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a b s t r a c t

In this paper, we propose an arbitrary order differentiator with time-varying homogeneity degree (ex-
ponent) and we establish its convergence properties and its robustness with respect to measurement
noise, perturbations and the variation of the exponent. For this we use a unified Lyapunov function
approach. We also propose two possible applications for such a differentiator. One provides a variation
of the exponents that ensures a differentiator converging in fixed and finite times. The other that extends
our previous results, aims at improving the behavior of the differentiator with respect to measurement
noise, for which a noise-driven variation of the exponents is given. The results are illustrated using
simulations for a second order differentiator.

© 2022 Elsevier Ltd. All rights reserved.
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1. Introduction

Noisy signal differentiation is a very important and challenging
roblem, having a large range of applications (electric machines,
neumatic cylinders, drones, etc.). Sensors of such applications
re subject to electromagnetic compatibility, quantification prob-
ems and so on, then sensors measurements are very noisy in a
arge bandwidth. Many theoretical and applied papers are dedi-
ated to this topic. Linear differentiators are the most common so-
utions employed so far, among them high-gain observers (HGO)
ave received recently a lot of attention (Prasov & Khalil, 2013;
asiljevic & Khalil, 2008) (see also Khalil and Praly (2014)). Such
ifferentiators are able to estimate asymptotically exactly only
olynomial signals, i.e. those for which the nth derivative (for
ome n ∈ N) vanishes, a rather thin class of signals. The discontin-
ous Levant’s differentiator (Levant, 1998, 2003, 2005) is able to
stimate exactly and in finite-time the derivatives of a signal with
ounded nth derivative. Further developments of discontinuous

differentiators are pursued by Bartolini et al. (2000), Bejarano and
Fridman (2010), Floquet and Barbot (2007).

Recently, a whole family of arbitrary order homogeneous dif-
erentiators parametrized by its homogeneity degree d, and that
ncludes both the HGO (d = 0) and Levant’s (d = −1) differ-
ntiators as particular cases, has been proposed in Cruz-Zavala

✩ The material in this paper was not presented at any conference. This paper
was recommended for publication in revised form by Associate Editor Tianshi
Chen under the direction of Editor Torsten Söderström.
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and Moreno (2016, 2019), Sanchez et al. (2018) (see also the
alternative approach given in Lopez-Ramirez et al. (2018) for
values of d close to d = 0). These encompass also previous
lgorithms as Andrieu et al. (2009), Efimov and Fridman (2011),
erruquetti et al. (2008). When d ̸= −1 they are also able to
stimate asymptotically exactly only polynomial signals.
Since no differentiator is able to estimate exactly the deriva-

ives of a signal perturbed by arbitrary noise, the estimation
rror of the derivatives of any differentiator depends then on
he size of the n−th derivative of the signal to be differentiated,
n the size of the additive noise affecting it and the gains of
he differentiator. For a given signal and noise these two effects
epend (for fixed gains) on the homogeneity degree d of the
ifferentiator. Since for the discontinuous differentiator the n−th
erivative does not have any effect on the estimation, it is clear
by continuity reasons) that for slightly noisy signals it is better
o maintain the homogeneity degree near d = −1 to minimize
he differentiation error. For significantly noisy signals it may be
etter to select a different value of d, as e.g. d = 0. Motivated by
his observation, recently in Ghanes et al. (2017a, 2017b, 2020)
he authors proposed to modify on-line the homogeneity degree
(d ∈ (−1, 0)) of a second-order differentiator to improve the
erformance, i.e. to reduce the differentiation error of the first
erivative of the signal, according to an estimation of the size of
he noise. This approach is an alternative to many other attempts
o reduce the effect of noise, as those proposed in Ball and Khalil
2011) for the HGO or in Levant and Yu (2018), Jbara et al. (2021)
or the family of homogeneous differentiators, and allows to com-
ine advantages of both HGO and homogeneous differentiators. In

he absence of noise, fixed-time differentiators (d > 0) are also
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roposed to estimate exactly the derivatives of a signal in a finite-
ime that is independent of the initial condition (Angulo, Moreno,
t al., 2013; Cruz-Zavala et al., 2011; Lopez-Ramirez et al., 2018;
olyakov, 2012).
In this paper, our main contributions in comparison to the

xisting results are to propose an arbitrary order homogeneous
ifferentiator with time-varying homogeneity degree d in order:

• To consider a continuous change in d with positive (d > 0)
and negative (d ∈ (−1, 0)) values. This allows integrating two
differentiator’s objectives: fixed-time convergence (independent
of the initial condition) and less sensibility to noise by extending
the idea of Ghanes et al. (2017a, 2017b, 2020) to an arbitrary
order differentiator.

• To prove its convergence by analyzing the effects of noise,
of the size of the nth derivative of the signal to be differentiated,
and of the d variation in the asymptotic behavior of the estima-
tion error. For this we use the Lyapunov framework developed
in Cruz-Zavala and Moreno (2016, 2019), Sanchez et al. (2018) to
analyze the effect of the time-varying homogeneity degree d.

The remainder of the paper is organized as follows. In Sec-
tion 2 we propose an arbitrary order differentiator with varying
homogeneity degree. In Section 3, we present the convergence
and robustness properties of the proposed differentiator. Simu-
lation results for a second order differentiator (n = 3) are given in
Section 4. In Section 5 we provide all statements proofs. Section 6
concludes the paper and gives some perspectives.

2. Proposed arbitrary order differentiator with varying expo-
nents

Let the input signal f (t) to the differentiator be a Lebesgue-
measurable function defined on [0, ∞). The signal f (t) is assumed
to be decomposed as f (t) = f0(t) + ν(t), where the first term is
the n-times differentiable unknown base signal f0(t), to be dif-
ferentiated, and the second term ν(t) corresponds to a uniformly
bounded Lebesgue-measurable noise signal.

