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Abstract

‘We show that the centered and normalized relative entropy error of
a consistent histogram based density estimate is asymptotically normal
with asymptotic variance less than or equal to 1 for all multivariate
densities f which have a finite relative entropy with respect to a given
reference density g and which satisfy a mild condition on the boundary
of their support.

I Introduction

Density estimation is typically an intermediate tool for making statistical
inferences on the actual probability law, so a meaningful error criterion for
estimation of an unknown probability density function should be related
to an error criterion for distribution estimation. Such error criteria can
be derived from dissimilarity measures of probability measures, like the f-
divergences introduced by Csiszar (1963, 1967). The two most important
f-divergences in mathematical statistics and information theory are the total
variation and the relative entropy.

If u and v are probability mcasures on IR (d > 1) then the total variation



of 1 and v is defined by
Vi) = supipldl= Al

where the supremum is taken over all Borel sets A.
If 1 and v are absolutely continuous with respect to a o-finite measure
A with densities f and g respectively, then

17 = ol = [ 1(a) - g(@)IA(de) = 2V (1,0,

so that an L;-consistent density estimate implies a distribution estimate
consistent in total variation. The Lj-theory can appear more natural in
the sense that it does not require any additional assumption on the density.
However the relative entropy has some specific statistical properties not
shared by other dissimilarity mecasures. For instance its additivity property
is used as a basic tool in projection pursuit density estimation.

If i is absolutely continuous with respect to the Lebesgue measure then
there are Li-consistent density estimators (histogram, kernel, etc.) for all
densities, and there are distribution estimators consistent in total varia-
tion for all absolutely continuous distributions (Devroye and Gydorfi (1985)).
However, given any sequence of density estimators {f,} the rate of conver-

gence of the expected L error

E|f - fall

can be arbitrary slow (Devroye (1983)).

According to these facts one can have an L;-consistent density estimator,
but its rate of convergence can be slow unless we have some conditions on
the unknown f. This motivates for using a stronger mode of convergence
like consistency in relative entropy. If the density estimator is the histogram
then for d = 1 the best rate of convergence of E||f — full is of order TR
and this order can be achieved under some smoothness and tail conditions.
Under the same conditions, Berlinet, Devroye and Gyorfi (1995) proved the

asymptotic normality of the random part of the L; error

“f = fu” - E“f - fn“




with order n=1/ 2 so the rate of convergence of the random part of the L;
error is much faster than that of the expected L error.

The main aim of this paper is to show the asymptotic normality of rela-
tive entropy with order (ny/h,)~! and uniformly bounded asymptotic vari-
ance. The estimate under consideration was introduced by Barron (1988).
It involves a density from which the true one is supposed to be not too far
(in a mild sense). Such a reference density is at our disposal when dealing
with parametric models or in nonparametric frameworks when a pilot esti-
mator is available (for instance in plug-in methods or Rao-Blackwellization
procedures) or when suitable information is provided on the tail of the un-
known distribution. The limit distribution is independent of the dimension
and of the true density when it has full support with respect to the reference
density.

II Relative entropy

If 1 and v are probability measures on IR¢ then the relative entropy (infor-

mation divergence, I-divergence, Kullback-Leibler information number) of x
with respect to v is defined by

w(A;)
v(A;)’

I(p,v) =sup ) p(A;)In
{A,-}; i

where the supremum is taken over all finite Borel measurable partitions
{A;} of IR¢. Throughout the paper we will use the standard convention
0In0 = 0In(0/0) = 0. The following inequality, also called Pinsker’s in-
equality, upperbounds the total variation in terms of relative entropy (cf.
Csiszar (1967), Kemperman (1969) and Kullback (1967)):

2{V (1)} < I(p,v),

which means that the relative entropy dominates the total variation.
If 1 and v are absolutely continuous with respect to a o-finite measure

A, with densities f and g, respectively, then the relative entropy of g with



respect to v becomes the relative entropy D(f, g) of f with respect to g, i.e.

f(z)
g(z)

Recently, there has been quite an interest in studying the relative entropy
I(p,v) and the relative entropy D(f,g) when v or g is empirical or data-
based. In this regard, suppose we observe i.i.d. random variables X1, ..., X,
from an unknown probability distribution p. If p} = pn(; X1, ..., Xn) is
a distribution estimate of y, then {yu;} is said to be consistent in relative

entropy if

Iwv)= [ f(z)nZINdz) = D(f,9).

