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In this paper, we propose an arbitrary order differentiator with time-varying homogeneity degree (ex-
ponent) and we establish its convergence properties and its robustness with respect to measurement
noise, perturbations and the variation of the exponent. For this we use a unified Lyapunov function
approach. We also propose two possible applications for such a differentiator. One provides a variation
of the exponents that ensures a differentiator converging in fixed and finite times. The other that extends

our previous results, aims at improving the behavior of the differentiator with respect to measurement
noise, for which a noise-driven variation of the exponents is given. The results are illustrated using
simulations for a second order differentiator.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Noisy signal differentiation is a very important and challenging
problem, having a large range of applications (electric machines,
pneumatic cylinders, drones, etc.). Sensors of such applications
are subject to electromagnetic compatibility, quantification prob-
lems and so on, then sensors measurements are very noisy in a
large bandwidth. Many theoretical and applied papers are dedi-
cated to this topic. Linear differentiators are the most common so-
lutions employed so far, among them high-gain observers (HGO)
have received recently a lot of attention (Prasov & Khalil, 2013;
Vasiljevic & Khalil, 2008) (see also Khalil and Praly (2014)). Such
differentiators are able to estimate asymptotically exactly only
polynomial signals, i.e. those for which the nth derivative (for
some n € N) vanishes, a rather thin class of signals. The discontin-
uous Levant’s differentiator (Levant, 1998, 2003, 2005) is able to
estimate exactly and in finite-time the derivatives of a signal with
bounded nth derivative. Further developments of discontinuous
differentiators are pursued by Bartolini et al. (2000), Bejarano and
Fridman (2010), Floquet and Barbot (2007).

Recently, a whole family of arbitrary order homogeneous dif-
ferentiators parametrized by its homogeneity degree d, and that
includes both the HGO (d = 0) and Levant’s (d = —1) differ-
entiators as particular cases, has been proposed in Cruz-Zavala
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and Moreno (2016, 2019), Sanchez et al. (2018) (see also the
alternative approach given in Lopez-Ramirez et al. (2018) for
values of d close to d = 0). These encompass also previous
algorithms as Andrieu et al. (2009), Efimov and Fridman (2011),
Perruquetti et al. (2008). When d # —1 they are also able to
estimate asymptotically exactly only polynomial signals.

Since no differentiator is able to estimate exactly the deriva-
tives of a signal perturbed by arbitrary noise, the estimation
error of the derivatives of any differentiator depends then on
the size of the n—th derivative of the signal to be differentiated,
on the size of the additive noise affecting it and the gains of
the differentiator. For a given signal and noise these two effects
depend (for fixed gains) on the homogeneity degree d of the
differentiator. Since for the discontinuous differentiator the n—th
derivative does not have any effect on the estimation, it is clear
(by continuity reasons) that for slightly noisy signals it is better
to maintain the homogeneity degree near d = —1 to minimize
the differentiation error. For significantly noisy signals it may be
better to select a different value of d, as e.g. d = 0. Motivated by
this observation, recently in Ghanes et al. (2017a, 2017b, 2020)
the authors proposed to modify on-line the homogeneity degree
d (d € (—1,0)) of a second-order differentiator to improve the
performance, i.e. to reduce the differentiation error of the first
derivative of the signal, according to an estimation of the size of
the noise. This approach is an alternative to many other attempts
to reduce the effect of noise, as those proposed in Ball and Khalil
(2011) for the HGO or in Levant and Yu (2018), Jbara et al. (2021)
for the family of homogeneous differentiators, and allows to com-
bine advantages of both HGO and homogeneous differentiators. In
the absence of noise, fixed-time differentiators (d > 0) are also

© 2021 published by Elsevier. This manuscript is made available under the CC BY NC user license
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proposed to estimate exactly the derivatives of a signal in a finite-
time that is independent of the initial condition (Angulo, Moreno,
et al,, 2013; Cruz-Zavala et al., 2011; Lopez-Ramirez et al., 2018;
Polyakov, 2012).