Assumption 1. There exist constants ∆ > 0 and N > 0 such
that, ∀ t ≥ 0,

⏐⏐⏐f (n)
0 (t)

⏐⏐⏐ ≤ ∆ and |ν (t)| ≤ N .

To estimate the time derivatives f (i)0 (t), i = 1, . . . , n−1, of the
base signal we consider the following family of arbitrary order
homogeneous differentiators

˙̂xi = −kiLi
⌈
x̂1 − f

⌋ 1−(n−i−1)d
1−(n−1)d + x̂i+1 , i = {1, ., n − 1}

... (1)
˙̂
n = −knLn

⌈
x̂1 − f

⌋ 1+d
1−(n−1)d ,

here the function ⌈x⌋p corresponds to a signed power, i.e. ⌈x⌋p =

x|p sign (x). L and ki are positive constants, selected to cancel
xactly the perturbation for d = −1, i.e. kn Ln > ∆, and ki
re chosen such that the Laplace characteristic polynomial sn −
n
i=1 ki s

i−1
= 0 is Hurwitz. d is the homogeneity degree of

ystem (1) with the following assumption

ssumption 2. d : R+ →
[
−1 , 1

n−1

)
is a continuous function

hat is piecewise differentiable and there exists a constant D > 0
such that, ∀ t ≥ 0, |ḋ(t)| ≤ D in the meaning of Dini derivatives.

Convergence of the differentiator means that the differentia-
tion errors, defined as

e t ≜ x̂ t − f (i−1) t , i = 1, . . . , n , (2)
i ( ) i ( ) 0 ( ) a

2

asymptotically converge to zero. Scaling these differentiation er-
rors (2) as z1 =

e1
1 , . . . , zi =

ei
Li−1ki−1

, we can write the differen-
iation error dynamics (2) as

ż i = −Lk̃i

(
⌈z1 − ν⌋

ri+1
r1 − zi+1

)
, i = 1, . . . , n − 1

... (3)

żn = −Lk̃n ⌈z1 − ν⌋

rn+1
r1 −

f (n)
0 (t)

kn−1Ln−1 ,

where for i = 1, . . . , n, k̃i =
ki

ki−1
, k0 = 1. System (3), when

f (n)
0 (t) ≡ 0 and ν = 0, is r-homogeneous (Bacciotti & Rosier,
2005; Bernuau et al., 2014; Bhat & Bernstein, 2005; Cruz-Zavala
& Moreno, 2019; Levant, 2005; Levant & Livne, 2016; Lopez-
Ramirez et al., 2018; Polyakov & Fridman, 2014; Sanchez et al.,
2018) with homogeneity weights ri = 1−(n − i) d , i = 1, . . . , n ,
and homogeneity degree −1 ≤ d < 1

n−1 . We also introduce
rn+1 = 1 + d, and r0 = 1 − n d.

Usually, the value of d is chosen to be a constant in the interval
d ∈

[
−1, 1

n−1

)
. For d = 0 (1) corresponds to a linear (High-Gain)

differentiator (Vasiljevic & Khalil, 2008). When d = −1 we obtain
the arbitrary order Exact and Uniform Levant’s Differentiator of
arbitrary order (Levant, 2003, 2005). In this latter case system
(1) has a discontinuous right-hand side, and their solutions are
understood in the sense of Filippov (1988).

In this paper, we consider a continuous change of d (As-
sumption 2) with positive and negative values. There are several
possible applications of varying d. Hereafter we explore two of
them. When d > 0, we ensure a fixed-time differentiator con-
vergence (see Section 2.1) while for d ∈ (−1, 0), we provide an
fficient balance between the arbitrary order Exact and Uniform
evant’s Differentiator (Levant, 2003, 2005) and the linear (High-
ain) differentiator (Vasiljevic & Khalil, 2008) thanks to the noise
riven d (see Section 2.2). Moreover, we establish the conver-

gence properties of the differentiator (1) with varying exponent
d.

2.1. Fixed-time differentiator

Let us consider
(
ν (t) , f (n)

0 (t)
)

≡ 0 for clarity in the presenta-
tion. For constant d < 0, it follows from (19) that z (t) converges
to zero in a finite-time, upper bounded by T (z0) =

M
Lκ ∥z0∥−d

r . It
s also clear from the previous expression that the convergence
ime T (z0) grows unboundedly with ∥z0∥r. On the other side, for
onstant d > 0, it follows from (20) that z (t) converges to zero
nly asymptotically. However, from (20) we can obtain an upper
ound Tϵ (z0) of the convergence time from an initial condition
0 to the homogeneous ball Nϵ = {z ∈ Rn

| ∥z∥r ≤ ϵ} centered at

= 0, given by Tϵ (z0) =

(
M
ϵ ∥z0∥r

)d
−1

Lκ∥z0∥
d
r

. Since lim∥z0∥→∞ Tϵ (z0) =

Md

ϵdLκ
is a constant, we conclude that convergence to Nϵ is in fixed-

ime, that is, any neighborhood of the origin will be attained in
finite-time independent of the initial condition. It is clear that
ombining these two properties, i.e. first using d > 0 and then
< 0, leads to a differentiator converging to z = 0 in fixed-time.
he main result of Angulo, Fridman, et al. (2013) is precisely the
se of a switching strategy between two values of d, first d > 0
nd then d = −1, to build such a differentiator. Our results allow
s to use a continuous change in d to obtain the same result, for
rbitrary positive and negative homogeneity degrees. Although
here are many possible strategies, as illustration we present just
simple one.
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roposition 1. Select two values 0 < d0 < 1
n−1 and −1 ≤ df < 0,

and a desired fixed-time Tf > 0. Then, by considering the continuous
signal

d (t) =

⎧⎪⎨⎪⎩
d0 0 ≤ t ≤

1
3Tf

3(df −d0)
Tf

t + 2d0 − df 1
3Tf ≤ t ≤

2
3Tf

df 2
3Tf ≤ t ≤ Tf ,

(4)

verifying Assumption 2, the differentiator (1) is a fixed-time differ-
entiator for N = 0 and ∆ = 0. When df = −1 convergence to zero
can be also achieved for ∆ ̸= 0.