Jim I(p, py) =0 acs.

Analogously, if Xy, ..., X, are i.i.d. according to a probability density
function f and {f}} is a sequence of density estimators, then {f;} is said to
be consistent in relative entropy if lim, 00 D(f, f1) = 0 a.s. (Alternatively,
one may consider convergence of D(f, f) to 0 in probability or consistency
in expected relative entropy which means that lim, . E(D(f, f3)) =0.)

We first suminarize some important results concerning the consistent es-
timation of a distribution or density in relative entropy, which were recently
established and are relevant to this paper.

Barron, Gyorfi and van der Meulen (1992) showed that if one imposes a
certain condition on the class of distributions from which we are estimating
the unknown one, namely that there exists a known probability measure
v such that I(y,v) < oo, then one can construct a distribution estimator
which is a.s. consistent in relative entropy for all distributions in the class.

As is well-known, the condition I(u,v) < oo implies that u is absolutely
continuous with respect to . The distribution estimate proposed in Barron,
Gyorfi and van der Meulen (1992) implies a consistent density estimate as
follows: define a sequence of integers {my},0 < m, < n,n > 2, and let h, =
1/m,. Choose a reference density g and let v denote the probability measure
with density g. Next, introduce partitions P, = {Au,l,AnJ,--v,An,m,.},
n > 2, of R? such that the A, ;’s are rectangles with v(An i) = hy. For

1
e |

a’rl o




consider the following density estimate introduced by Barron (1988):

fﬂ(I) = ((1 - au)”n(An(E))/hﬂ =+ a,,)g(z)
= (npa(An(z)) + Dang(z), (1)

where g, stands for the empirical measure for the sample X1,..., X, and
An(z) = A, i if 2 € A, i. For d =1 we can get this estimate if we transform
first the data into [0, 1] by the distribution function of g, then construct a
histogram on [0, 1] by a uniform partition into m,, intervals, take the mixture
of this histogram and the uniform density with weights 1 —a, and a,,, resp.,
and finally transform back this mixture to the real line. The advantage of
the histogram based density estimate (1) is that it avoids the problem of
cmpty rectangles, i.c., if f is the underlying density then D(f, f,,) is well
defined and is finite. If we were to use the standard histogram density
cstimate f,, = piy(An(x))/hy instead of f,, then D(f, fu) would be infinite
with positive probability. We refer to f,, also as the modified histogram
density estimator.
Now assume that

D(f,g) < .

Then the Corollary in Barron, Gyorfi, van der Meulen (1992) states that if

IR A= I s =tec, @)
s ttC 1n—roc
then
Hli}looD(f‘ fn) =0a.s.
and

nl—il:loc E(D(f‘ fn)) = 0.

By using Mc Diarmid’s methodology (Devroye, 1991) it is possible to get
upper bounds for Var(D(f, f,)) and the probability of deviation of D(f, f,)
as stated in the following Lemma.

Lemma 1 Let f, be defined by (1) with D(f,g) < oo. Then

2
Vm-(D(f,f,,))ggi[l max ,L(A,U-)] (In2)

<j<mn



and, for any e > 0,

—2¢?

P(ID(f, fa) = ED(f, fu)| 2 €) < 2exp (n [maxi<j<m, “(A“j)}Z (In 2)2) :
The upper bounds given here are obtained through a very short and simple
proof. Although they are rather crude, it is worth noticing that they are
valid for any n, independent of g and (e, ) and that in the proof of Lemma
1 no hypothesis on the partition P, is necded. As we will see Theorem 1
will provide much better asymptotic upper bounds than Lemma 1. For any
given sequence of partitions and any suitable sequence n = (7,) let F,, be
the set of densities f for which

Vn € IN%, 2o w(Anj) < 7.

