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Abstract

We show that the centcrcd and nonnalized relative entropy error of
a consistent histogram based density cstimatc is asymptotically normal
with asymptotic variance less tlian or equal to 1 for ail multivariate
densities / winch hâve a finite relative entropy with respect to a given
reference density g and wliich satisfy a mild condition on the boundary
of their support.

I Introduction

Density estimation is typically an intermediate tool for making statistical
inférences on the actual probability law, so a meaningful error criterion for
estimation of an unknown probability density function should be related
to an error criterion for distribution estimation. Sucli error criteria can

be derived from dissimilarity measures of probability measures, like the /-
divergences introduced by Csiszâr (19C3, 1907). The two most important
/-divergences in mathematical statistics and information theory are the total
variation and the relative entropy.

If fx and u are probability measures on IRr (d > 1) tlicn the total variation
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of fi and v is defined by

V(fi, v) - sup |fi{A) - u(A)\,
A

where the supremum is taken over ail Borel sets A.
If fi and v are absolutely continuons with respect to a <7-finite measure

À with densities / and g respectively, then

11/ “ 9II = J l/(z) “ </(x)|A(dx) = 2 V(fi, i/),
so that an Xq-consistent density estimate implies a distribution estimate
consistent in total variation. The Li-theory can appear more natural in
the sense that it does not require any additional assumption on the density.
However the relative entropy lias some spécifie statistical properties not
sliared by other dissimilarity measures. For instance its additivity property
is used as a basic tool in projection pursuit density estimation.

If fi is absolutely continuous with respect to the Lebesgue measure then
there are Zq-consistent density estimators (histogram, kernel, etc.) for ail
densities, and there are distribution estimators consistent in total varia-
tion for ail absolutely continuous distributions (Devroye and Gyôrfi (1985)).
However, given any sequence of density estimators {/„} the rate of conver-
gence of the expected L\ error

EU - /„ Il

can be arbitrary slow (Devroye (1983)).
According to these facts one can liave an L\-consistent density estimator,

but its rate of convergence can be slow unless we hâve some conditions on
the unknown /. Tliis motivâtes for using a stronger mode of convergence
like consistency in relative entropy. If the density estimator is the histogram
then for d — 1 the best rate of convergence of E\\f — /n|| is of order n-1'3
and this order can be achieved under some smoothness and tail conditions.
Under the saine conditions, Berlinet, Devroye and Gyôrfi (1995) proved the
asymptotic normality of the random part of the L\ error

11/ -/..II- E\\{ ~fn\\
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with order n~1/2, so tlie rate of convergence of tlie random part of the L\
error is much faster than that of the expected L\ error.

The main aim of this paper is to show the asymptotic normality of rela-
tive entropy with order and uniformly bounded asymptotic vari-
ance. The estimate under considération was introduced by Barron (1988).
It involves a density from which the true one is supposed to be not too far
(in a mild sense). Such a reference density is at our disposai when dealing
with parametric models or in nonparametric frameworks when a pilot esti-
mator is available (for instance in plug-in methods or Rao-Blackwellization
procedures) or when suitablc information is provided on the tail of the un-

known distribution. The limit distribution is independent of the dimension
and of the true density when it lias full support with respect to the reference
density.

II Relative entropy

If /i and v are probability measurcs on JRd then the relative entropy (infor-
mation divergence, I-divergence, Kullback-Leibler information number) of //
with respect to v is defined by

!(/*» v) = SUP $Z M4>)ln ^TTT’
Mil j

where the supremum is taken over ail finite Borel measurable partitions
{Aj} of ïïir. Throughout the paper we will use the standard convention
OlnO = 01n(0/0) = 0. The following inequality, also called Pinsker’s in-
equality, upperbounds the total variation in terms of relative entropy (cf.
Csiszâr (19G7), Kemperman (19G9) and Kullback (1967)):

2{V{n,v)}2 <

which means that the relative entropy dominâtes the total variation.
If /z and u are absolutcly continuous with respect to a cr-finite measure

A, with densities / and g, rcspectively, then the relative entropy of /z with
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respect to u becomes the relative entropy D(f,g) of / with respect to g, i.e.