In this paper, our main contributions in comparison to the
existing results are to propose an arbitrary order homogeneous
differentiator with time-varying homogeneity degree d in order:

e To consider a continuous change in d with positive (d > 0)
and negative (d € (—1,0)) values. This allows integrating two
differentiator’s objectives: fixed-time convergence (independent
of the initial condition) and less sensibility to noise by extending
the idea of Ghanes et al. (2017a, 2017b, 2020) to an arbitrary
order differentiator.

e To prove its convergence by analyzing the effects of noise,
of the size of the nth derivative of the signal to be differentiated,
and of the d variation in the asymptotic behavior of the estima-
tion error. For this we use the Lyapunov framework developed
in Cruz-Zavala and Moreno (2016, 2019), Sanchez et al. (2018) to
analyze the effect of the time-varying homogeneity degree d.

The remainder of the paper is organized as follows. In Sec-
tion 2 we propose an arbitrary order differentiator with varying
homogeneity degree. In Section 3, we present the convergence
and robustness properties of the proposed differentiator. Simu-
lation results for a second order differentiator (n = 3) are given in
Section 4. In Section 5 we provide all statements proofs. Section 6
concludes the paper and gives some perspectives.

2. Proposed arbitrary order differentiator with varying expo-
nents

Let the input signal f (t) to the differentiator be a Lebesgue-
measurable function defined on [0, co). The signal f(t) is assumed
to be decomposed as f(t) = fo(t) + v(t), where the first term is
the n-times differentiable unknown base signal fy(t), to be dif-
ferentiated, and the second term v(t) corresponds to a uniformly
bounded Lebesgue-measurable noise signal.

Assumption 1. There exist constants A > 0 and N > 0 such
that,V ¢ > 0, (fo(m (r)‘ < Aand [v(®)] < N.

To estimate the time derivatives fo(”(t), i=1,..., n—1,of the
base signal we consider the following family of arbitrary order
homogeneous differentiators

X 1—(n—i—1)d
Xi —kiLl |7521 —fJ T-(n—d +§(i+1, i={1,.,n—-1}

(1)
. 1+d
Xn = —knl" [&y — f| 7000

where the function [x]P corresponds to a signed power, i.e. [x|P =
|x|P sign (x). L and k; are positive constants, selected to cancel
exactly the perturbation for d = -1, ie. k,L" > A, and k;
are chosen such that the Laplace characteristic polynomial s" —
% kis™! = 0 is Hurwitz. d is the homogeneity degree of
system (1) with the following assumption

Assumption 2. d : R; — [—1, -L) is a continuous function
that is piecewise differentiable and there exists a constant D > 0
such that, Vt > 0, |d(t)| < D in the meaning of Dini derivatives.

Convergence of the differentiator means that the differentia-
tion errors, defined as

et 2 -V, i=1,...,n, (2)
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asymptotically converge to zero. Scaling these differentiation er-
rors (2) as z; = "Tl e, Zi= , we can write the differen-
tiation error dynamics (2) as

&
Li_lki,1

~ Tix1
2,’ = —Lki<|—Z1 —VJ " —Z,'+1> ,i=1,...,n—1
(3)
()
. . e fy (0)
Zn = —Lky[zy —v] " —W,
where fori = 1,..., n, I~<,- = k% ko = 1. System (3), when

fo(”) (t) = 0 and v = 0, is r-homogeneous (Bacciotti & Rosier,
2005; Bernuau et al., 2014; Bhat & Bernstein, 2005; Cruz-Zavala
& Moreno, 2019; Levant, 2005; Levant & Livne, 2016; Lopez-
Ramirez et al., 2018; Polyakov & Fridman, 2014; Sanchez et al.,
2018) with homogeneity weightsr; = 1—-(n—1i)d,i=1,..., n,
and homogeneity degree —1 < d < nl—] We also introduce
my1=14d andrp=1—nd.