Then we have by Lemma 1, for any n > 2, the uniform bounds
sup Var(D(f, fu)) < 21&(1:}2)2
feF, 4

and

—2€?
;;él}: P (lD(f, f,,) = ED(fr fn)l 2 6) < Zexp (111}3(1112)2) i

If 5) is chosen in such a way that

w=o(3)

then we can get upper bounds for

Var(D({, fa)) and P (|D(f, fa) = ED({, fa)] 2 €)

which are independent of n and uniform over F,.

Gyorfi and van der Meulen (1994) showed how to get a density g for
which D(f, g) < co. For example, for d = 1, the density g which is constant
if || < 1 and behaves like constant/x? if |z| > 1 is good for this purpose if
the differential entropy of f is finite and E(In|X|)* < co. On the other hand

Gyérfi and van der Meulen (1994) showed also that, given any sequence of




density estimators {f;} there always exists an absolutely continuous prob-
ability measure p with density f where f has finite differential entropy and
arbitrarily many derivatives such that the sequence {f;} is not consistent
in relative entropy (see also Gyorfi, Pali and van der Meulen (1994)).

Remark 1. Hall (1990) examined the consistency properties of the rela-
tive entropy (Kullback-Leibler loss) (D(f, fn)) between a probability density
f and a standard (unmodified) histogram density estimator fus when f is
supported on the interval [0,1] and f(z) and f(1 — z) behave like 2 and
zb, respectively, as ¢ — 0, where a,b > 0. Hall (1990) uses D(f, f,l) as a
criterion for selecting the number of bins my, in f,. Barron and Sheu (1991)
considered the estimation of a density f, also defined on a bounded interval,
by an exponential family estimmator p,, where p, is found by application of
the principle of minimum relative entropy subject to empirical constraints.
They showed that if f satisfics a certain smoothness condition, then D(f, ,)
tends to 0 in probability at a certain rate, which depends on the smoothness
condition and the type of expansion used to approximate ln f.

While the result of Barron, Gyorfi, van der Meulen (1992) provides suf-
ficient conditions for the consistency of a histogram based density estimator
fn in relative entropy, and in expected relative entropy, we prove in this pa-
per a limit law for the centered relative entropy D(f, f,.) — ED(f, f»). The
relative entropy D(f, f,) can be written as the sun of two terms, D(f, f,.) —
ED(f, fu) and ED(f, fu), respectively. The first term D(f, f,) — ED(f, fa)
is the random part and represents the global error minus the expected global
error. The second term, ED(f, f,), is the nonrandom part. Similarly to the
expected L error, the nonrandom part ED(f, f,) may have arbitrarily slow
rate of convergence, unless some additional conditions on the smoothness
and tail of f are imposed.

For the particular histogram density estimator f,, considered here, it is

shown in Barron, Gyorfi, van der Meulen (1992) that

B(D(f,fx)) £ = + D(f, Efy).

For d = 1, Barron and Sheu (1991) proved under some strict smoothness
conditions on f (f defined on a bounded interval and having finite Fisher

il
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information) that
D(f,Efa) < O(1/m}),

so it follows in this case that
My 2
E(D(f1 fn)) S T + O(l/”]’n)‘
Therefore the good choice for m,, is in this case n!/3 and then
E(D(f, fa)) £ O(n~*%).

Unfortunately Lemma 1 is not informative when nh? tends to infinity.
In this paper we show that without any additional condition on f, the
centered relative entropy D(f, f,)—ED(f, f.) is asymptotically normal with

1/3 the rate of convergence

guaranteed rate. For the particular choice m, =n
of the random part is of order n=5/% which is much faster than the rate of the
non-random part. This result shows that, since D(f, f,)—ED(f, fx) is small
with respect to ED(f, f,.) and D(f, f.) — ED(f, f,) has nice asymptotic
behavior, all the information about the asymptotic behavior of D(f, f,.) is
contained in the expected global error ED(f, fn).

