computation method.

A. GEXIT function for non-binary complex-input AWGN
channel

We use of the definition of the GEXIT function [2] and
extend the approach of [14] to derive an expression for
the GEXIT function for non-binary complex-input AWGN
channel. We first introduce some notation. Corresponding to
the t-th transmitted symbol xt ∈ X, φt is defined as

φt :=
[
P(Xt = ξ1|y∼t) . . . P(Xt = ξ|X||y∼t)

]
(12)

where y∼t = [y1 . . . yt−1 yt+1 . . . yN ]. Let Φt be the
random vector corresponding to φt. Let ft,ξ be the distribu-
tion of Φt under the condition Xt = ξ, i.e., ft,ξ(φt) :=
P
[
Φt = φt|Xt = ξ

]
, where ξ ∈ X. The entry in φt

corresponding to ξ is denoted by φt,[ξ], i.e., φt,[ξ] := P(Xt =
ξ|y∼t).

Observe that φt corresponds to the likelihood of Xt given
all received symbols except the t-th symbol. In the presence
of an ideal interleaver between channel code and modulator
(see Fig. 1), interleaved codebits can be assumed to be
independent and as a consequence, X1, X2, . . . , XN can
be assumed to be independent. Since modulated symbols
are passed through memoryless AWGN channel, P(Xt =
ξ|Y∼t) = P(Xt = ξ) and hence the likelihood of Xt will
depend on the a priori knowledge available about it1. We
next obtain a general expression for the GEXIT function
and later make use of this independent assumption for its
numerical computation.

Theorem 1. Consider φt, ft,ξ(φ), and φt,[ξ] as defined
above (see Eq. (12)). Then the GEXIT function g(h) for |X|-
ary complex-input memoryless AWGN channel with entropy
h is given by g(h) = 1

N

∑N
t=1

At(h)
Bt(h) , where At(h) and

Bt(h) are given by

At(h) =
∑
ξ∈X

∫
φt

ft,ξ(φt)

∫
yt

e−
|yt−ξ|2

2σ2

2πσ2

[
|yt − ξ|2 − 2σ2

]
log2

{ ∑
ξ′∈X

φt,[ξ′]

φt,[ξ]
exp

[
|yt − ξ|2 − |yt − ξ′|2

2σ2

]}
dytdφ

Bt(h) =
∑
ξ∈X

∫
yt

e−
|yt−ξ|2

2σ2

2πσ2

[
|yt − ξ|2 − 2σ2

]
log2

{ ∑
ξ′∈X

exp

[
|yt − ξ|2 − |yt − ξ′|2

2σ2

]}
dyt.

The proof is given in Appendix A. The fraction gt(h) :=
At(h)/Bt(h) in Theorem 1 is termed as the t-th GEXIT
function [14]. We next find the EBP-GEXIT function.
Similar to Eq. (12), consider ΦBP,lt corresponding to the
likelihood of Xt given y∼t in the l-th round of BP decoding
and let fBP,lt,ξ be the density of ΦBP,lt under the condition
Xt = ξ. The BP-GEXIT function gBP,l(h) in the l-th round

1For an iterative system, the distribution of Xt will depend on the output
from the channel decoder in the previous iteration.

Detector
AWGN(h)

VNs

IEv

a(l)

IEc

b(l)

IEd

d(l)

IAd

c(l)

CNs

Fig. 2: Considered decoding scheduling for the LDPC-coded
serially concatenated scheme

of BP-decoding is obtained by substituting ft,ξ = fBP,lt,ξ

in Theorem 1 and the BP-GEXIT function is defined as
gBP (h) := liml→∞ gBP,l(h) [2]. The EBP-GEXIT function
is obtained by computing gBP (h) for each FP density pair.
To apply Maxwell construction, we next provide the area
theorem for |X|-ary complex-input AWGN channel.

Theorem 2. Consider a family of channel codes of rate k/n
and transmission using the digital communication system of
Fig. 1 over {AWGN(h)}h using 2m-ary modulation scheme.
Then

1

m

∫ m

0

g(h)dh =
k

n
.

The proof is given in Appendix B.

B. Numerical computation of the complete FP family

To find complete FP family for LDPC codes, we need to
consider the DE equations of the system illustrated in Fig. 2.
In one iteration of decoding, first a message is passed from
the detector to VNs. VNs then pass messages to CNs, which
are then passed back to VNs after CN processing. Finally,
an average message from VNs is sent back to the detector.
This scheduling is in spirit equivalent to the combined VN
and detector approach of [29, Fig. 5].). Let a(l), b(l), c(l),
and d(l) be the respective densities of these messages and
using this DE equations will be

a(`) = d(`−1) ? fV (b(`−1)), b(`) = fC(a(`))

c(`) = f ′V (b(`)), d(`) = fD(c(`), h),
(13)

where the function fD(., .) depends on the underlying de-
tector and channel parameter h, f ′V (.) correspond to the
VN-to-detector processing and recall that fV (.) and fC(.)
correspond to VN and CN processing respectively. In (13)
when a(`) = a(`−1) then such a density will be a FP density,
i.e., for the given h the density a is called as FP density if
it satisfies

a = fD

(
f ′V
(
fC(a)

)
, h
)
? fV

(
fC(a)

)
. (14)

Similar to Section III-B1, we project the densities in (13)
on their respective MIs (IEv , IEc , IAd , and IEd ) and use MI
transfer functions (ΓV (.),ΓC(.),Γ′V (.), and ΓD(.)) to find
the FP equation corresponding to Eq. (14) as follows

IEv = ΓV
(

ΓC(IEv ),ΓD
(

Γ′V (ΓC(IEv )), h
))

. (15)

Similar to Section III-B1, all possible pairs a and h that
satisfy FP density in Eq. (14) can be found efficiently from
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Eq. (15) via grid search by varying IEv and h in the ranges
[0, 1] and [0, H(X)] respectively (recall that H(X) is the
entropy of non-binary AWGN channel).