Usually, the value of d is chosen to be a constant in the interval
d e [-1, -15). For d = 0 (1) corresponds to a linear (High-Gain)
differentiator (Vasiljevic & Khalil, 2008). When d = —1 we obtain
the arbitrary order Exact and Uniform Levant’s Differentiator of
arbitrary order (Levant, 2003, 2005). In this latter case system
(1) has a discontinuous right-hand side, and their solutions are
understood in the sense of Filippov (1988).

In this paper, we consider a continuous change of d (As-
sumption 2) with positive and negative values. There are several
possible applications of varying d. Hereafter we explore two of
them. When d > 0, we ensure a fixed-time differentiator con-
vergence (see Section 2.1) while for d € (—1, 0), we provide an
efficient balance between the arbitrary order Exact and Uniform
Levant’s Differentiator (Levant, 2003, 2005) and the linear (High-
Gain) differentiator (Vasiljevic & Khalil, 2008) thanks to the noise
driven d (see Section 2.2). Moreover, we establish the conver-
gence properties of the differentiator (1) with varying exponent
d.

2.1. Fixed-time differentiator

Let us consider (v (t), fo(") (t) ) = 0 for clarity in the presenta-

tion. For constant d < 0, it follows from (19) that z (t) converges
to zero in a finite-time, upper bounded by T (z9) = % ||zO||,_d. It
is also clear from the previous expression that the convergence
time T (zp) grows unboundedly with ||zg]|,. On the other side, for
constant d > 0, it follows from (20) that z (t) converges to zero
only asymptotically. However, from (20) we can obtain an upper
bound T, (zo) of the convergence time from an initial condition
Zo to the homogeneous ball AV, = {z € R" | ||z||, < €} centered at

: <
(“zolly) —

. ] . .
z = 0, given by T, (z9) = Lol Since limyz) |- o0 Te (20) =

d . o .
eldwTK is a constant, we conclude that convergence to N, is in fixed-

time, that is, any neighborhood of the origin will be attained in
a finite-time independent of the initial condition. It is clear that
combining these two properties, i.e. first using d > 0 and then
d < 0, leads to a differentiator converging to z = 0 in fixed-time.
The main result of Angulo, Fridman, et al. (2013) is precisely the
use of a switching strategy between two values of d, first d > 0
and then d = —1, to build such a differentiator. Our results allow
us to use a continuous change in d to obtain the same result, for
arbitrary positive and negative homogeneity degrees. Although
there are many possible strategies, as illustration we present just
a simple one.
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Proposition 1. Select two values 0 < dy < ﬁ and —1 < df <0,
and a desired fixed-time 77 > 0. Then, by considering the continuous
signal

do 0<t=<17
d(t) = @tjuzdo—df I <t <27 (4)
ds STF<t<T,

verifying Assumption 2, the differentiator (1) is a fixed-time differ-
entiator for N = 0 and A = 0. When dy = —1 convergence to zero
can be also achieved for A # 0.

The proof is given in Section 5.
2.2. Noise driven time-varying d

In the works (Ghanes et al.,, 2017a, 2017b, 2020) a low-order
differentiator with varying exponent has been shown to improve
the behavior under noise and perturbation with respect to both,
a linear and Levant’s differentiator. Here, we propose an arbitrary
order differentiator, with a time-varying exponent d in the inter-
val d € [—1, 0]. The value of d is determined on-line according
to the magnitude of the high-frequency components of the noise
v(t), denoted by |fpf ()| fmnf(t) is determined by passing
the signal f to be differentiated by a Butterworth fourth-order
high-pass filter! as follows

FO =20 ) Simnf © = £ (Fpnf ®) 5= ——
Wcut
§4
Fe) . (5)

F s) =
mhf ) = (& 076545 1 1) (@ + 1.84785 1 1)
where £ represents the Laplace transform and wcyt > 0. The
differentiator is given by (1), where the actual value of d is
calculated as