The proof is given in Section 5.

2.2. Noise driven time-varying d

In the works (Ghanes et al., 2017a, 2017b, 2020) a low-order
differentiator with varying exponent has been shown to improve
the behavior under noise and perturbation with respect to both,
a linear and Levant’s differentiator. Here, we propose an arbitrary
order differentiator, with a time-varying exponent d in the inter-
val d ∈ [−1, 0]. The value of d is determined on-line according
to the magnitude of the high-frequency components of the noise
ν(t), denoted by

⏐⏐fmhf (t)
⏐⏐. fmhf (t) is determined by passing

he signal f to be differentiated by a Butterworth fourth-order
high-pass filter1 as follows

F (s) = L (f (t)) , fmhf (t) = L−1 (Fmhf (s)
)

, s̃ =
s

ωcut

mhf (s) =
s̃4(

s̃2 + 0.7654s̃ + 1
) (

s̃2 + 1.8478s̃ + 1
)F (s) , (5)

here L represents the Laplace transform and ωcut > 0. The
ifferentiator is given by (1), where the actual value of d is
alculated as

˙̂
n+1 (t) = −τ

(
x̂n+1 (t) −

⏐⏐fmhf (t)
⏐⏐) (6)

d (t) =
−1

1 + µ
⏐⏐x̂n+1 (t)

⏐⏐ ,

where τ > 0, µ > 0 are constants. In the absence of noise⏐⏐fmhf (t)
⏐⏐ = 0, so that x̂n+1 (t) = 0, d becomes d (t) = −1. In this

case we obtain Levant’s exact differentiator. In presence of noise,⏐⏐fmhf (t)
⏐⏐ ̸= 0 and x̂n+1 (t) ̸= 0, so that d (t) moves towards 0.

For a large value of
⏐⏐fmhf (t)

⏐⏐ a differentiator close to the linear
one is attained. The parameters of (1), the filter (5) and (6) are
selected as follows: (i) for kn and L, see just after (1); (ii) Since
the dynamics of d is given by

ḋ = τ
µ
⌈
x̂n+1 (t)

⌋0 (⏐⏐fmhf (t)
⏐⏐− x̂n+1 (t)

)(
1 + µ x̂n+1

)2 , (7)

and its bounds D must be largely smaller than a fixed L according
to (22), consequently τ is chosen largely smaller than L, i.e., τ ≪
L. Thus, x̂n+1 behaves as a low pass filter of

⏐⏐fmhf (t)
⏐⏐. (iii) µ is

chosen large (resp. small) to shift the behavior of the differentia-
tor towards the linear (respectively, the sliding mode) solution.
(iv) The cutoff frequency ωcut of the Butterworth fourth-order
high-pass filter is chosen larger than the bandwidth of the signal
f0 (t), in order to achieve a separation between noise and signal.
Note that in the implementations in Ghanes et al. (2017a, 2017b,
2020) a parameter different from d was used. The results are
equivalent, since the two parameters are related by α =

1−(n−2) d
1−(n−1) d .

1 A 4th-order Butterworth filter is chosen as a trade-off between ideal
haracteristics and implementation complexity.
 g

3

3. Convergence properties of the proposed observer

The following Theorem is the main result of the paper. It
shows that a slowly varying d does not destroy the (local) con-
vergence of the differentiator, but also that the effect of a time-
varying d is quite different for d > 0 and for d < 0.

Theorem 1. Suppose that Assumptions 1 and 2 are satisfied. Then,
for ϵ1, ϵ2, ϵ > 0 as small as possible, the differentiator (1) with
time-varying degree of homogeneity, has the following properties.

(1) For 0< ϵ1 ≤ d (t) ≤
1

n−1−ϵ2, the error dynamics (3) is
Globally Input-to-State Stable (GISS), i.e. for all initial condition z0 ∈

Rn, there exist KL∞ function β and a K∞ function γ such that the
following holds

∥z (t)∥r ≤ β (∥z0∥r , t) + γ (ϱ (∆, N, D)) , (8)

for some continuous function ϱ : R3
+

→ R+, ϱ (0) = 0.
(2) For −1 < d (t) ≤ −ϵ < 0, the error dynamics (3) is Locally

Input-to-State Stable (LISS) i.e. for all initial conditions ∥z0∥r ≤ Z0,
the following holds

∥z (t)∥r ≤ βD (∥z0∥r , t) + γD (ϱ (∆, N)) , (9)

for some KL function βD and a K∞ function γD and a continuous
function ϱ : R2

+
→ R+, with ϱ (0) = 0. Moreover, Z0 → ∞ as

D → 0.

The proof is given in Section 5 using strong Lyapunov func-
tions.2 However, since the time varying homogeneity degree
differentiator is not homogeneous, bounds for the trajectories, as
given by (19)–(21) are, in general, no longer valid. Nevertheless,
it is importance to mention two results:

• for d < 0, when N = ∆ = 0, the convergence to z = 0 can
be bounded by (19) with d = −ϵ < 0, when d (t) ≤ −ϵ for all
times (see the end of Section 5.1.6-b)). Moreover, convergence
for time-varying d < 0 cannot be longer assured to be global,
and the attraction region is smaller the larger is ḋ (see (16) and
Section 5.1.6-b)).

• for d > 0 the global boundedness of the trajectories is
assured for any size of ḋ, but convergence to z = 0 is not
guaranteed, even when N = ∆ = 0. For convergence to z = 0, it
is necessary in this case that d (t) converges to a constant value
(see (16), (20) and Section 5.1.6-(a)).