C. Numerical computation of the EBP-GEXIT function

We now provide a method for numerical computation of
the GEXIT function derived in Theorem 1. In this theorem,
as the expression for At(h) and Bt(h) is the same for
t = 1, 2, . . . , N , we get A1(h) = . . . = AN (h) = A(h)
and B1(h) = . . . = BN (h) = B(h) and hence g(h) =
1
N

∑N
t=1

At(h)
Bt(h) = A(h)

B(h) . For the sake of convenience, we
drop the suffix t from the expression of At(h) and Bt(h).
We remove the suffix t from the terms ft,ξ(φt), Φt, and Yt
as well. Let us denote the term inside the integration with
respect to y in the expression of A(h) by R1(y, φ, ξ, σ), i.e.,

R1(y,φ, ξ, σ) :=
[
|y − ξ|2 − 2σ2

]
log2

{ ∑
ξ′∈X

φ[ξ′]

φ[ξ]
exp

[
|y − ξ|2 − |y − ξ′|2

2σ2

]}
.

(16)

Using this A(h) can be written as

A(h) =
∑
ξ∈X

∫
φ

fξ(φ)

∫
y

e−
|y−ξ|2

2σ2

2πσ2
R1(y, φ, ξ, σ)dydφ,

(a)
=
∑
ξ∈X

∫
φ

fξ(φ)

(
EY |X=ξ

[
R1(Y, φ, ξ, σ)

])
dφ

(b)
=
∑
ξ∈X

EΦ|X=ξ

[
R2(Φ, ξ, σ)

]
, (17)

where R2(Φ, ξ, σ) := EY |X=ξ

[
R1(Y, φ, ξ, σ)

]
. The equality

in (a) is obtained since the integration with respect to y
is equal to the expectation of R1(y, φ, ξ, σ) with respect to
random variable Y |X = ξ. The equality in (b) is obtained
since the integration with respect to φ is equal to the
expectation of R2(φ, ξ, σ) with respect to the random vector
Φ under the condition X = ξ. For computing A(h), the key
step now is to compute R2(φ, ξ, σ) and its expectation with
respect to random variable Φ|X = ξ. These computations
are described next.
• Computing R2(φ, ξ, σ) defined in Eq. (17): The func-

tion R2(φ, ξ, σ) is given by

R2(φ, ξ, σ) =

∫
y

e−
|y−ξ|2

2σ2

2πσ2
R1(y, φ, ξ, σ)dy (18)

Observe that the distribution of complex random vari-
able Y under the condition X = ξ is bivariate Gaussian
with mean ξ and variance σ2. This expectation can
be computed efficiently via two-dimensional Gauss-
Hermite quadrature weights as follows [30]:

– Suppose ξ = ξr + iξi where ξr and ξi are the real
and imaginary parts of ξ.

– Let Hd be the Hermite polynomial of degree d
with roots k1, k2, . . . , kd.

– Let z(j1, j2) =
[√

2σkj1 + ξr
]

+ i
[√

2σkj2 +
ξi
]
, wj1 = 2d−1d!

√
π/d2[Hd−1(kj1)]2, and

wj2 = 2d−1d!
√
π/d2[Hd−1(kj2)]2 for j1, j2 =

1, 2, . . . , d. Then we have

R2(φ, ξ, σ) ≈
1

π

d∑
j1=1

d∑
j2=1

wj1wj2R1

[
z(j1, j2), φ, ξ, σ

]
, (19)

where R1

(
z(j1, j2), φ, ξ, σ

)
is defined in Eq. (16).

• Computing A(h): Consider the vectors Φ1,Φ2, . . . ,ΦN
corresponding to X1, X2, . . . , XN (see Eq. (12)). As
explained in Section IV-A, Φ1,Φ2, . . . ,ΦN can be as-
sumed to be independent and without loss of generality
we next provide computation steps for any i-th vector
Φi. Since φi does not depend on y∼i, Eq. (12) can be
simplified to

φi =
[
P(Xi = ξ1) . . . P(Xi = ξ|Z|)

]
. (20)

Recall that M is the map corresponding to 2m-
ary modulation scheme, i.e., M : c′(i) → xi,
where xi ∈ X and c′(i) = [c′i,1 c

′
i,2 . . . c′i,m] for

i = 1, 2, . . . , N (see Section II). Let LM
a (i) =

[LM
a (i, 1) LM

a (i, 2) . . . LM
a (i,m)] be the a priori

LLRs available at the input of the detector, which
are obtained after deinterleaving VN-to-detector mes-
sages. Since c(i) = [ci,1 ci,2 . . . ci,m] denotes the
deinterleaved codebit sequence, we have LM

a (i, j) =

log
P(Ci,j=0)
P(Ci,j=1) , for j = 1, 2, . . . ,m. For each

ξl ∈ X = {ξ1, ξ2, . . . , ξ|X|}, suppose M−1(ξl) =
[bl,1 bl,2 . . . bl,m] for l = 1, 2, . . . , |X|. Then the l-th
entry in φi in Eq. (20) is computed as