In proving the asymptotic normality of D(f, f.) — ED(f, fa), obviously
new aspects come in, as compared to proving the classical central limit the-
orem or pointwise asymptotic normality, since the global error is not a sum
of independent random variables. For proving the asymptotic normality of
D(f, fu.) — ED(f, f.) we use the teclinique of Poissonization (which stems
from the fact that a multinomial distribution can be written as the condi-
tional distribution of a sct of independent Poisson random variables given
their sum) and an inversion technique for obtaining characteristic functions

of conditional distributions.

III Asymptotic normality of the relative entropy

In the sequel we show the asymptotic normality of the random part of the

relative entropy so that the asymptotic variance is less than or equal to 1 for
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all densities f for which the consistency in relative entropy of the estimate
fn is guaranteed. The rate of convergence is shown to be of order (ny/h,) ™.

Theorem 1 Let pu and v be probability measures on IR® with densities f
and g with respect to the Lebesgue measure. Let S, be the closure of the set
S, ={z: f(z) # 0} and let f,, be given by

fa(z) = (npn(An(2)) + Dang(z)
with (hy,) satisfying
I =0 i Wi —lco:
n—oo n—roo
If D(f,g) < 0o and v(S, — S,) =0 then
12k [D(f, fu) = B(D(f, f))] = N(0,0?)
as n — oo, where 02 = v(S5,) > 0.

Remark 2. If ® stands for the standard normal distribution function

then by Theorem 1 for all f with D(f,g) < co and € > 0

20 (——_——E )
v(Su)

< 20(—¢),

im P{ny/2h,|D(f, fn) — E(D(f, f2))| > €}

Il

where the last bound is density-free. For fixed f, the asymptotic upper
bounds for Var(D(f, f,)) and P{|D(f, fn) — E(D(f, fx))| > €} are respec-

tively
1 2 .
S and 4/ = cxXp (—cznzhn),

much better than those deduced from Lemma 1.

Remark 3: Application to goodness-of-fit. To show the usefulness
of Theorem 1 in statistical inference let us consider the problem of testing
the gooduess-of-fit of a continuous distribution u to a sct of n observations

grouped into m, equal probability scts A,;. This classical problem has
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raised many questions such as:

(i) how to choose the nmumber m, of classes,

(i1) on which statistic should a testing procedure be based,

(i1i) which criterion should be used to compare different tests?

Hoeflding (1965) (cf. Barron (1989)) showed that the likelihood ratio tests
for the hypothesis testing problem p = pg versus g # po based on the

relative frequencies i, (A, ;) accept if Dy (jen, p19) < 7 for some r > 0, where

my ““(A .J)
/03 (ytn, ”U Z 'u'" n'J .U'U(AN.J)

If d =1 and pyg is uniform on [0,1] then

Dy (pens o) = = Inh,,
where .
T, = Z“N(Aﬂ.j) In g (A )-
Jj=l

Similarly, a classical goodness-of-fit test for the same hypothesis testing

problem is based on (reversed order) x?-divergence:

% (”n(Anj) - “O(Auj))z‘

2
X (’L", tg) =
} ) = ‘u,g(A,.j)

Again, if d = 1 and pg is uniform on [0, 1] then

szl(ﬂ'ln f"‘U) = Sﬂ/h!l =

where
M

T Z If'n(An,j)z-
j=1

From the point of view of Pitman efficiency, Quine and Robinson (1985)
proved, among other things, that the chi-square test statistic S, and the

likelihood ratio test statistic T}, are equivalent for testing the null hypothesis

Hy : f(z) = 1p,1(z)
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versus the sequence of neighboring alternatives
Hin : fn (z)=(1+ tnh‘n(w))l(o.l)(x)

under the conditions m,, —* oo, n/m, — oo and suitable conditions on
l, — 0. Now, the reversed order xz—divcrgcncc can be written as the square
of the Ly-norm of
fa =10,

which was shown by Beirlant and Gyorfi (1994) to be the best among p'®
powers of L,-norms in terms of Pitman efficiency. All these statistics can
be interpreted as reversed order divergences, and under the null-hypothesis
these statistics are of order n~1/2, Dy, (pen, f1o) is the reversed order relative
entropy restricted to the partition, and is, because of its connection to the
likelihood ratio test, perhaps more common in statistics than the relative
entropy D, (po, tn) considered here. Because of the possible empty cells
the divergence D, (o, p,) can be infinite with positive probability. We
can substitute ji, by the distribution estimate p); derived from the density
estimate f,, thus

m

- u j0(An ;)