/(/*,■')= / /(x)ln^A(ds) = !>(/, 9).

Recently, there lias been quite an interest in studying the relative entropy
and the relative entropy D(f,g) wlien u or g is empirical or data-

based. In this regard, suppose we observe i.i.d. random variables X\, ...,Xn
from an unknown probability distribution fi. If /i* = /**(.; Xi, . ..,A„) is
a distribution estimate of /x, then {/z*} is said be consistent in relative
entropy if

lim I(u, u*) = 0 a.s.
Il—►oo 71

Analogously, if Xi, ...,Xn are i.i.d. according to a probability density
function / and {/*} is a sequence of density estimators, then {/*} is said to
be consistent in relative entropy if lim„ yoo D(f, f*) = 0 a.s. (Alternatively,
one may consider convergence of D(f, f*) to 0 in probability or consistcncy
in expected relative entropy wliicli means that limn >00 E(D(f, f*)) = 0.)

We first summarize some important results concerning the consistent es-
timation of a distribution or density in relative entropy, which were recently
establislied and are relevant to this paper.

Bairon, Gyôrfi and van der Meulen (1992) showed that if one imposes a
certain condition on the class of distributions from which we are estimating
the unknown one, namely that there exists a known probability measure
u such that J(/x, v) < 00, then one can construct a distribution estimator
which is a.s. consistent in relative entropy for ail distributions in the class.

As is well-known, the condition I(/1, u) < 00 implies that fi is absolutely
continuous with respect to u. The distribution estimate proposed in Barron,
Gyôrfi and van der Meulen (1992) implies a consistent density estimate as
follows: define a sequence of integers {mn}, 0 < mn < n, n > 2, and let hn =

l/mn. Clioose a référencé density g and let u dénoté the probability measure
with density g. Next, introduce partitions Pn = {An)i, A„t2, •••,

n > 2, of IRd such that the A,l(i’s are rectangles with v(AnJ) = hn. For
1

°n “
nhn + 1
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consider the following dcnsity estimatc introduccd by Barron (1988):

/n(^) = ((1 "F Ûn),î7(**')
= (n(in{Ari(x)) + l)ang(x), (1)

where /j,n stands for the empirical measure for the sarnple X\,...,Xn and
An(x) = Anj if a; € Au,i- For d = 1 wc can gct tliis estimatc if we transform
first the data into [0,1] by the distribution fonction of g, thcn construct a

histogram on [0,1] by a uniform partition into mn intcrvals, takc the mixture
of tliis histogram and the uniform dcnsity with wcights 1 — an and an, resp.,
and finally transform back tliis mixture to the real line. The advantage of
the histogram basccl dcnsity estimatc (1) is tliat it avoids the problcm of
empty rectangles, i.e., if / is the underlying dcnsity thcn D(f,fn) is wcll
defincd and is finite. If wc were to use the standard histogram density
estimatc fn = nn(An{x))/hn instcad of fn thcn D(f,fn) would bc infinité
with positive probability. We refer to fn also as the modified histogram
density estimator.

Now assume tliat

D(f,g) < oo.

Tlien the Corollary in Barron, Gyorfi, van der Mculen (1992) states tliat if

lim hn = 0, lim nhn = oo, (2)
n—ïoo il—loo

then

lim D(/, fn) = 0 a.s.
n—loo

and

fini E(D(f,fn)) = 0.
n—>oo

By using Mc Diannid’s methodology (Devroye, 1991) it is possible to get
upper bounds for Var(D(f, /„)) and the probability of déviation of D(f, /„)
as stated in the following Lemina.