P(Xi = ξl) =
m∏
j=1

P[Ci,j = bl,j ], (21)

where P[Ci,j = bl,j ] is obtained via LM
a (i, j). To

compute A(h) =
∑
ξ∈X EΦ|X=ξ

[
R2(Φ, ξ, σ)

]
, we need

to find the distribution fξ(φ) of Φ|X = ξ (see Eq. (17)).
However finding this multivariate distribution, in gen-
eral, is not straightforward. Hence we choose to obtain
this expectation numerically using ηm Monte Carlo
points as follows:

– Let IAd be the MI available at the input of the
detector (see Fig. 2). Project IAd ∈ [0, 1] on the
consistent Gaussian density N(md, 2md), where
md = J−1(IAd)2/2.

– Generate a sequence of modulated symbols
x1, x2, . . . , xηm according to uniform distribution
for large enough ηm. (We choose ηm = 10000 in
our simulations.)

– Generate a sequence of a priori LLRs
LM
a (1),LM

a (2), . . . ,LM
a (ηm) corresponding

to x1, x2, . . . , xηm , where each entry in
LM
a (i) =

[
LM
a (i, 1) LM

a (i, 2) . . . LM
a (i,m)

]
is chosen i.i.d. according to N(md, 2md)
distribution.

– Compute the sequence of vectors φ1, φ2, . . . , φηm ,
where each entry in φi is calculated from LM

a (i)
using Eq. (20) and Eq. (21), for i = 1, 2, . . . , ηm.
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– Given a particular symbol ξ ∈ X, let Sξ denotes
the set of vectors φi such that the corresponding
generated xi = ξ for i = 1, 2, . . . , ηm.

– From Eq. (17), A(h) is now approximated as
A(h) ≈

∑
ξ∈X

1
|Sξ|

∑
φi∈Sξ R2

(
φi, ξ, σ

)
, where

R2

(
φi, ξ, σ

)
is computed using the steps discussed

above.
• Computing B(h): When φ[ξ] = φ[ξ′] for any
ξ, ξ′ ∈ X, B(h) of Theorem 1 can be written
in terms of R2(φ, ξ, σ) and computed as B(h) =∑
ξ∈XR2

(
φ =

[
1
|X|

1
|X| . . .

1
|X|

]
, ξ, σ

)
.

V. COMPLEXITY ANALYSIS

Recall that, obtaining the EBP-GEXIT chart consists
of two main steps; finding the complete FP family and
evaluating the GEXIT function. We now compare the com-
plexity of performing these two steps using our proposed
simplifications versus direct computations. Suppose we wish
to find the FP family for LDPC codes, i.e., find all possible
pairs of densities {a, cBICM(h)} such that a = cBICM(h) ?
fV (fC(a)). With our simplifications, this problem gets re-
duced to finding all possible pairs of points {IEv , h} such
that IEv = ΓV (ΓC(IEv ), h) (see Section III-B1). While the
solutions of IEv = ΓV (ΓC(IEv ), h) can be obtained via
grid-search (Remark 1), it is not possible to find the solutions
of a = cBICM(h) ? fV (fC(a)) via such grid-search and
one needs to follow the procedure of [2, Sec. VIII]. Since
this procedure can also be applied to find the solutions of
IEv = ΓV (ΓC

(
IEv ), h), for fair complexity comparison,

we use it instead of grid-search. In this procedure, a real
number x ∈ [0, 1] is chosen and the unique FP density
pair {a, cBICM(h)} parametrized by this x is obtained. For
complexity comparison we focus on finding one FP density
pair and evaluating the GEXIT function corresponding to it
in Propositions 1 and 2.

Proposition 1. Consider the system of
LDPC/GDLPC/DGLDPC code with the Gray mapping.
Suppose the FP density pair corresponding to the given
x ∈ [0, 1] is obtained using the procedure given in [2,
Sec. VIII]. Towards this, suppose we quantize and sample
all densities into ηq points. Let ηm be the number of
Monte Carlo points used to find the respective density
transfer functions. Let ηv and ηc be the maximum number
of states in the minimal canonical trellis of the constituent
generalized VNs and CNs respectively. Then the complexity
of finding the FP density pair with direct computation and
with our simplifications is tabulated below:

Code Complexity with Complexity with
ensemble direct computation our simplifications

LDPC O(ηq log ηq) O(1)
GLDPC O(ηm2ηc + ηq log ηq) O(1)

DGLDPC O(ηm(2ηc + 2ηv ) + ηq log ηq) O(1)

Proof: The procedure of [2, Sec. VIII] for finding the
FP density pair (corresponding to the given x) primarily
consists of performing the operation cBICM(h) ? fV (fC(a))

finite number of times. Thus the overall complexity of
finding the FP density pair is equal to the complexity of
the operation cBICM(h) ? fV (fC(a)) (which corresponds to
performing ΓV (ΓC

(
IEv ), h) in our simplified method). Thus

for comparing the complexity of direct vs our simplified
method, we need to compare the complexity of the operation
cBAWGN(h) ? fV (fC(a)) versus ΓV (ΓC

(
IEv ), h).