5] 1 L —_ (A, ;) In ; ?
n(Ho, piy,) j2=:1’ 0(An,;) Pn(Apn;)(1 = an) + hpay,

from which the test statistic can be derived

Ny

T:: = Z ,”-O(An,j) 111(}‘-11(Ar|.j)(1 = “'n) F hnan)-

i=1

T is called cross-entropy by some authors (cf. Parzen (1991)). This moti-
vates us to propose another goodness-of-fit test for testing Hy : u = pg versus
H) : p# po, as an alternative to the classical likelihood ratio test mentioned
above. This test is based on Dy, (p, p1},) and accepts if D, (po, %) < r for
some 7 > 0. If d = 1 and g is uniform on [0,1] then

Dalpo, g} =T + 1n k.
It is easy to see that

D(fafn) _ED(f:fn) = :F: —ET’;:,
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so because of Theorem 1 the random part of the test statistic T, is of
order n~1hy, /2 These results show the need for further research on tests
based on relative entropy. Also the validity of Theorem 1 in any dimension
makes it possible to consider as null hypothesis any density f with finite
relative entropy with respect to some density g. This is important since the
reduction of the null hypothesis to the uniform density is not possible in
higher dimensions.

Remark 4. From the proof of Theorem 1 (cf. (3) and (4)) it will appear
that D(f, fn)—ED(f, f.) has the same asymptotic distribution as I};— E(I)

where

0 “(An.])(.“‘ﬂ(Aﬂ,)) (An‘j))2
- Z (11(Anj) + 1/n)? '

Notice that I* is again of the type of a reversed order x*-divergence. Heuris-
tically, the result of Theorem 1 can now be explained as follows. Invoking
the limit theory of chi-square statistics, it can be argued that under suitable

technical conditions, as n — oo and m, remains fixed, the statistic

o IL(A:! J) ""ﬂ(A" J) “(A”‘j))2
2l = E : ' :
ni, =n : ’L(An,] 1/71)2

will have as asymptotic distribution the distribution of a chi-square random

variable Y with m, — 1 degrees of freedom. Now, letting m, = 1/h, tend

to infinity, we have that

Y - nln h'n. D
——= = =(Y = 1/h,) — N(0,1).
oI 5 ( ey (0,1)
So intuitively it should be clear that, after it Las been properly centered and

normalized, the random variable

\/]*2" It =ny/2ha I = I,

will asymptotically have a standard normal distribution as n — oo and
m, — oo under suitable teclmical conditions. Theorem 1 makes these

conditions and this statement precise.
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Proof of Theorem 1. From the finiteness of D(f, g) and the definition of
fn it follows that D(f, f,) and ED(f, f,) are finite and that, denoting by A
the Lebesgue measure on IR?, we have

= z)In f(=)
DU = [ e (G T ea) e

= D(f,0) = In(an) = 3 #(An) (1 + ntn(Any)),
g=1

and

D(f’ f") i ED(fafu) = - %p(}lnj) (ln (M)

j=1 Cnj

—El (1 B n,u,n(A,,j)))
Cnj

where {c,;} is any sequence of positive numbers. With the intention of using

a Taylor expansion of the logarithms at the point 1, we put

cni = 1+nu(An;)
A Y e !
and R,; = (pen(Anj) p(A,,]))‘ 1<y <my,
Cnj

Then the arguments of the logaritluns in the above expression of D(f, f,) —
ED(f, fu) are equal to (1 + R,;), and we can approximate the difference
between In(1+4 R,;) and its expectation by a linear combination of R, ; and
HZ.

njy*
More precisely, let

my R2.
n3

= 3

o ()

T =ny/2hy Z 1(Anj)
J=1

dn = —nv2h, Zﬂ(AnJ) lll(l i R’U)
i=1

my

andPRoE = AT Z p{Anj) R je
i=1
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We can write

nV2ha(D(f, fa) = ED(f,fn)) = Ju—EJ,
= Jo+K,—-I,-E(J,+ K, - IL,)
-K, + EK,
+1,, — EI,.