Lemma 1 Let. fn be defined by (1) with D(f,g) < oo. Then

Var{D(fJn))< j max li(Anj)
2

Cto Si
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and, for any e > 0,

P(\D(f,f„) - BD(f,fn)\ >()< 2exp gg \
n [maxi<j<m„ n(Ajm\n2f) '

The upper bounds given liere are obtained through a very short and simple
proof. Although tliey are ratlier crude, it is worth noticing that they are

valid for any n, independent of g and (o„) and that in tlie proof of Lemma
1 no hypothesis on thc partition Pn is needed. As we will see Theorem 1
will provide mucli better asymptotic upper bounds than Lemma 1. For any

given sequence of partitions and any suitable sequence 77 = (i]n) let T,1 be
tlie set of densities / for which

Vïi G W*, max ii{Anj) < T]n.
\<j<mn

Tlien we bave by Lemma 1, for any n > 2, the uniform bounds

sup Var(D{fJn)) < j^(ln2)2
ymm 4

and

sup P(\D(f,f„) - ED(f,fn)I > €) < 2cxp ( ) •
mm, /

If rj is cliosen in such a way that

Vn = O

then we can get upper bounds for

Var(D(f,fn)) and P(\D(f,fn) - ED(fJ„)\ > e)

which are independent of n and uniform over jfyL
Gyôrfi and van der Meulen (1994) showed liow to get a density g for

which D(f,g) < oo. For example, for d = 1, the density g which is constant
if |rr| < 1 and behaves likc constant/x2 if |m| > 1 is good for tliis purpose if
the differential cntropy of / is finite and i?(ln |-A|)+ < co. On the other hand
Gyôrfi and van der Meulen (1994) showed also that, given any sequence of
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density estimators {/*} tliere always exists an absolutely continuons prob-
ability measure p with density / where / lias finite differential entropy and
arbitrarily many dérivatives such that the sequence {/*} is not consistent
in relative entropy (see also Gyôrfi, Pâli and van der Meulen (1994)).

Remark lj Hall (1990) exaniincd the consistency properties of the rela-
tive entropy (Kullback-Leibler loss) (D(f, /„)) bctween a probability density
/ and a standard (unmodified) histogram density estimator when / is
supported on the interval [0,1] and f(x) and /(I — x) bchave like xa and
x , respcctively, as x —> 0, where a,b > 0. Hall (1990) uses D(f, fn) as a

criterion for selecting the nurnbcr of bins mn in fn. Barron and Sheu (1991)
considered the estimation of a density /, also defincd on a bounded interval,
by an exponential family estimator pn, where pn is found by application of
the principle of minimum relative entropy subject to empirical constraints.
Tliey showed that if / satisfics a certain smoothness condition, then D(f,pn)
tends to 0 in probability at a certain rate, which dépends on the smoothness
condition and the type of expansion used to approximate ln /.

While the resuit of Darron, Gyôrfi, van der Meulen (1992) provides suf-
ficient conditions for the consistency of a histogram based density estimator
fn in relative entropy, and in expected relative entropy, we prove in this pa-

per a limit law for the centercd relative entropy D(f,fn) — ED(f,fn). The
relative entropy D(f, fn) can be written as the sum of two terms, D(f, fn) —

ED(f, fn) and ED(f, fn), respectively. The first tenu £>(/, /„) — ED(f, /„)
is the random part and represents the global error minus the expected global
error. The second fcerm, ED(f, /n), is the rtonrandom part. Similarly to the
expected L\ error, the nonrandom part ED(f, fn) may hâve arbitrarily slow
rate of convergence, unless sonie additional conditions on the smoothness
and tail of / are imposed.

For. the particular histogram density estimator fn considered here, it is
shown in Barron, Gyôrfi, van der Meulen (1992) that

111

E(D(Un)) <— + £>(/, Efn).
n

For d — 1, Barron and Sheu (1991) proved under some strict smoothness
conditions on / (/ defincd on a bounded intcrval and liaving finite Fisher
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information) tliat

so it follows in this case tliat

S(D(/,/„))< — + ©(l/ml).
Il

Therefore thc good choicc for mn is in this case n1/3 and then

E(D(f,f„))<0(n-2/3).

Unfortunately Lcmma 1 is not informative wlien nh\ tends to infinity.
In this paper we show tliat without any additional condition on /, the
centered relative entropy D(f, fn) — ED(f, /„) is asymptotically normal with
guaranteed rate. For the particular clioice mn = 711'3 the rate of convergence
of the random part is of order n-5'6, wliicli is mucli faster than the rate of the
non-random part. This resuit shows tliat, since D(f, fn)—ED(f, fn) is small
with respect to ED(f,fn) and D(f,fn) — ED(f,fn) has nice asymptotic
beliavior, ail the information about the asymptotic behavior of D(f,fn) is
contained in the expected global crror ED(f,fn).