For LDPC(λ, ρ) ensemble, cBICM(h) ? fV (fC(a)) =
cBICM(h) ? λ(ρ(a)) and computing this operation involves
performing a set of convolutions over R and F2 × [0,+∞]
(see Eq. (2)). To compute these convolutions in practice, all
the densities are sampled and quantized into ηq points and
the convolutions are computed with the aid of ηq-point fast
Fourier transforms (FFT) and inverse FFTs [15, Sec. 9.1].
Thus the complexity of operation cBICM(h)?λ(ρ(a)) would
of the order O(ηq log ηq) [31]. For the GLDPC code en-
semble, the density transfer function fC(.) needs to be ob-
tained numerically [24]. Suppose the constituent generalized
CNs are decoded by applying the BCJR algorithm to their
respective minimal canonical trellis. If we use ηm Monte
Carlo points to estimate fC(.), the complexity of estimating
it will be of the order O(ηm2ηc), since the complexity of
BCJR algorithm is exponential in the number of states [32],
[33] and decoding is done for each Monte Carlo point.
For GLDPC codes, fV (.) = λ(.) and hence the overall
complexity of the operation cBICM(h) ? fV (fC(a)) will be
O(ηm2ηc + ηq log ηq). For DGLDPC codes, both fV (.) and
fC(.) need to be estimated numerically [25] and hence the
complexity of the operation cBICM(h) ? fV (fC(a)) will be
O(ηm(2ηc + 2ηv ) + ηq log ηq).

We now find the complexity of the operation
ΓV (ΓC

(
IEv ), h). Let us first focus on the operation

ΓC
(
IEv ). While for LDPC(λ, ρ) ensemble, a closed

form approximation for ΓC(.) is available (Eq. (9)), for
GDLPC/DGLDPC codes it is obtained numerically. Even
though this numerical computation would require ηm Monte
Carlo points, on contrary to fC(.), one can precompute the
function ΓC(.) and store it a priori for all possible values
of IEv ∈ [0, 1] in the form of a lookup table (or consider
polynomial approximation for it). Further, ΓC(.) needs to be
computed once and can be done before applying algorithm
of [2]. On the other hand, fC(a) is a density transfer
function and since a can potentially be any arbitrary density
with the support set R, is not feasible to store it a priori.
For each density a that is obtained in an intermittent step of
algorithm of [2], one needs to find fC(a) every time using
Monte Carlo simulations. Similar to direct computations
IEv can also be arbitrary, however it is important to note
that IEv will take any arbitrary value in the interval [0, 1]
(as opposed to arbitrary density over R). Since ΓC(.)
is stored a priori, for any intermittent IEv ∈ [0, 1], the
computation of ΓC(IEv ) can be performed by lookup table
(or via polynomial evaluation). Hence the complexity of
ΓC
(
IEv ) is O(1). Similarly the complexity of ΓV (., .) is

O(1), leading to O(1) complexity of ΓV (ΓC
(
IEv ), h).

Observe that for direct computations, we need to include
the cost of computing density transfer functions, since one
needs to numerically compute these functions for every new
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density that is obtained in algorithm of [2]. On contrary,
in our method we don’t need to numerically compute MI
transfer functions for every new value of MI (since prior
storage is possible) and hence we don’t need to include the
cost of computing the MI transfer functions in complexity
analysis.

In Proposition 1, ηq and ηm are typically chosen to
be large integers and hence direct computation of the FP
density pair is considerably complex that our simplified
method. Complexity arguments similar to Proposition 1 can
be derived for SC-TC and we skip the details.

Proposition 2. For the given integers ηq and l, suppose
we divide the Rl into ηlq subintervals. Suppose we use ηm
number of Monte Carlo points to numerically estimate any
quantity involved towards the computation of the GEXIT
function. Then for a given FP density pair, the complexity of
evaluating the GEXIT function over binary-input and non-
binary input AWGN channel is:

Code ensemble Complexity with Complexity with
direct computation our simplifications

BAWGN O(η2q ) O(1)
non-binary complex-

input AWGN O
(
ηmη

|X|+2
q

)
O(ηm)

Proof: Given the FP densities a and cBICM(h), the
EBP-GEXIT function for a system with the Gray mapping
can be evaluated from Eq. (7), which consists of two oper-
ations; find density Λ(fC(a)) and compute the expectation
of the function lcBICM(h)(.) with respect to Λ(fC(a)). The
complexity of finding Λ(fC(a)) is discussed in Proposi-
tion 1. Since the density Λ(fC(a)) can potentially be any
arbitrary density over R, in practice, this expectation is
obtained via numerical integration. Towards this, we divide
R into ηq intervals and perform the integration numerically
using the rectangle rule (which consists of ηq summations).
For each of these ηq terms, evaluation of lcBICM(h)(.)
primarily consists of computing the division of two integra-
tions corresponding to lcBAWGN(h)(.) (see Eq. (4)). If these
integrations are also computed via numerical integration
(with the same parameter ηq), the overall complexity of
evaluating Eq. (7) would be O(η2

q ).
In our simplified method, firstly we provide a closed

form approximation for lcBAWGN(h)(.) (Appendix C), due
to which the complexity of finding lcBICM(h)(.) is of the
order O(1). We then obtain the expectation of Eq. (7) using
Eq. (11), which consists constant number of summations and
hence the overall complexity of evaluating Eq. (7) is of the
order O(1).