Remark 1. a- For D = 0, ∆ = 0, N = 0, (8) tends to zero when
t → +∞, asymptotically for d ∈

(
0, 1

n−1

)
and in finite-time for

d ∈ (−1, 0).
b- For D = 0, ∆ = 0, N = 0 and d = 0 the convergence to

zero of (8) is exponential (Khalil, 2002).
c- For D = 0, ∆ ̸= 0, N = 0 and d = −1 the convergence to

zero of (8) is in finite-time (Levant, 2003).

4. Simulation results

To show the effectiveness of the proposed differentiator with
varying gains, a simulation study is performed. To estimate the
first and second order derivatives of a noisy signal, three different
second-order differentiators (1) (with n = 3) are designed for
comparison: (i) a linear differentiator with constant d = 0; (ii)
discontinuous Levant’s exact differentiator with constant d =

1; and (iii) the proposed varying exponent differentiator, with
. To illustrate in one simulation the two possible applications
resented in Sections 2.1 and 2.2, during the first 6 seconds,

2 Strong Lyapunov functions allow to prove asymptotic uniform conver-
ences.
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.e. for 0 ≤ t ≤ 6 of the simulation the differentiator with time-
arying d given in Proposition 1, with d0 =

1
3 and df = −1 and

nsuring a fixed-time convergence in Tf = 3s, is implemented
in the absence of noise. For t ≥ 6 the varying differentiator of
Section 2.2, taking values in the interval d ∈ [−1, 0], and driven
y noise according to (5)–(6), has been implemented.
The base signal to be differentiated, f0 (t), is generated inte-

grating the model x1 = f0, ẋ1 = x2 = f (1)
0 , ẋ2 = x3 = f (2)

0 ,

ẋ3 = f (3)
0 = x(3)

1 in Matlab/Simulink, using Euler’s integration
method, and the initial conditions x (0) = [1, 2, 5] × 10−2. The
third-order derivative f (3)

0 = x(3)
1 was chosen, as a piecewise

bounded constant function, satisfying Assumption 1. It is given
by

f (3)
0 (t) =

⎧⎪⎪⎨⎪⎪⎩
0 for t ∈ [0, 6.5] ∪ [8.5, 11.5]

∪ [13.5, 16.5] ∪ [18.5, 20]
2 for t ∈ [6.5, 8.5] ∪ [11.5, 13.5]

∪ [16.5, 18.5] .

The additive noise ν (t) is white noise, with power 1 × 10−7,
ample time 1 × 10−4 [s] (fixed step-size), and starting seed for
andom number generator 23541. The noise is bounded, which
atisfies Assumption 1, and it has been multiplied by the function

(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 for t ∈ [0, 6] ∪ [7.25, 9] ∪ [10.25, 12]
∪ [13.25, 15] ∪ [16.25, 18]
∪ [19.25, 20]

1 for t ∈ [6, 7.25] ∪ [9, 10.25] ∪ [12, 13.25]
∪ [15, 16, 25] ∪ [18, 19, 25] .

or all differentiators the gains have been chosen to be the same,
ith the values k1 = k2 = k3 = 5, L = 60. For the noise-driven

varying differentiator the following parameters were chosen for
the filter: τ = 4, ωcut = 10, µ = 300. Two simulations
are conducted with two different initial conditions, in order to
illustrate the behavior of the proposed time-varying d according
to the fixed-time and the noise-driven cases.

4.1. Estimation of the second derivative

4.1.1. Small initial estimation errors
For the three differentiators, the initial conditions are chosen

null, i.e. x̂i (0) = 0, i = 1 − 3. For the system, they are selected
near those of the differentiators, i.e. f0(0) = x1(0) = 1, f (1)

0 (0) =

x2(0) = 2, f (2)
0 (0) = x3(0) = 3. Notice that for the sake of place,

only the results for the estimation of the second derivative are
presented.

Figs. 1 and 2 present the simulation results comparing the be-
havior of the three differentiators. The proposed exponent vary-
ing differentiator performs better than the linear and Levant’s
differentiator. This is particularly noticeable during the intervals
of time when noise is present (t ∈ [6, 7.25] ∪ [9, 10.25] ∪

[12, 13.25]∪[15, 16, 25]∪[18, 19, 25]) and/or f (3)
0 (t) is different

from zero (t ∈ [6.5, 8.5] ∪ [11.5, 13.5] ∪ [16.5, 18.5]). Fig. 3
hows the changes in d for the proposed differentiator. Note that,
he dynamics of d for t ≤ 3s (resp. for t ≥ 3s) is given by Eq. (4)
resp. by Eq. (6)), verifying Assumption 2. Notice that during the
ntervals when noise is present, d is near to 0, so that a linear-like
ehavior is obtained. In the intervals with f (3)

0 (t) different from
ero and no noise dmoves towards −1, so that a behavior close to
evant’s differentiator is obtained. This may explain the improved
erformance of the proposed differentiator.
4

Fig. 1. State f (2)0 = x3 and its estimate x̂3 .

Fig. 2. Estimation errors (e3 = x̂3 − f (2)0 = x̂3 − x3).

Fig. 3. Varying degree of homogeneity d.

4.1.2. Large initial estimation errors
The initial conditions for the three differentiators are chosen

as zero. For the system they are selected far from those of the
differentiators, i.e. f0 = 1000, f (1)

0 = 20000, f (2)
0 = 3000. As

expected, in Fig. 4 it can be seen that the proposed fixed-time
differentiator with time-varying d converges before the fixed time
Tf = 3s of Eq. (4), while the linear and the Levant’s (sliding mode)
differentiators have not converged before within this time.
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Fig. 4. Estimation errors (e3 = x̂3 − f (2)0 ).