— (Ro1 (©) = [finne ©]) ()
-1

T+ [faa (O]

where 7 > 0, © > 0 are constants. In the absence of noise
|fmhf (t)| =0, so that X, 1 (t) = 0, d becomes d (t) = —1. In this
case we obtain Levant’s exact differentiator. In presence of noise,
[fhf (O] # 0 and &,4q (t) # 0, so that d () moves towards 0.
For a large value of |fmhf (t)| a differentiator close to the linear
one is attained. The parameters of (1), the filter (5) and (6) are
selected as follows: (i) for k, and L, see just after (1); (ii) Since
the dynamics of d is given by

a1 ©]° (Binng ©] = 01 ©)
(] +u )/Zn-%—])z

and its bounds D must be largely smaller than a fixed L according
to (22), consequently 7 is chosen largely smaller than L, i.e.,, T <«
L. Thus, X,4+1 behaves as a low pass filter of |fiypf (0)]. (iii) w is
chosen large (resp. small) to shift the behavior of the differentia-
tor towards the linear (respectively, the sliding mode) solution.
(iv) The cutoff frequency wcyt of the Butterworth fourth-order
high-pass filter is chosen larger than the bandwidth of the signal
fo (t), in order to achieve a separation between noise and signal.
Note that in the implementations in Ghanes et al. (2017a, 2017b,
2020) a parameter different from d was used. The results are

equivalent, since the two parameters are related by o = }:E:jig

)A‘n-%—l ) =

d(t) =

d= ; (7)

1 A 4th-order Butterworth filter is chosen as a trade-off between ideal
characteristics and implementation complexity.
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3. Convergence properties of the proposed observer

The following Theorem is the main result of the paper. It
shows that a slowly varying d does not destroy the (local) con-
vergence of the differentiator, but also that the effect of a time-
varying d is quite different for d > 0 and for d < 0.

Theorem 1. Suppose that Assumptions 1 and 2 are satisfied. Then,
for €1, €3, € > 0 as small as possible, the differentiator (1) with
time-varying degree of homogeneity, has the following properties.

(1) For 0<e; < d(t)< ﬁ—ez, the error dynamics (3) is
Globally Input-to-State Stable (GISS), i.e. for all initial condition zo €
R", there exist KL function B and a K, function y such that the
following holds

lz(®Ollr < B (lzolle > ) + v (@ (A, N, D)) , (8)

for some continuous function o : Ri — Ry, 0(0) =0.

(2) For —1 < d (t) < —e < 0, the error dynamics (3) is Locally
Input-to-State Stable (LISS) i.e. for all initial conditions ||zp||, < Zo,
the following holds

lz(Olly = Bp (lzoll» ) +¥p (2 (A, N)) , (9)

for some KL function fp and a K, function yp and a continuous
function o : Ri — R4, with ¢ (0) = 0. Moreover, Zy — oo as
D — 0.

The proof is given in Section 5 using strong Lyapunov func-
tions.2 However, since the time varying homogeneity degree
differentiator is not homogeneous, bounds for the trajectories, as
given by (19)-(21) are, in general, no longer valid. Nevertheless,
it is importance to mention two results:

e for d < 0, when N = A = 0, the convergence to z = 0 can
be bounded by (19) with d = —e < 0, when d (t) < —e for all
times (see the end of Section 5.1.6-b)). Moreover, convergence
for time-varying d < 0 cannot be longer assured to be global,
and the attraction region is smaller the larger is d (see (16) and
Section 5.1.6-b)).

e for d > 0 the global boundedness of the trajectories is
assured for any size of d, but convergence to z = 0 is not
guaranteed, even when N = A = 0. For convergence to z = 0, it
is necessary in this case that d (t) converges to a constant value
(see (16), (20) and Section 5.1.6-(a)).

Remark 1. a- For D =0, A =0, N = 0, (8) tends to zero when
t — o0, asymptotically for d € (0, -15) and in finite-time for
de (-1, 0).

b- For D =0, A = 0, N = 0 and d = 0 the convergence to
zero of (8) is exponential (Khalil, 2002).

c-ForD =0, A # 0, N =0 and d = —1 the convergence to
zero of (8) is in finite-time (Levant, 2003).