Let us now consider the direct evaluation of the GEXIT
function for non-Gray mapping using Theorem 1, which in-
volves finding A(h) and B(h). From Eq. (17), the evaluation
of A(h) consists of two steps; find the conditional density
fξ(.) for all possible ξ ∈ X and then compute the expectation
of the function R2(.) with respect to fξ(.). From Eq. (18),
R2(.) = EY [R1(.)] and in practice this expectation needs to
be obtained via numerical integration by dividing R2 into

ηq × ηq intervals. From Eq. (16), evaluation of R1(.) is
O(1) and hence the complexity of computing R2(.) would
be of the order O(η2

q ). We now consider the evaluation of the
multivariate density fξ(.) with support set R|X|. Firstly note
that, this density does not have a closed form expression
and needs to be obtained numerically. Suppose we divide
R|X| into η

|X|
q intervals to quantize fξ(.) and obtain the

quantized version of fξ(.) by empirically generating ηm
points. Further, to find the GEXIT function, we need to find
the expectation of R2(.) with respect to fξ(.) via numerical
integration. Thus the complexity of computing A(h) would
be of the order O(ηmη

|X|+2
q ). Using similar arguments it can

be shown that the complexity of computing B(h) is O(η2
q )

and the the overall complexity of computing the GEXIT
function would be O(ηmη

|X|+2
q ).

With our simplified method, R2(.) is obtained from
Eq. (19), which consists of constant number of summations
of order O(1) and hence the overall complexity of com-
puting R2(.) would be O(1). B(h) being a special case of
R2(.), can be obtained with complexity O(1). For finding
A(h), instead of finding the density fξ(.), we obtain the
expectation of R2(.) numerically using the procedure given
in Section IV-C (see steps towards computing A(h)). If we
use ηm points to find this expectation, the overall cost of
computing the GEXIT function would be O(ηm).

Here we wish to point out that the direct evaluation of
the GEXIT function for non-binary AWGN channel involves
a multidimensional integration and the integration over di-
mension more than 30 is a known difficult problem [34]
(which is indeed the case for modulation schemes such
as 64-QAM). Our simplifications enable this evaluation
numerically feasible.

VI. SPATIAL COUPLING ANALYSIS OF SC-TC

In Sections III and IV, we provided a numerically
tractable method for estimating the MAP threshold. In order
to illustrate the validity of our method, it is desirable to
compare the estimated MAP thresholds with the estimates
obtained via spatial coupling. Towards this, we study the
threshold saturation for spatially coupled SC-TC schemes2.
We numerically observe that, the BP thresholds of the
spatially coupled SC-TC schemes do saturate to the MAP
thresholds estimated via our method (see Fig. 4-(a)-(c) and
??).

We now describe a procedure for spatial coupling of SC-
TC to evaluate their BP thresholds. The proposed formalism
for spatial coupling was first introduced in [9] and is in spirit
analogous to [7], [35], [36]. This framework is similar to
that of spatially-coupled protograph-based LDPC codes. As
a result, coupling parameters such as termination method,
choice of base matrices, coupling rate loss, and the so-called
wave effect are analogous (for details refer [35]). Spatially-
coupled SC-TC can be obtained by the edge spreading rule

2We focus on the spatial coupling of SC-TC with Gray mapping since
for other systems the decoding of SC-TC or LDPC codes becomes doubly
iterative [28]. We plan to do spatial coupling analysis of the these systems
in future work.
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1 2

1 2

1 2

1 2

1 2

1 2 1 2

1 2

...
1 2

(a) Terminated encoder. Here B = [0.5, 0.5].

stage i

...

...

...

...

(b) An arbitrary stage at the receiver

Fig. 3: Terminated SC-TC transmitter and receiver

on the factor-like graph [9]: (i) the concatenated system at
the transmitter (see Fig. 1) is duplicated say L times; (ii) then
the outer-code output stream v is subdivided into ms + 1
subsets; (iii) these latter are swapped between the graph
duplicates by interchanging the ends of homologous subsets
according to the matrix B := [b0, b1, . . . bms ] ∈ [0, 1]ms+1,
where bi represents the v bits proportions passed from the
graph copy t to (t + i). For a better illustration of this
construction, an example is illustrated in Fig. 3a. Here, ms

is called the syndrome former memory, L is the coupling
length, and the coupling matrix B satisfies the equation∑ms
i=0 bi = 1. It can be observed that, some bundles on

the rightmost duplicates remains unconnected and there are
some vacant sockets on the leftmost interleavers. This is
classically addressed as follows:
• append ms inner codes constituents I at the rightmost

end to connect the remaining bundles.
• ”padd” with known information bits at the ms first and

the ms last stages in order to fill all the sockets at the
input of the vacant interleavers (these padding bits are
depicted with black circles in Fig. 3a).

The rate of the coupled scheme can be simplified to RL =
R− ms

L+ms
R. Observe that the rate loss ms

L+ms
R vanishes to

0 as L → +∞. One can also consider other termination
methods such as tail-biting [37] and code modification [38]
that are proposed to mitigate this rate loss.