For this decomposition it is good to have the following two lemmas, the

proofs of which are deferred to the next section:
Lemma 2 Under the conditions of Theorem 1 we have
lim E(K,)?=0.
n—oo
Lemma 3 Under the conditions of Theorem I we have
im E(J,+ K, - I, = BE(J, + K, — I,.))* = 0.
n—oo

According to these lemmas the random variables K,, — EK,, and J, +
K, — I, — E(J, + K, — I,,) tend to zero in Ly. In order to prove Theorem

1 it remains to show that
B .
I, - E(I,) — N(0,0%). (4)

The basic technique applied is Poissonization: let N, be a Poisson (n) ran-
dom variable independent of {X;}. The empirical measure for Poisson sam-
ple size N, is defined as follows:

#{i: X;i € A,1 <1< Ny}

n

1N, (A) =
The Poisson approximation technique is formulated by a result of Beirlant,
Gyorfi, Lugosi (1994, Proposition): Let

m,y

1o =3 ouilptn, (Ani));
j=1
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where g,,; (n,7 > 1) are real measurable functions with
E (gnj(pn,(Anj))) =0 (n,5 > 1).

Assume that, as n tends to infinity, we have for any (t,v) € IR?,

L= . N,—n i
E (cxp (ztIu + v 7 )) S U

Then

mMp

D
Zgr:j(ﬂ'n(Anj)) — N(0102)'
Jj=l1
Looking at the expression of I, it appears that the functions g,; could be

chosen as quadratic functions to get the asymptotic distribution of I,, from
the above Proposition. More precisely, putting for 7 > 1

fo— " o dng)
gns (@) = 1/ 2y 2(n:(A,.,) i 1)2 ((m = 1(40))* = E(n, (Anj) = '“(A“J'))z) ’

we have .
Zg::j(ﬂ-n(Anj)) =1, - E(K)v
j=1

where

Y/ 2hnzn = ’t(A“J) ).(‘U'N (Al’l]) ( nj))(z'
2(npu(An;) + 1)

Now we use the following lemma the proof of which is also given in the next

section.

Lemma 4 Under the conditions of Theorem 1 we have

lim (E(T,) — E(I,)) = 0.

n—00

According to the Proposition in Beirlant, Gyorfi and Lugosi (1994) and

Lemma 3, it now suffices to show that

tlie 2y N(0, 262 +v?), (5)

i

Sn = tfu U
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(t,v) € IR?, in order that I,,— E(I,) has an asymptotic N (0, o?) distribution.
We prove this fact, using Lyapunov’s central limit thcorem. Note that

My,

Var(S,) =Y t*Var(gnj(sn, (Anj)))

j=1

Mp

+2t-v‘/1_zz E (an(HN,. (Anj))(nuN.‘(Anj) ¥ U(Aﬂj))) I v,
i=1

We wish to show that Var(S,) — t202 + v2. First we show that

My

Var(l,) = 3 Var(gaj(pn, (Anj))) — o (6)
=1

We have

(n2u(Anj))?
"4(np(An;) + 1)1

XLE (i, (Ang) — 5(Ang)" = (BGen (An) = #(A4ni))?) ]

4
o () N (An)?
"\ np(Anj) +1 "2 (np(Anj) +1)*

Var (.quj(nuN.. (An_r))) = ﬂ22h

Therefore
- nh,z, (x) )4 - ("I‘L(Am')):l
= — R d Ny )
Var(I,) [Htf‘ (”h"z"(x) = v(dz)+ I ; YET R 1)
where
- (.’E) - !L(Aﬂ(x))
% v(An(z))
Let d
o 5
z(z) = du(I)'