In proving the asymptotic normality of D(f, /„) — ED(f,fn), obviously
ncw aspects corne in, as comparcd to proving the classical central limit the-
orem or pointwise asymptotic normality, since the global error is not a sum
of independent random variables. For proving the asymptotic normality of
£)(/,/„) — ED(f,fn) we use the technique of Poissonization (which stems
from the fact tliat a multinomial distribution can be written as the condi-
tional distribution of a set of independent Poisson random variables given
tlleir sum) and an inversion technique for obtaining characteristic functions
of conditional distributions.

III Asymptotic normality of the relative entropy

In the sequel we show thc asymptotic normality of the random part of the
relative entropy so tliat the asymptotic variance is less than or equal to 1 for
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ail densities / for wliich the consistency in relative entropy of the estimate
fn is guaranteed. The rate of convergence is shown to be of order (ny/îï^)-1.

Theorem 1 Let g and v be probability measures on JRd with densities f
and g with respect to the Lebesgue measure. Let Sfl be the closure of the set

= {x : f(x) ^ 0} and let fn be given by

fn(x) = {ngn(An(x)) + 1 )ang(x)

with (hn) satisfying

lini hn = 0, lim nhn = oo.
n—>oo n—►oo

If D(f, g) < oo and i;(Sfl — 5/t) = 0 then

ns/2h„[D(S,fn) - E(D(f, /„))] A Af(0,a2)

as n —> oo, where a1 = v{Sfl) > 0.

Remark 2. If ^ stands for the standard normal distribution function

then by Theorem 1 for ail / with D(f,g) < oo and e > 0

|| P{ny/2K,\D(f,fn)-E(D(f,fn))| > e} = 2$ f jL=
\

< 2$(-€),

wliere the last bound is density-free. For fixed /, the asymptotic upper

bounds for Var(D(f,fn)) and P{\D(f,fn) - E(D(f, fn))\ > c} are respec-

tively

much better tlian tliose deduccd froin Lemma 1.

Remark 3: Application to goodness-of-fit. To show tlic usefulness
of Theorem 1 in statistical infercnce let us consider the problem of testing
the goodness-of-fit of a continuous distribution g. to a set of n observations
grouped into mn ecpial probability sets Anj. This classical problem lias
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raised many questions sucli as:

(i) liow to choose the number mn of classes,
(ii) on which statistic sliould a tcsting procedure be bascd,
(iii) which criterion sliould be used to compare different tests?
Hoeffding (1965) (cf. Barron (1989)) showed that the likelihood ratio tests
for the hypothesis testing problem /i = /io versus /i ^ /io based on the
relative frequencies iin(Anj) acccpt if Z)n(/i7l, /io) < r for some r > 0, where

a|J|lLo) = £ /bi(An,j) || ■ —
j—l ^OyAnj)

If d = 1 and /io is uniform on [0,1] tlien

Dn /^o) == ?n lll /ln|

where
77? rl

2"» = ^ ) ln/itl(AHj).
j=i

Similarly, a classical goodness-of-fit test for the samc hypothesis testing
problem is based on (reverscd order) x2_(livergence:

21 \ (lln(Anj) — VoiAnj))2*(/*»»/*o) =2^, y—<—-—•
“; MAnj)

Again, if d = 1 and /io is uniform on [0,1] then

Xn(/bi>/^o) = SnPln ~ 1*

wliere
mn

S„ = 'El*n(A„j)?„
j= 1

From the point of view of Pitman cfficiency, Quinc and Robinson (1985)
proved, ainong otlier things, that the chi-square test statistic Sn and the
likelihood ratio test statistic Tn are équivalent for testing the null hypothesis

Ho : f{x) = l(o.i) (*)
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versus the sequence of neigliboring alternatives

n • fn((îpj — (1 H" ^n^n(^'))l(0,l)(*^')
under the conditions mn —> oo, n/mn —> oo and suitable conditions on