A. EXIT analysis of spatially-coupled SC-TC

For serially concatenated systems, tracking the densities
associated in DE analysis become computationally difficult.
In such cases, EXIT chart is a powerful tool to study
the asymptotic convergence of concatenated systems under
iterative decoding. First introduced in [39], its idea relies on

the fact that the density of the LLRs exchanged during the
iterative decoding can be accurately modeled as consistent
Gaussian. One can thus evaluate the convergence of the
system by tracking the mean or the variance. We propose to
express EXIT decoding transfer functions of the proposed
spatially-coupled SC-TC system under BP decoding (for
details refer [9]). These functions represent the MI asso-
ciated with extrinsic LLR messages at the output of inner
(or outer) code versus the MI associated with the a priori
LLR messages.

In order to define the main notation, let us consider the i-
th stage of the spatially-coupled factor-like graph of Fig. 3b.
The corresponding notations are defined as follows:

• all variables corresponding to the stage i are referred
to with the subscript i;

• Ika (i+) (resp. Ike (i+)) is the a priori (resp. extrinsic) MI
between the LLRs transmitted from O−1

i (resp. from
I−1
i+k) to O−1

i+k (resp. to O−1
i );

• Similar definitions are introduced for Ike (i−) and
Ika (i−) with respect to the O−1

i and O−1
i−k.

Concerning the scheduling for spatially-coupled SC-TC
decoding and similar to BP decoding of LDPC codes [1],
we perform all inner updates (inner code pass) then perform
all outer updates (outer code pass) according to the following
the rules:

• Ike (i+) = Ie(Ii).bk and Ia(Ii) =
∑
Ika (i+).bk

• Ike (i−) = Ie(Oi).bk and Ia(Oi) =
∑
Ika (i−).bk

• The a priori MIs received from the added boundary
nodes are equal to 1.

The BP threshold of spatially-coupled SC-TC is the lowest
Eb/N0 such that Iap(Oi)→ 1,∀i.
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VII. NUMERICAL RESULTS

For simulations, we consider the following families of
LDPC, GLDPC, DGLDPC, and SC-TC.
• S1: An outer rate 1/2 systematic recursive [5, 7] convo-

lutional code with an inner rate 1 recursive accumulator
of transfer function 1/1 +D with BPSK modulation

• S2: SC-TC code of scheme S1 with 64-QAM Gray
mapping

• S3: Serially concatenated rate-1/2 systematic recursive
[5, 7] codes with Gray 16-QAM

• S4: SC-TC code of scheme S3 with 16-QAM SP
mapping

• S5: (4, 8)-regular LDPC code ensemble of rate 1/2
with QPSK Gray mapping

• S6: (2, 15)-regular ensemble of design rate 7/15 based
on the Hamming(15, 11) component code designed
in [24] with 64-QAM Natural mapping

• S7: DGLDPC ensemble of rate 7/15 from [40]
with BPSK modulation. Suppose generator matrices

G1 and G2 are G1 =

1 0 0 1 1 0
0 1 0 0 1 1
0 0 1 1 0 1

 , G2 =1 1 1 0 0 0
0 1 1 1 0 0
0 0 1 1 1 0
0 0 0 1 1 1

 . All VNs have degree 6 and cor-

respond to codes G1 (1% of all nodes), G2 (22%),
repetition code (69%), and single parity check code
(8%). All CNs nodes correspond to SPC(12).

• S8: (3, 6)-regular LDPC code ensemble of rate 1/2
with 64-QAM Natural mapping

Note that S1 to S4 are SC-TC and S5 to S8 are LDPC
codes. For S4, S6 and S8 we have chosen non-Gray mapping.
The obtained approximate EBP-GEXIT charts of all the
above mentioned schemes are provided in Fig. 4 and their
respective thresholds are provided in Tables I and II. In
these tables, the MAP threshold and an upper bound (U.B.)
on it are estimated by applying the Maxwell construction
[3] and area theorem (see Theorem 2 and [2, Theorem 5])
respectively.

In Table I, we also provide the BP threshold of spa-
tially coupled SC-TC with Gray mapping (which should
approach to the MAP threshold) to illustrate the validity
of our method. For spatial coupling, we have chosen B =
[1/2, 1/2] (ms = 1) and L = 200 (see Section VI). Observe
that, the BP threshold of spatially-coupled SC-TC is close to
the MAP threshold estimated from the EBP-GEXIT chart.
The small difference between the two estimates might be
due to various approximations involved in our method (see
Remark 4). For the sake of independent interest, we also
include the threshold bound given by the EXIT chart area
theorem in Table-I, where the EXIT area is computed for the
combined detector and inner code component [41]. Spatial-
coupling of LDPC codes with Gray mapping is studied in
[10]. While the BP-threshold of the spatially-coupled S5

system with L = 64 provided in [10] is Es/N0 = 0.54dB
(h = 0.473), our estimated MAP threshold is Es/N0 =
0.601dB (h = 0.4682) (see Table II). Small difference in the
two values might be due to various approximations involved
in our method.