4.2. Estimation of the first derivative

For the sake of space, the estimation results of the first deriva-
tive f (1)

0 (t) = x(1)1 (t) are not displayed. They are in concordance
to those of the second derivative, although, as expected, the first
derivative is less prone to noise.

5. Proof of the main results

5.1. Proof of Theorem 1

In the Cruz-Zavala and Moreno (2016), Sanchez et al. (2018)
(see also Cruz-Zavala and Moreno (2019) for the discontinuous
case in particular) it is shown that the function

V (z) =

n−1∑
j=1

βjZj
(
zj, zj+1

)
+ βn

1
p

|zn|p (10)

i (zi, zi+1) =
ri
p

|zi|
p
ri − zi ⌈zi+1⌋

p−ri
ri+1

+

(
p − ri

p

)
|zi+1|

p
ri+1 , (11)

s r−homogeneous of degree p, positive definite and radially
nbounded for any βi > 0, i = 1, . . . , n, i.e. there exist positive
onstants 0 < α1 ≤ α2 for each value of d such that

1 ∥z∥p
r ≤ V (z) ≤ α2 ∥z∥p

r . (12)

is differentiable for every −1 ≤ d < 1
n−1 if p ≥ 2n − 1. Note

hat V is a function of d through the homogeneity weights ri,
ppearing in the powers and in the coefficients. We assume that p
s independent of d. The bounds α1 and α2 of (12) can be selected
ndependent of d for any compact subinterval of −1 ≤ d < 1

n−1 .
he same is valid for all bounding constants in the sequel. It is also
hown in Cruz-Zavala and Moreno (2016), Sanchez et al. (2018)
hat the derivative of V along the trajectories of the error system
3) is given by

˙ = −LW (z) − ∂nV (z)
f (n)
0 (t)

kn−1Ln−1 + L R (z, ν) +
∂V (z)

∂d
ḋ , (13)

(z) =

n−1∑
j=1

k̃j∂jV (⌈z1⌋
rj+1
r1 − zj+1) + k̃n∂nV ⌈z1⌋

rn+1
r1 ,

(z, ν) =

n∑
k̃j∂jV

(
⌈z1⌋

rj+1
r1 − ⌈z1 − ν⌋

rj+1
r1

)
, (14)
j=1

5

where ∂jV stands for ∂jV =
∂V
∂zj

and

∂1V = β1

(
⌈z1⌋

p−r1
r1 − ⌈z2⌋

p−r1
r2

)
,

∂iV = −βi−1
p − ri−1

ri
|zi|

p−ri−1−ri
ri

(
zi−1 − ⌈zi⌋

ri−1
ri

)
+ βi

(
⌈zi⌋

p−ri
ri − ⌈zi+1⌋

p−ri
ri+1

)
,

∂nV = −βn−1 (p − rn−1) |zn|p−rn−1−1 (zn−1 − ⌈zn⌋rn−1
)

+ βn ⌈zn⌋p−1 .

In (13) the first term corresponds to the stabilizing effect of the
correction terms, the second and third terms are due to the nth
derivative f (n)

0 (t) and the noise ν, respectively. The last term is
new in this paper, and it reflects the effect of the variation of d
(the exponents) in the differentiator.

In Cruz-Zavala and Moreno (2016, 2019), Sanchez et al. (2018)
it is shown that for each value of −1 ≤ d ≤ 0 there exist gains
k̃i > 0 such that W (z) > 0 (W is positive definite), so that in the
absence of noise (ν ≡ 0), for constant d and if f (n)

0 (t) = 0, the
differentiator converges globally. The same procedure is valid for
the whole range −1 ≤ d < 1

n−1 .
Since V is r-homogeneous of degree p and W is r-

homogeneous of degree p + d, there exists a constant θ > 0
uch that W (z) ≥ θV

p+d
p (z). Since ∂jV is r-homogeneous of

degree p − rj there exist constants wj > 0 such that
⏐⏐∂jV (z)

⏐⏐ ≤

jV
p−rj
p (z).

5.1.1. The noise term R (z, ν)

The effect of the noise ν on V̇ is given by the term
(

⌈z1⌋
rj+1
r1 −

⌈z1 − ν⌋

rj+1
r1

)
in (14). When d ∈ (−1, 0] functions ⌈z1⌋

rj+1
r1 are

lobally Hölder (or Lipschitz for d = 0) continuous, and therefore

here exist constants hj > 0 such that
⏐⏐⏐⏐⌈z1⌋ rj+1

r1 − ⌈z1 − ν⌋

rj+1
r1

⏐⏐⏐⏐ ≤

hj |ν|

rj+1
r1 . When d ∈

(
0, 1

n−1

)
the ratios rj+1

r1
> 1 and functions

⌈z1⌋
rj+1
r1 are differentiable and locally (but not globally) Lipschitz

ontinuous. Using the mean-value theorem of differential calculus

e obtain ⌈z1⌋
rj+1
r1 − ⌈z1 − ν⌋

rj+1
r1 = −

rj+1
r1

|z1 − ξ |

rj+1
r1

−1
ν , ξ ∈

(0, ν) , and thus (using the classical generalized mean value
inequality)⏐⏐⏐⏐⌈z1⌋ rj+1

r1 − ⌈z1 − ν⌋

rj+1
r1

⏐⏐⏐⏐ ≤
rj+1

r1
αj

(
|ν|

rj+1
r1 +

h̃jV
rj+1−r1

p (z) |ν|

)
,

for some αj and h̃j. We conclude, that for some constants hj and
˜ j the following inequality is satisfied globally for any −1 ≤ d <
1

n−1

R (z, ν) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∑n
j=1 k̃jwjhj

(
V

p−rj
p (z) |ν|

rj+1
r1 +

h̃jV
p+rj+1−r1−rj

p (z) |ν|

)
, if d ∈

(
0, 1

n−1

)
∑n ˜

p−rj
p

rj+1
r1
j=0 kjwjhjV (z) |ν| , if d ≤ 0 .
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.1.2. The term ∂V (z)
∂d ḋ