/„ —> 0. Now, the reversed order x2-divergence can be written as the square

of the L2-norm of

fn — 1(0,1)
which was shown by Beirlant and Gyôrfi (1994) to be the best among plh
powcrs of L;,-norms in ternis of Pitman efficiency. Ail these statistics can

be interpreted as reversed order divergences, and under the null-liypothesis
these statistics are of order Dn(fin, /xo) is the reversed order relative
entropy restrictcd to the partition, and is, bccause of its connection to the
likelihood ratio test, perhaps more cominon in statistics than the relative
entropy Dn(fio, fin) considered liere. Because of the possible empty cells
the divergence Dn(po, pn) can be infinité witli positive probability. We
can substitute /xn by the distribution estimate /x* derived from the density
estimate /„, tlius

Ai(/io, Un) = Ho(Anj) ln
j—\

from which tlic test statistic can be derived

fln(An j)(l O,

)
) “b fln^n

Tn = ^ ^ fJ'O^A-nj) hi(/in(Anj)(l u») d- hnfln)*
JBl

T* is called cross-entropy by soine authors (cf. Parzen (1991)). This moti-
vates us to propose another goodness-of-fit test for testing Hq : fi = /xo versus

H\ : /x ^ p,o, as an alternative to the classical likelihood ratio test mentioned
above. This test is based on .Dn(/xo,/x*) and accepts if Z9n(/xo,/x*) < r for
some r > 0. If d = 1 and /xq is uniform on [0,1] tlien

A*|M0,/4I = T* + ln/xu.

It is easy to see that

D(fJn)-ED(fJn) = T:-ET:,
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so because of Theorem 1 the random part of the test statistic T* is of
—1 —1/2order n lhn ' . These results show the need for further researeh on tests

based on relative entropy. Also the validity of Theorem 1 in any dimension
makes it possible to consider as null hypothesis any density / with finite
relative entropy with respect to some density g. This is important since the
réduction of the null hypothesis to the uniform density is not possible in
liigher dimensions.

Remark 4. From the proof of Theorem 1 (cf. (3) and (4)) it will appear

tliat D(f, fn)-'ED(f, /„) lias the saine asymptotic distribution as I* — E(I*)
wliere

/* — 1 V' ^(An^iHniAnj) ~~ ^(An,j))^
’,_2£ + l/«)2

Notice that I* is again of the type of a reversed order x2*divergence. Heuris-
tically, the resuit of Theorem 1 can now be explained as follows. Invoking
the limit theory of chi-square statistics, it can be argued that under suitable
technical conditions, as n —> oo and mn remains fixed, the statistic

o r* V2' fl(An j){/in(Anj) — n{An j))22nln = n } ——— J 0 .

j—l {^(Anj) + 1/^)
will hâve as asymptotic distribution the distribution of a chi-square random
variable Y with mn — 1 degrecs of freedom. Now, letting mn = 1 /hn tend
to infini ty, we hâve that

= M(y - î/h.) am i).
V2mn V 2

So intuitively it should be clear that, after it lias been properly centered and
normalized, the random variable

will asymptotically hâve a standard normal distribution as n —> oo and
m« —^ oo under suitable technical conditions. Theorem 1 makes these
conditions and this statement précisé.
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Proof of Theorem 1. From the finiteness of D(f,g) and the définition of
fn it follows that D(f, /„) and ED(f, fn) are finite and that, denoting by À
the Lebesgue measure on JRdy we bave

1 = /jaaH
JRd \

/(*)
(7r/i„(An(x)) + l)an<7(x)

X(dx)

m„

= D(f,a) - l»(a«) ~ 53/x(A„j)ln(l 4-n/zn{Anj)),
j=l

and

D(J, h) -ED(fJn) = -fî^U.j)('1nf1 + ,>,*"(i4nj)
j= 1 \ \

where {cnj} is any sequence of positive numbers. With the intention of using
a Taylor expansion of the logaritlnns at the point 1, we put

Cnj

and Rnj

1 4* vi[x(Anj)
— fx(Anj)) \ ^ ^

) _ J _ **»n

cnj

Then the arguments of the logaritlnns in the above expression of D(f, /„) —

ED(f,fn) are equal to (1 4- Rnj), and we can approximate the différence
between ln(l 4- Rnj) and its expectation by a linear combination of Rnj and
R2
More precisely, let

mn

In — n\J‘2.1in 'y ^ fJ-{Anj)
j=i

(3)

ni»,

Jn = n\/2hn ^ n(Anj) ln(l 4~ Rnj)
j=i

mn

and Kn — i\\/2hn ^ ^ fx(Anj)Rnj•
i=l
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We can Write

ny/2Îï^{D(f, /„) - ED{f, /„)) = Jn - EJn
— Jn + Kn — In — E(Jn + Kn — In)

—Kn + EKn

+^n — EIn.