Remark 4. (Limitations of our method): Our method, being
a numerical method, may suffer with respect to accuracy
due to a variety of computational issues such as polynomial
approximations for the EXIT charts, Gauss-Hermite proce-
dure. Further, our method relies on the consistent Gaussian
assumption. For the systems where this assumption is not
good enough, analyzing its effect on the estimated MAP
threshold is desirable, which we plan to do in future. �

Remark 5. (Limitations of estimating the MAP threshold
via EBP-GEXIT chart): For serially concatenated systems
with a non-Gray mapper as an inner code and a con-
volutional code as an outer code, it known that the BP
threshold does not exist. A similar behavior is also exhibited
by low-density generator-matrix (LDGM) codes. Therefore,
EBP-GEXIT charts cannot be used for the MAP threshold
estimation of these schemes. This is a well known problem
and different methods are proposed to tackle this (e.g. see
potential threshold approach of [6]). We plan to study such
systems in future. Note that for the system S4 studied in our
work, we consider a SC-TC system with two convolutional
codes as inner and outer codes respectively and a non-Gray
mapping. For such SC-TC systems, the combined EXIT curve
of detector and inner code is considered and the BP and
MAP thresholds are well the defined in this case. �

VIII. CONCLUSIONS AND FUTURE WORK

We studied the problem of estimating the MAP threshold
for LDPC, GLDPC, DGLDPC, and SC-TC ensembles, when
the transmission is over non-binary complex-input AWGN
channel. We extended the existing results to obtain the
GEXIT function over complex AWGN channel and provided
a computationally tractable method for fast evaluation of
an approximate EBP-GEXIT chart, based on the Gaussian
approximation. We estimated the MAP thresholds for vari-
ous systems and also illustrated the validity of our method
by analyzing the threshold saturation for SC-TC system
with the Gray mapping. We provided a complexity analysis
comparing the computation cost of direct computation of the
EBP-GEXIT chart versus our simplified method.

Since our proposed method for the computation of EBP-
GEXIT charts only requires the knowledge of the constituent
EXIT charts of a system, this opens up the applicability of
our method to a variety of setups such as multiple-input
multiple-output (MIMO) system, intersymbol interference
(ISI) and Rayleigh fading channels. Extensions to other
channel code families such as parallel turbo, LDGM, and
multi-egde type (MET) LDPC codes is also of interest.
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Fig. 4: EBP-GEXIT chart for systems S1 to S8. On the X-axis we have the channel entropy and on the Y-axis we have the
corresponding EBP-GEXIT function (black colored curve).

scheme
MAP threshold BP threshold of U.B. on MAP th. EXIT area
via EBP-GEXIT spatially-coupled SC-TC via EBP-GEXIT
h Es/N0 (dB) h Es/N0 (dB) Rate h Es/N0 (dB) h Es/N0 (dB)

S1 0.4893 −2.71 0.4793 −2.55 0.4975 0.4974 −2.79 0.4963 −2.74
S2 0.4964 9.75 0.4881 9.94 0.4975 0.4964 9.75 0.5044 9.57
S3 0.7241 1.20 0.7211 1.27 0.2488 0.7315 1.03 0.7433 0.73

TABLE I: Estimates of MAP thresholds for various SC-TC with Gray mapping

scheme MAP th. via EBP-GEXIT U.B. on MAP th. via EBP-GEXIT
h Es/N0 (dB) h Es/N0 (dB)

S4 2.4096 3.2393 2.9874 0.1412
S5 0.4682 0.601 0.4949 0.253
S6 2.9641 9.1398 3.1707 8.3614
S7 0.514 −3.01 0.514 −3.01
S8 2.7164 10.0549 2.993 9.0319

TABLE II: Estimates of MAP thresholds for various SC-TC and LDPC codes

APPENDIX A: GEXIT FUNCTION FOR NON-BINARY
COMPLEX-INPUT AWGN CHANNEL

The key idea of the proof of Theorem 1 comes from
Lemma 1 of [14]. This lemma provides an expression for the
t-th GEXIT function gt(h) for non-binary real-input AWGN
channel.
Lemma 1 of [14]: Consider ft,ξ(φ) and φ[ξ] defined in
Section IV-A. Let p(ξ) = P[Xt = ξ], p(yt|ξ′) = P[Yt =
yt|Xt = ξ′], and p′(yt|ξ) = ∂

∂εp(yt|ξ), where ε = −1
2σ2 .

Then gt(h) for |X|-ary real-input AWGN channel is given
by gt(h) =

∑
ξ∈X p(ξ)

∫
φ
ft,ξ(φ)κt,ξ(φ)dφ where

κt,ξ(φ) =

∫∞
−∞ p′(yt|ξ) log2

{∑
ξ′ φ[ξ′]p(yt|ξ

′)

φ[ξ]p(yt|ξ)

}
dyt∫∞

−∞
∑
ξ p(ξ)p

′(yt|ξ) log2

{∑
ξ′ p(ξ

′)p(yt|ξ′)
p(ξ)p(yt|ξ)

}
dyt

.

It can be verified that this lemma hold true for complex-
input AWGN channel as well and hence we use it to

prove our theorem. Towards this we next obtain expressions
for p′(yt|ξ) and p(yt|ξ′)/p(yt|ξ) for complex-input AWGN
channel. We first obtain an expression for p′(yt|ξ). Since
the distribution of the noise corresponding to both real and
imaginary parts is N(0, σ2), the distribution of Yt under the
condition ξ is bivariate Gaussian and using this we get,

p′(yt|ξ) =
∂

∂ε
p(yt|ξ) =

∂

∂ε

1

2πσ2
e−
|yt−ξ|2

2σ2

(a)
=

∂σ

∂ε

(
∂

∂σ

1

2πσ2
e−
|yt−ξ|2

2σ2

)
(b)
= p(yt|ξ)

(
|yt − ξ|2 − 2σ2

)
,

where the equality in (a) follows from the chain rule of
derivative. Since ε = −1

2σ2 , σ is a function of ε and by
solving the derivative we get ∂σ

∂ε = σ3. Substituting this
in (a) and solving the derivative we obtain (b). The fraction
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p(yt|ξ′)/p(yt|ξ) is given by

p(yt|ξ′)
p(yt|ξ)

=

(
1

2πσ2
e−
|yt−ξ′|2

2σ2

)/(
1

2πσ2
e−
|yt−ξ|2

2σ2

)
= exp

[
|yt − ξ|2 − |yt − ξ′|2

2σ2

]
.