To calculate ∂V (z)
∂d recall that d

dxa
x

= ax ln a if a > 0 (a ̸= 1)
nd ri = 1 − (n − i) d. A simple calculation shows that

∂V (z)
∂d

= V1 (z) + V2 (z) ,

here

1 (z) =

n−1∑
j=1

βj
(n − j)

p

(⏐⏐zj+1
⏐⏐ p
rj+1 −

⏐⏐zj⏐⏐ p
rj

)

2 (z) =

n−1∑
j=1

βj

(
(n − j)

rj

⏐⏐zj⏐⏐ p
rj ln

⏐⏐zj⏐⏐−(
p (n − j − 1) + 1

r2j+1

)
zj
⌈
zj+1

⌋ p−rj
rj+1 ln

⏐⏐zj+1
⏐⏐+

(n − j − 1)
(
p − rj

)
r2j+1

⏐⏐zj+1
⏐⏐ p
rj+1 ln

⏐⏐zj+1
⏐⏐) .

1 (z) and V2 (z) are continuous functions and they vanish at the
rigin, i.e. V1 (0) = 0 and V2 (0) = 0 (see Lemma 1 for the terms
ontaining the logarithms).
Since V1 (z) is r-homogeneous of the same degree as V (z),

there exists θ1 > 0 (independent of L) such that

V1 (z) ≤ θ1V (z) , ∀z.

The following result, useful in the sequel, allows us to conclude
that xα dominates xβ ln x near x = 0 if α < β , and near x → ∞

if α > β . Its proof is elementary.

Lemma 1. Supose that α > 0, β > 0 and x > 0. Then function
r (x) ≜ xβ ln x

xα has the following limits

lim
x→0+

r (x) = lim
x→0+

xβ−α ln x =

{
0 if β − α > 0
−∞ if β − α ≤ 0

,

lim
x→∞

r (x) = lim
x→∞

xβ−α ln x =

{
0 if β − α < 0
∞ if β − α ≥ 0

.

5.1.3. Global bound of V2 (z)
Although V2 (z) is not homogeneous, using Lemma 1, we can

obtain a global bound with two homogeneous functions.
Consider first the function

⏐⏐zj⏐⏐ p
rj ln

⏐⏐zj⏐⏐. It is possible to upper-
bound the function globally by⏐⏐⏐⏐|zj| p

rj ln |zj|
⏐⏐⏐⏐ ≤ γ1

⏐⏐zj⏐⏐ p−δ1
rj + γ2

⏐⏐zj⏐⏐ p+δ2
rj ,

∀zj ∈ R, δ1 > 0, δ2 > 0 ,

here δ1 and δ2 can be selected arbitrarily. The first term on the
ighthand side of the inequality is homogeneous of degree p− δ1
while the second term is homogeneous of degree p+δ2. Moreover,
using also Young’s inequality, we obtain the following inequality
∀
(
zj, zj+1

)
∈ R2

zj
⌈
zj+1

⌋ p−rj
rj+1 ln

⏐⏐zj+1
⏐⏐ ≤ γ1

(
rj

p − δ1

⏐⏐zj⏐⏐ p−δ1
rj +

p − rj − δ1

p − δ1

⏐⏐zj+1
⏐⏐ p−δ1

rj+1

)
+γ2

(
rj

p + δ2

⏐⏐zj⏐⏐ p+δ2
rj +

p − rj + δ2

p + δ2

⏐⏐zj+1
⏐⏐ p+δ2

rj+1

)
, ∀ p > δ1 > 0, δ2 > 0 .

It is important to note that γ1 and γ2 are independent of L and
an also be selected independent of d and j. This implies that
6

there exist constants θ2 > 0, θ3 > 0 (independent of L) such
hat ∀z ∈ Rn, p > δ1 > 0, δ2 > 0 , we have

|V2 (z)| ≤ θ2V
p−δ1

p (z) + θ3V
p+δ2

p (z) .

5.1.4. Global inequality for V̇
Using all previous bounds with Assumption 1 in the expression

(13), we obtain, when −1 < d < 1
n−1 , the following globally valid

inequality for V̇

V̇ ≤ −θLV
p+d
p (z) + ϑ

∆

Ln−1 V
p−1
p (z) +(

θ1V (z) + θ2V
p−δ1

p (z) + θ3V
p+δ2

p (z)
) ⏐⏐ḋ (t)

⏐⏐+
L

n∑
j=0

ϑjV
p−1+(n−j)d

p (z)N
1−(n−j−1)d
1−(n−1)d , (15)

ϑ0 = 0 if d /∈

(
0,

1
n − 1

)
,

Since p−1 ≥ p−1+(n − j) d for d ≤ 0 and p−1+(n − j) d ≥ p−1
for d > 0, for large values of z, i.e. V (z) > 1, V

p−1+(n−j)d
p (z) ≤

V
p+µ
p (z) for any j = 0, . . . , n and

µ =

{
−1 −1 < d ≤ 0
−1 + n d d > 0

.

Similarly, since δ2 > 0 > −δ1, for V (z) > 1 the term V
p+δ2

p

ominates. And therefore the inequality (15) becomes, for V (z) >
and any 0 < r < 1,

V̇ ≤ − rθLV
p+d
p (z) − (1 − r) θLV

p+d
p (z) + cPV

p+µ
p (z)

+ cdV
p+δ2

p (z)
⏐⏐ḋ (t)

⏐⏐ , (16)

where cP (∆, N, L) = ϑ ∆

Ln−1 + L
∑n

j=0 ϑjN
1−(n−j−1)d
1−(n−1)d ,

ϑ0 = 0 if d ≤ 0 , cd = θ1 + θ2 + θ3 . Note that p+d
p > µ for

ll −1 < d < 1
n−1 , and therefore the term (with coefficient cP )

due to noise and perturbation, is dominating near the origin, but
is dominated by the negative term far from it. Furthermore, and
since δ1 and δ2 can be selected arbitrarily close to zero, the term
due to ḋ is dominated by the negative term far from the origin
for d > 0 and near the origin for d < 0.