The above integral is lower bounded by

1 (____nh,,z,!(:n) )4 v(dz)
,/;li:" {z(2)>0} nhy,zplz) + 1

which tends to »#(S,) by the dominated convergence theorem. Since

s ('n,,u(,fl,,‘))3 e i n(Anj) _ gl
> g <=y = ~=iset 0,

ln = .
22 (u(A) + )T T 2 [ 20s(Ang) +1)2
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it follows that

l’ilnligg'Var(fn) > v(Sy).
Now
m 4 m
2 11 Anj) N nu(Anj)
I i) < J P i 1
l"; (nu(An_,') +1 - L"J._; np(Ayj) + 1

nhy,z(x)
K _[;Rd Yea()>0) nhpz,(z) + 1 FED:

If one denotes the above integral by D,, one can prove in the same way as

in the proof of Lemma 2 that

En = Dn == 0,
where
nh, z(x)
= . -
Dn [md Lzu(@>0) nhyz(z) + 1 e
nh,z(z)
—_— ] S
/;Ra nhyz(z) + 1 pldes = ula
Thus

lim sup Var(.iﬂ) < v(Sy);

n—oo
which proves (6). To complete the asymptotics for Var(S,) it remains to
show that

M

\/‘Hz E (gnj(”N“(Anj))(.MN,. (Aﬂj) i I"(Auj))) — (.
j=1
This follows immediately from the fact that
1(An;)
B (v, (Anj) = n(4nj))* = 202,

Hence Var(S,) — t20? + v?. To finish the proof of (5), by Lyapunov’s
central limit theorem it suffices to show that

my my

Z E |9nj(.“'N.. (Anj))|3 + sl E E l”l-"N,. (Anj) = "N(Anj)la — 0.
=1 j=1
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Using moment properties of Poisson variables one gets
—3/2 - 3 1
n=3/ ng E |npn, (Anj) — np(Anj)|” < \/5151?23;" \ 1(Anj) + %

and

m Mp 3
= {1 A3 L )3/2 n’u(Ay;)
;E [ngJ(I Nn (Anj))l S (2’I n) z (2(71”(14;11) i. 1)2)

x %((numn,-n + (a(Aag))? + s Any)

& 160 Ry D

It is easy to sce that both terms tend to zero. So S, is asymptotically

N(0,t26% 4 v?) and the conclusion follows.

IV Proofs of the lemmas

Proof of Lemma 1. As shown in the proof of Theorem 1, we have

D(f!fﬂ) =. D(fh‘]) = h]-("1'1) _f(Xls"'aXn)

with £ defined on IR" by

My

'f(afl,"',ﬂ?n) = Zfl(Auj)lll(l ‘+NJ)
Jj=1

where

n
N; =Y. la,,lzi):
i=1

Suppose that z; belongs to A, and that ! belongs to App with k # k.

We have

N
6(:[31“",33;,"'11:![)—é(:ﬂl’”";ﬂi"'.’mu) = ;I(A"k)lll(Nk—f-l)

N + 2)

+.“’(Auk') In (Nk' i 1
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with 1 < Ny <nand0< Ny <n-—1.
Therefore

I‘f(xl"' '53:‘1 K ,:E,,) == ‘E(Ily" Tyt "’xﬂ)l < 12;"("§l “(Aﬂj) In2.

We are now in a position to apply Mc Diarmid’s methodology to the func-
tion £ (see Devroye (1991), Theorem 2 and 3). The two inequalitics follow.

Proof of Lemma 2. Applying the fact that

My

K, = n2h, Z('”'"(A"J') — #(An;)) =0
=1

it is enough to prove that

lim E(K, - K,)?=0.

n—»oc0

For 7 # k, we have

B((pn(Ani) = 1(An) i (Ank) = 1 A)) = = 1Ay e An)

thus

nu(A,U) +1

2
E(K, - K,)? = (\/%nZ (,t,,(A,l,-)ﬂ;(Anj)))

< nlan, ;ﬁ; (1 (Anj) = 1 Any))?
= zh,.}: — T = a(A)
< 2C.,
with .
Co = h,,j; mi-“‘)—m [, #ultnza (@) v(do).
and
$(t) = (t+t1)2 g% if > 0.
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If z € S, then, almost surely, z,(z) tends to z(z) > 0 and ¢(nhnzn(z))
tends to 0.
Ifz e IRY— S, then z is in the interior of {z : f(z) = 0}. Thus, for n large
enough, z,(z) = 0 and ¢(nh,2,(z)) = 0. As v(S, — S,) =0, the dominated
convergence theorem implies that C, tends to 0. This ends the proof of
Lemma 2.