For this décomposition it is good to hâve thc following two lemmas, the
proofs of wliicli are dcfcrrcd to the next. section:

Lemma 2 Under the conditions of Theorem 1 we hâve

lim E(Kn)2 = 0.

Lemma 3 Under the conditions of Theorem 1 we hâve

lim E(Jn + Kn - /„ - E(Jn + Kn - /„))2 = 0.

According to these lemmas the random variables Kn — EKn and Jn +
Kn — In — E(Jn + Kn — In) tend to zéro in L2. In order to prove Theorem
1 it remains to show tliat

/„-£(/„) A V(0, a2). (4)

The basic technique applicd is Poissonization: let Nn be a Poisson (n) ran-
dom variable independent of {ATt }. The cmpirical measure for Poisson sam-
pie size Nn is defined as follows:

#{t : <i<Nn}flNn{A) = •
n

The Poisson approximation technique is formulated by a resuit of Beirlant,
Gyôrfi, Lugosi (1994, Proposition): Let

m „

Èi ~ ^ ^ Snj {f^N„ {Anj ) ) ;

j= 1
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where gnj (n,j >1) are real measurable functions with

E (9nj{HN„(Anj))) = 0 (71, j > 1).

Assume tliat, as n tends to infinity, we hâve for any (t, v) G JR2,

ni l ' j. t i • ^n nE ( exp ( itln 4- iv—-j=.—
Tlien

))
^20nj(lhi{Anj)) A/'(0,<72).
j= 1

Looking at tlie expression of In it appears that the functions gnj could be
chosen as quadratic functions to get the asymptotic distribution of /„ from
the above Proposition. More precisely, putting for j > 1

gnj(x) = nfe ((* - KA*i))* ~ E(tiNMnj) ~ n(Anj)Ÿ) ,

i|ta<r2+wa)/2

2(iifi(Anj) 4-1)
we hâve

where

^ 1 9nj (fln(An j)) — In E(In),
Æ1

In -

2(nn(Auj) + l)2 (W“{Ani)
Now we use the following lemma the proof of wliich is also given in the next
section.

Lemma 4 Under the conditions of Theorem 1 we hâve

Uni (E(Q - E(In)) = 0.n—►oo

According to the Proposition in Beirlant, Gyôrfi and Lugosi (1994) and
Lemma 3, it now suffices to show that

Sn = tîn 4- vU M(0, t2o2 4- u2),
\/n (5)
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(£, v) G IR2, in order that In—E(In) lias an asymptotic Af(0, cr2) distribution.
We prove this fact, using Lyapunov’s central limit theorem. Note that

771 n

Var(Sn) = '52t2Var(gnj(nNn(Anj)))
j=l

2tv\/n ^ E {ÿn j{f^Nn (An j))(nNn (-d)tj) /^(-^nj))) “b u .

1=1
We wish to show that Var(Sn) —> t2a2 4- v2. First wc show that

Var(ïn) = YlVar{gnj{fiNn{Anj))) —> a1
i=l

(6)

We liavc

Tr , , / , xxv 2o, (n2/i(i4»j))2Va»
+ 1)4

x[-E(mjv„(A„j) - /X(v4„j))4 - (£(/1N„(4t„J)l - /»(^nJ))2)2]
— / ^ ntl(Anj) ^ ^ (Ti/i(i4wj))*"

+ 1 y " 2 (n/i(/lnj) 4- l)4
Therefore

Var(/„) nhnzn[x)
iihnzn{x) 4- 1

(ii[i(Anj))
2 (n/i(A„j) 4* l)4 ’

where

I(X) = f. /".T.