5.1.5. Constant d
In this case function f (V ) = − (1 − r) θLV

p+d
p + cPV

p+µ
p has

a root at V = V̄1 = 0 and a positive root given by V =

¯2 =

(
cP

(1−r)θL

) p
d−µ

. In the set Ξ =
{
z ∈ Rn

| V̄2 ≤ V (z)
}

the
differential inequality (16) becomes

V̇ ≤ −rθLV
p+d
p (z) . (17)

Trajectories starting in Ξ converge in finite-time to the sublevel
set ΩV̄2 =

{
z ∈ Rn

| V (z) ≤ V̄2
}
, which is positively invariant,

and remain there for all future times. Since trajectories remain
in ΩV̄2 , from (12) we conclude that z (t) is ultimately bounded
by

∥z (t)∥r ≤

(
V̄2

α1

) 1
p

=
1

α
1
p
1

(
cP

(1 − r) θL

) 1
d−µ

. (18)

To describe the evolution of the trajectories in Ξ , note that the
solution of (17) for d ̸= 0 is given by (we use the comparison
lemma (Khalil, 2002))
p

V−
d
p (z (t)) ≤

p
V−

d
p (z0) − rθLt.
−d −d
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g

or d < 0, V (z (t)) ≤

(
V−

d
p (z0) −

(−d)
p rθLt

) p
(−d)

. Using (12) and
18) we arrive at

z (t)∥r ≤

{(
M ∥z0∥−d

r − Lκt
) 1

(−d) if 0 ≤ t ≤
M∥z0∥

−d
r

Lκ

0 if t ≥
M∥z0∥

−d
r

Lκ

+

⎛⎝ϱ∆

∆

Ln
+ ϱN

n∑
j=1

N
1−(n−j−1)d
1−(n−1)d

⎞⎠ 1
1+d

, (19)

with κ =
(−d)

pα
−

d
p

1

rθ , M =

(
α2
α1

)−
d
p
. For d > 0, we get

V (z (t)) ≤
V (z0)(

1 +
d
p rθLV

d
p (z0) t

) p
d

,

nd the use of (12) and (18) leads to

z (t)∥r ≤
M ∥z0∥r(

1 + Lκ ∥z0∥d
r t
) 1

d

+

⎛⎝ϱ∆

∆

Ln
+ ϱN

n∑
j=0

N
1−(n−j−1)d
1−(n−1)d

⎞⎠ 1
1−(n−1)d

, (20)

with κ =
d
p rθα

d
p
1 , M =

(
α2
α1

) 1
p
. Similarly, for d = 0, solution of

17) is given by

(z (t)) ≤ V (z0) exp (−rθLt) ,

and this results in

∥z (t)∥r ≤ M ∥z0∥r exp (−Lκt) +

(
ϱ∆

∆

Ln
+ ϱNN

)
, (21)

with κ =
rθ
p , M =

(
α2
α1

) 1
p
. The results in (19), (20) and (21)

are inspired from those in Levant (2003, 2005) for d = −1
sing homogeneity properties, and for d ∈ [−1, 0] in Cruz-Zavala
nd Moreno (2016, 2019), Sanchez et al. (2018) by means of
yapunov functions. The proof in Cruz-Zavala and Moreno (2016),
anchez et al. (2018) is also applied for d ∈

(
0, 1

n−1

)
with slight

odifications.

.1.6. Time-varying d
We note that all constants α1, α2 and those in (15), θ, ϑ, θi, ϑj,

epend (continuously) on d. And they can be selected indepen-
ent of d in any compact subinterval of −1 ≤ d < 1

n−1 . In this
ubsection we consider that such a uniform (in d) bound is used.
Since the effect of ḋ in V , as seen in (16), is different for d > 0

han for d < 0, we consider here two scenarios:
(a) High Degree d (t) > 0
We consider the case that 1

n−1 > ϵ2 ≥ d (t) ≥ ϵ1 > 0,
with constant ϵi. Important here is that the negative term is
dominating for large values of z. Select δ2 = ϵ1/2 and define µ̄ =

ax {δ2, −1 + nd}. Then p+d > p+µ̄ ≥ p−1+(n − j) d ≥ p−1,
nd for large values of z, i.e. V (z) > 1,

˙ ≤ −rθLV
p+d
p (z) − (1 − r) θLV

p+d
p (z) + cV

p+µ̄
p (z) ,

here c = cP + cdD, according to Assumption 2. The same
analysis as in the previous section shows that the root V̄2 of
(V ) = − (1 − r) θLV

p+d
p + cV

p+µ̄
p is given by

= V̄2 =

(
c

) p
d−µ̄

.

(1 − r) θL

7

Since V̄2 depends on d, we obtain V̄2,max = maxd V̄2. Trajectories
starting in the set

Ξmax =
{
z ∈ Rn

| V̄2,max ≤ V (z)
}

,

converge in finite-time to the positively invariant sublevel set
ΩV̄2,max

, and remain there for all future times, i.e. ∥z (t)∥r ≤(
V̄2,max

α1

) 1
p
. In the set Ξmax the differential inequality becomes

V̇ ≤ −rθLV
p+d
p . Since d is time dependent, it is not possible

to solve this inequality by separation of variables. However, in
case V > 1, since d ≥ ϵ1 > 0 then V

p+d
p > V

p+ϵ1
p , and thus

˙ ≤ −rθLV
p+ϵ1

p is valid. In this case the evolution of trajectories
s thus given by (20), with d = ϵ1. In case V < 1, since 0 < d ≤

2 < 1
n−1 , then V

p+d
p > V

p+ϵ2
p , and thus V̇ ≤ −rθLV

p+ϵ2
p is valid.