Since N >> |X|, in presence of an ideal interleaver we can
assume that the transmitted symbols are equally likely, i.e.,
p(ξ) = 1/|X| ∀ξ ∈ X. Using this and substituting values
of p′(yt|ξ) and p(yt|ξ′)/p(yt|ξ) in Lemma 1 of [14] we get
the required expression of the theorem. �

APPENDIX B: PROOF OF THEOREM 2 (AREA THEOREM
FOR THE SYSTEM OF FIG. 1)

The proof follows by direct application of the generalized
area theorem (GAT) [2, Thm. 1]. While in [2] GAT was
derived for BMS, we observe that it is also applicable for
any |X|-ary, complex-input memoryless channel. Suppose
the channel input symbols X = [X1 . . . XN ] are transmit-
ted via the set of parallel independent memoryless chan-
nels parameterized by h1, . . . , hN respectively to receive
Y = [Y1 . . . YN ]. Then from GAT we have dH(X|Y) =∑N
t=1

∂H(Xt|Y)
∂ht

dht. If all the individual channel parameters
h1, . . . , hN in are parameterized in a smooth way by a
common parameter h, then the GEXIT function g(h) is
defined in [2] as g(h) =

∑N
t=1

∂H(Xt|Y)
∂ht

dht
dh

∣∣∣
h
.

Each Yt is a function of the t-th channel parameter ht
and can be denoted by Yt(ht). Integrating g(h) from 0 to
|X| we get (refer to the discussion after Definition 3 of [2]),∫ h̄

h

g(h) =
1

N

[
H(X|Y(|X|))−H(X|Y(0))

]
(a)
=

1

N

[
k − 0

] (b)
=
km

n
.

(22)

The equality in (a) is obtained since the entropy
H(X|Y(0)), which is the uncertainty about X in presence
of zero noise, is equal to 0. Note that for the AWGN
channel, noise entropy h = |X| correspond to large enough
(ideally infinite) noise variance such that the received Y
does not provide any information about the transmitted X.
This implies that H(X|Y(|X|)) = H(X). Since modulation
scheme does not change the entropy of the transmitted
codewords we have H(X) = k, where k is the dimension
of the code. The equality in (b) is obtained since for m-ary
modulation scheme we have N = n/m (see Section II) and
this completes the proof. �

APPENDIX C: APPROXIMATION FOR THE GEXIT KERNEL
OF BAWGN CHANNEL

For a random variable W ∼ N(2/σ2, 4/σ2) and real
number z, define a function f(h, z) as

f(h, z) = EW
[

1

1 + eW+z

]

=

∫ ∞
−∞

1√
2π(4/σ2)

e
− (w−(2/σ2))2

8/σ2

1 + ew+z
dw,

where h = 1 − J(2/σ). Using this in Eq. (4) we have
lcBAWGN(h)(z) = f(h, z)/f(h, z = 0). The function
f(h, z) can be approximated using Marquardt-Levenberg
algorithm [42] as follows.

f(h, z) ≈


1 if z ≤ L(h)

1− eA3(h)z3+A2(h)z2+A1(h)z+A0(h) if L(h) < z < M(h)

0 if z ≥M(h)
(23)

where L(h),M(h), A0(h), A1(h), . . . , A3(h) are approxi-
mated as polynomials of degree 10 as

L(h) = −92218h
10

+ 490818h
9 − 1127499h

8
+ 1463798h

7 − 1181473h
6

+ 614716h
5 − 207094h

4
+ 44333h

3 − 5817h
2

+ 467h− 38

M(h) = −33578h
10

+ 175895h
9 − 397298h

8
+ 506819h

7 − 401852h
6

+ 205453h
5 − 68054h

4
+ 14322h

3 − 1837h
2

+ 136h+ 1

A0(h) = 117.76h
10 − 610.96h

9
+ 1344.72h

8 − 1634.10h
7

+ 1195.44h
6

− 538.70h
5

+ 146.66h
4 − 22.38h

3
+ 1.19h

2 − 0.33h

A1(h) = 28.89h
10 − 155.08h

9
+ 369.42h

8 − 512.31h
7

+ 453.43h
6

− 262.89h
5

+ 98.69h
4 − 22.90h

3
+ 3.18h

2
+ 0.01h

A2(h) = 10.94h
10 − 62.92h

9
+ 154.13h

8 − 210.31h
7

+ 175.60h
6

− 93.03h
5

+ 31.50h
4 − 6.78h

3
+ 0.88h

2 − 0.11h

A3(h) = 0.47h
10 − 1.58h

9
+ 1.47h

8
+ 0.85h

7 − 2.78h
6

+ 2.44h
5 − 1.11h

4
+ 0.29h

3 − 0.04h
2

+ 0.01h.
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[20] A. Fàbregas, A. Martinez, and G. Caire, “Error probability of bit-
interleaved coded modulation using the Gaussian approximation,” in
Proc. of Conference on Information Science and Systems, New Jersey,
USA, March 2004.
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