Let

z(x) = y^(x).du

The above intégral is lower bounded by

1{2(*)>0} ( nh»*;[x) V „(<ir)\nh„zn(x) 4-1/

whicli tends to i/(S„) by tlie dominated convergence tlieorcm. Since

V"' î (u/i(.Anj)) nfi(Anj) __ C1»
"

2 (nii(A„j) 4- l)4 ” 2 £{ 2MAnj) 4-1)2 2
0,
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ifc follows that

lim inf Var(în) > u(S^).
Now

/ V' ( nll(Anj) ^
n£[{nn(Anj) + lJ

< I V' nfJ’(Anj)
ln£n/i(Ani) + l
[ nhnz(x)

Jttld nhnzn(x) 4-1
u{dx).

If one dénotés the above intégral by Dn one can provc in the same way as

in the proof of Lemma 2 tliat

Dn - Dn 0,

where

nhuz(x)
H Inid ^Zn^>0^ nhnz(x) + 1

< r nhnz(x)
~ Jlli<irid nhnz(x) + 1

v(dx)

u(dx)

• «'(S,).

Thus

lim sup Var(In) < v^S^),
wliicli proves (6). To complète the asymptotics for Var(Sn) it remains to
show that

, D iOnii^Nn (■^ii?‘))(MVm (Anj) f.l{Anj))) ^ 0.
j=1

This follows immcdiately from the fact that

E - ii(Anj))3 = nz

Hence Var(Sn) —> t2a2 + v2. To finish the proof of (5), by Lyapunov’s
central limit theorem it suffices to show that

711 n mn

^2 D19nj{HNn (4nj))|3 + n“3/2 ^2 E \nVNn {Aij) ~ nfi(Anj)\3
j=i j=l

0.
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Using moment properties of Poisson variables one gets

n-3/2 y' E |n (yl ) - îi/i(i4nj)|3 < Vz max J
— lSjSmn V »/i

j=l
0Ï

and

mn m„ / 3 \

g£|«»jO*Jv.(A.ià|3 - <2,‘")5/2g I)2
150

x —x-((nn{Anj)y + {nn{Anj)Y + n/x(Anj))
< 1G0 y/ÏÏ^Dn.

It is easy to sce tliat botli ternis tend to zéro. So Sn is asymptotically
J\f{0, t2a2 4- v2) and tlie conclusion follows.

IV Proofs of the lemmas

Proof of Lemma 1. As sliown in the proof of Theorcm 1, we hâve

DU, fn) = D(f, a) - ln(o„) - « (Xi, • • •, X„)

witli £ defined 011 IR” by
»«„

£(*l, •*•,*„) = J3 lu (1 + Nj)
j-l

wlicre

Nj = ±uM
1=1

Suppose tliat X{ belongs to Ank and that x\ belongs to Ank> with k ^ k'.
We liave

* * *

» -En) * * *1 ’ " i *e,i)
/Afr + 2

+/i(Anfc/)ln W*' + l
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witli 1 < Nk <n and 0 < Ny < n — 1.
Therefore

K(*i»,,,ia;5r,*ia:») < max p(Anj) ln2.

We are now in a position to apply Mc Diarmid’s metliodology to the func-
Bp £ (see Devroye (1991), Tlieorcin 2 and 3). Tlic two inequalitics follow.

Proof of Lemtna 2. Applying the fact tliat

_ rn„
Kn — ny/2hn ^ /i(A,jj)) 0

j-i

it is enougli to prove tliat

lira E(Kn - K„Ÿ = 0.

For j ^ k, we hâve

/i.(Anj))(/in(Aufc) — n(Ank))) — fi^Anj') fi{Ank)
tlius

E{Kn - Kny - E %i/2h~22 —, , ... (/in(Anj) ~ /*(Anj))V nfi(Anj) + 1

< n22h„ £fr[ (np(Anj) + 1):
;E Anj) fl(Anj))

= n22hn nj,

j—i (n/i(i4nj) 4* 1) îi
(1 - fi{Anj))

< 2C,«,

witli

c„ = £ ntt(A„jj
(nll{Anj) + l)2 Vu*

= / <f>{nhnzn(x)) u(dx).