In this case the evolution of trajectories is thus given by (20), with
d = ϵ2.

(b) Low Degree d (t) < 0
We consider the case −1 < d (t) ≤ −ϵ < 0 for some ϵ.

Distinctive in this case is that the (destabilizing) effect of ḋ is
dominating for large values of z, leading to a restricted attraction
region. Select δ1 = ϵ/2 and δ2 > 0. Since δ2 > 0 > −δ1, and
p + δ2 > p + d > p − 1 ≥ p − 1 + (n − j) d for d ≤ 0, for large
values of z (V (z) > 1) (16) is not satisfied outside the restricted
attractive region, where the latter is the largest neighborhood of
the origin for which (16) is satisfied.

Consider the function in (16) using Assumption 2

f (V ) = − (1 − r) θLV
p+d
p + cPV

p−1
p + cdDV

p+δ2
p . (22)

e have seen that for D =
⏐⏐ḋ⏐⏐ = 0 this function has two real

roots: V̄1 = 0 < V̄2 =

(
cP

(1−r)θL

) p
d−µ

. Since the roots of f (V )

change continuously with its coefficients, for small values of D
function f (V ) has three positive real roots, V =

{
V̄1, V̄2, V̄3

}
,

ith V̄1 = 0 < V̄2 < V̄3. If cP = 0 then V̄1 = V̄2 = 0 < V̄3.
Moreover, f (V ) > 0 for 0 = V̄1 < V < V̄2, and V̄3 < V ,
hile f (V ) < 0 for V̄2 < V < V̄3. The roots V̄2 and V̄3 change
ontinuously with D, and V̄3 → ∞ when D → 0. Since the roots
depend on d we calculate V̄2,max = maxd V̄2 and V̄3,min = mind V̄3.
Selecting D sufficiently small it is possible to achieve that V̄1 =

< V̄2,max < V̄3,min. This leads to D ≪ L with a fixed L, which
mplies that τ ≪ L for (7).

Consider the set

=
{
z ∈ Rn

| V̄2,max < ℓ1 ≤ V (z) ≤ ℓ2 < V̄3,min
}
,

or some ℓ1 and ℓ2. The sets Ωℓ1 = {z ∈ Rn
| V (z) ≤ ℓ1} and

ℓ2 = {z ∈ Rn
| V (z) ≤ ℓ2} are positively invariant, and any

rajectory starting in Ξ will converge in finite-time to Ωℓ1 , and
ill remain there for all future times. Note that z ∈ Ωℓ2 implies

(z) ≤ ℓ2 ⇒ α1 ∥z∥p
r, p ≤ ℓ2 ⇔ ∥z∥r ≤

(
ℓ2

α1

) 1
p

.

In the set Ξ the differential inequality becomes V̇ ≤ −rθLV
p+d
p .

Similarly to previous paragraph, for large V we obtain V̇ ≤

−rθLV
p−1
p and trajectories in Ξ evolve as (19) with d = −1. For

small V we get V̇ ≤ −rθLV
p−ϵ
p , and trajectories in Ξ evolve as

19) with d = −ϵ.

.2. Proof of Proposition 1

During the intervals with constant d the reaching times are
iven by: (i) T (z0) =

M
Lκ ∥z0∥−d

r , for d < 0 to reach z = 0 from
the initial condition z . (ii) T =

Md
for d > 0 to reach the
0 ϵ ϵdLκ
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all Nϵ = {z ∈ Rn
| ∥z∥r ≤ ϵ} from any initial state. Note that

hese times can be made arbitrarily small by increasing the gain
. During the interval where d changes we have just to show that
remains bounded. Under Assumption 2, with cp = 0, it follows

from (16), that V̇ ≤ −θLV
p+d
p + cdV

p+δ2
p D . In the worst possible

ase, V̇ ≤ cdV
p+δ2

p D, i.e. solving the inequality

(t) ≤
V0[

1 −
δ2
p cdDV

δ2
p

0 t
] p

δ2

.

he time to escape to infinity is given by Te =
p

δ2cdDV
δ2
p

0

. We need

o assure that 1
3Tf < Te, i.e. Tf <

3p

δ2cdDV
δ2
p (t0)

. This can always

be reached by selecting V0 = V
( 1
3Tf
)
, the value of V reached in

the first interval t ∈
[
0, 1

3Tf
]
, and/or δ2 sufficiently small. When

f = −1 and ∆ ̸= 0, the same argument applies, since in that case

he inequality becomes V̇ ≤ −

(
θL − ϑ ∆

Ln−1

)
V

p−1
p + cdV

p+δ2
p D.

. Conclusion

In this paper, we proposed an arbitrary order differentiator
ith continuous time-varying homogeneity degree (d exponent)

ncluding positive and negative degrees. By doing so, the benefit is
o have, by varying continuously only one parameter, both fixed
ime (d > 0) and finite-time (d < 0) convergence properties.
Using a strong Lyapunov function, we showed that for d(t) < 0,
only a local finite-time convergence is ensured and for d(t) >
a global fixed-time convergence is established. Following this

esult, we gave two applications. The first proposed variation
aw of d(t) ensures the continuity between fixed and finite times
onvergences while the second one allows the differentiator to
e less-sensible to noise. In the future, we will firstly focus on
esting the proposed differentiator within real applications and
xtending the idea of the fixed-time convergence (Proposition 1)
o the control law design. Then, we will investigate the differen-
iator based control with varying homogeneity degree. Moreover,
e will study the case of hybrid dynamical systems where the
ime-varying homogeneity degree can be written in function of
he discrete state even if its variation is continuous.
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