Proof of Lemma 3. First note that

an = n(pn(Anj) — f‘(Anj))/(nlu(Anj) +1)
is a random variable taking its values in [6,, 5:1-] with

—n e =11 An;)

] e e LA O
< n+l1 =™ np(A,j)+1"

and

f<dh < ——2 g
= M7 ap(Anj)+1 7

Thus one can write

Ju =t Ku == In - E(Jn +Kn - In)

1119

= nv/2h Z jl(Anj)[‘P(an) & E(‘P(Rﬂi)]
=1

where ¢ : (=1, +00) — IR is defined by
2:‘2
p(z) = —log(l+z)+z — Tk

The function g is strictly decreasing and satisfies ¢(0) = 0. Let a > 1/3 and
B = —1+1/3a such that —n/(n + 1) < 8. We have

|‘P(an)| < a|an]3 if Rpj2 B
and |V’(Ruj)| < IO!](”I‘(AHJ) +1) if Ry; <0.

For j € {1,---,my}, I,; is a strictly increasing function of pn(Anj). Denote
its inverse by It J-'. Using Hoeffding’s formula (Dharmadhikari and Joag-dev,
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1987, p 148) we get

COU(‘P(an)a{p(Rnk)) = j o {P(‘P(Ruj) < z,9(Ru) < y)
— Pp(Rnj) < z)P(p(Ruk) < y)} dxdy

S AP () 2 BEH 07 @), Ant) 2 R 0™ 0))
= P (ua(A4nj) 2 By} (07" @) P pn(An) 2 Rl (07 () )} dady.

This last quantity is non-positive for j # k by a result of Mallows (1968) on
multinomial probabilities. Therefore for j # k

E ([p(Rn;) = E(p(Rnj)lp(Rur) = E(p(Rur))]) 0.

Thus
E(Ju 2P Kn - In T E(Jn aF Kn . In))2
S "'22’5:1 Z ,“(AllJ)ZE[SO(RHJ) e E(W(Rn])]g
i=1
< n?2n, Z ;L(A"j)QE[w(R,,j)Q]
j=1
< n?2h, E p(A,tj)zazE[Rﬁj]
=
+n22h, Z}L ,,j)2 (log(npu(Ay;) + 1))2 P(l.; < P)
=1
4L, i) + 25(np(An;))? + 15(np(An;))3
< 22’1! " 2"”’ J)+ J 7]
S § 4 (npu(Any) + 1)°
+n’2h, z F‘(An.: (log(np(Anj) + 1)) exp {—"ﬁ #‘(Anj)}
J =1
A
. oo n(Anj)
S Z < (oa(Ang) + 12
2
+2 ” [Rhpza(x)log(nhnz,(x) + 1)) 2ezp {-—nhﬂzﬂ(z)-ﬂtz—} v(dz).
z(2)>0
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In the next to last inequality Bennett’s inequality (1962) was applied to the
zero mean random variables

(14, (X0) = u(Any))

1<i<n

as in Lemma 3 of Gyorfi and van der Meulen (1987). The first term of the
right hand side of the last inequality tends to 0 according to the proof of
Lemma 2. For the second term, the integrand tends to 0 in a dominated
way, so it tends to 0, too.

Proof of Lemma 4.

B "2’*"2"2(”2 “n,)+)1)2 (B (v (Ang) = 1(Ans))?)

S E((i-’*n(Anj) = “(Anj))z)]

hence

My

E(T,) - E(I,) = Z (n44(Anj))? VZhn

) <
2(np(Ang) + 1)2' #An) S =5

— 0.
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