< - if £ > 0.
(f + l)2 “ 4

and

</»(*) =
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If x G Sp tlien, almost surely, zn(x) tends to z(x) > 0 and <f>(nhnzn(x))
tends to 0.

If a: € JRd — Sfl then x is in the interior of {x : /(x) = 0}. Thus, for n large
enough, zn(x) = 0 and <f>(nhnzn{x)) — 0. As 1/(5^, — S^) = 0, the dominated
convergence theorem implies that Cn tends to 0. This ends the proof of
Lemma 2.

Proof of Lemma 3. First note that

R-nj — (Ajij) fJ>(A»ij))/(îl|x(Anj) “I- 1)

is a random variable taking its values in [S~j, with

i . ~n < c- _ nll(Anj) ^ Q
n + 1 “ nJ iifi(Anj) + 1 “

and

Thus one can Write

°
- ~

nfi(Anj) + 1
< n.

Jn + ATn — fn — E(Jn + Kn — In)
nln

= ny/2Îï^^2 n(Anj)[(p(Rnj) - E(<p(Rnj)]
j=1

where (p : ( —1, -Foo) —► JR is defincd by

x2
(p{x) = -log{ 1 +x) + x —

The function (p is strictly dccreasing and satisfies y?(0) — 0. Let a > 1/3 and
P = — 1 -F 1/3a sucli that —n/(n -f 1) < P- We liave

MK,)| < if Ifr > 0
and \tp(Rnj)\ < log(nfi(Anj) -F 1) if Rnj < 0.

For j G {1, • • •,mn}, Rnj is a strictly increasing function of fin(Anj). Dénoté
its inverse by R~j. Using Hocffding’s formula (Dharmadhikari and Joag-dev,
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1987, p 148) we get

Cov((p(Rnj),<p(Rnk)) = [[ {P((p(Rnj) < x,<p(Rnk) <y)J Jni2
- P((p(Rnj) < x)P(<p{Rnk) < y)} dxdy

= ffj{2 {P (vniAnj) > Rnj (<p l(x)),Hn(Ank) > Rj{<p l{mm
- p (jin{Anj) > R~j((p~l(x)Ÿj p ( fin(Ank) > R~l(<p~l{y)) )} dxdv•

This last quantity is non-positive for j^ k by a resuit of Mallows (1968) on

multinomial probabilities. Thercfore for j ^ k

Tlius

E^Rnj) - E(V(Rnj))][<p(Rnk) - E(v(Rnk))]) < 0.

E(J„ + Kn -1 - E(Jn + K„- !„))'■

< n22hn l*(Anj)2E[<p(Rnj) - E(<p(Rnj)]2
j-\

< n22/i„ ^ fi(Anj)2E[<p(R.nj)2]
j= 1
m „

j= 1
7ïln

+n22hn Y^ti(Anj)2 (log(n/i(Anj) + 1 ))2 P{Rnj < (3)
j=l

^ „2oi 2 V'' (a \2nl1(Anj) + 25(np(j4nj))2 + 15(n/x(>lnj))3< n 2hna ^Anj) (n#l(i^.) + 1)6
m" ( n 1

+n22/i„ Y^viAnj)2 (log(n/i(Anj) -f l))2exp |--/32/z(j4nj) j
< 82hna2^2 nn(Anj)

fr[ (nv(Anj) + l)2
+2 f [iihnzn (x)log(nhnzn(x) -f l)]2exp | —nhnzn(x)^— i u(dx).

Jz(x)>0 ( 4 J
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In the next to last inequality Bennett’s inequality (1962) was applied to the
zéro mean random variables

as in Lemma 3 of Gyôrfi and van der Meulen (1987). The first term of the
right hand side of the last inequality tends to 0 according to the proof of
Lemma 2. For the second term, the integrand tends to 0 in a dominated
way, so it tends to 0, too.
Proof of Lemma 4.

I „2 (A .'i
E(In) - E(In) = 5(^OTÏ)2 - H(Anj)Ÿ)

- E{^n(A„j) - n(Anj)Ÿ)\

lience

E(In) - E(In) = s/2KY.
j=l

(nn{Anj))2
2(nfi(Anj) + l)2

\/2hn
2

0.
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