’ n—1

4. Simulation results

To show the effectiveness of the proposed differentiator with
varying gains, a simulation study is performed. To estimate the
first and second order derivatives of a noisy signal, three different
second-order differentiators (1) (with n = 3) are designed for
comparison: (i) a linear differentiator with constant d = 0; (ii)
a discontinuous Levant’s exact differentiator with constant d =
—1; and (iii) the proposed varying exponent differentiator, with
d. To illustrate in one simulation the two possible applications
presented in Sections 2.1 and 2.2, during the first 6 seconds,

2 Strong Lyapunov functions allow to prove asymptotic uniform conver-
gences.
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i.e. for 0 < t < 6 of the simulation the differentiator with time-
varying d given in Proposition 1, with dy = § and d; = —1 and
ensuring a fixed-time convergence in 77 = 3s, is implemented
in the absence of noise. For t > 6 the varying differentiator of
Section 2.2, taking values in the interval d € [—1, 0], and driven
by noise according to (5)-(6), has been implemented.

The base signal to be differentiated, fy (t), is generated inte-
grating the model x; = fy, X; = x, = fo(l), X = X3 = fo(z),
X3 = 0(3) = (13) in Matlab/Simulink, using Euler’s integration
method, and the initial conditions x (0) = [1, 2, 5] x 1072. The
third-order derivative f\” = x{’ was chosen, as a piecewise
bounded constant function, satisfying Assumption 1. It is given

by

0 fort e [0, 6.5]U[8.5, 11.5]
U[13.5, 16.5] U[18.5, 20]

2 forte[6.5, 8.5]U[11.5, 13.5]
U[16.5, 18.5].

0 (6) =

The additive noise v (t) is white noise, with power 1 x 1077,
sample time 1 x 1074 [s] (fixed step-size), and starting seed for
random number generator 23541. The noise is bounded, which
satisfies Assumption 1, and it has been multiplied by the function

0 forte[0, 6]U[7.25, 9]U[10.25, 12]
U[13.25, 15] U [16.25, 18]
U[19.25, 20]

1 fort e[6, 7.25]U[9, 10.25] U[12, 13.25]
U[15, 16,25] U [18, 19, 25] .

o(t) =

For all differentiators the gains have been chosen to be the same,
with the values k; = k; = k3 = 5, L = 60. For the noise-driven
varying differentiator the following parameters were chosen for
the filter: t = 4, wcyt = 10, ©# = 300. Two simulations
are conducted with two different initial conditions, in order to
illustrate the behavior of the proposed time-varying d according
to the fixed-time and the noise-driven cases.

4.1. Estimation of the second derivative

4.1.1. Small initial estimation errors

For the three differentiators, the initial conditions are chosen
null, i.e. X; (0) = 0, i = 1 — 3. For the system, they are selected
near those of the differentiators, i.e. fo(0) = x1(0) = 1, f(”(O) =

x(0) = 2, f(z)( 0) = x3(0) = 3. Notice that for the sake of place,
only the results for the estimation of the second derivative are
presented.

Figs. 1 and 2 present the simulation results comparing the be-
havior of the three differentiators. The proposed exponent vary-
ing differentiator performs better than the linear and Levant’s
differentiator. This is particularly noticeable during the intervals
of time when noise is present (t € [6, 7.25] U [9, 10.25] U
[12, 13.25]U[15, 16, 25]U[18, 19, 25]) and/or f\” (t) is different
from zero (t € [6.5, 8.5] U [11.5, 13.5] U [16.5, 18.5]). Fig. 3
shows the changes in d for the proposed differentiator. Note that,
the dynamics of d for t < 3s (resp. for t > 3s) is given by Eq. (4)
(resp. by Eq. (6)), verifying Assumption 2. Notice that during the
intervals when noise is present, d is near to 0, so that a linear-like
behavior is obtained. In the intervals with f0(3) (t) different from
zero and no noise d moves towards —1, so that a behavior close to
Levant's differentiator is obtained. This may explain the improved
performance of the proposed differentiator.
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30

—i3 (sliding mode differentiator)|
—i3 (linear differentiator)

—&3 (proposed differentiator)
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Fig. 1. State f; @ _ = x3 and its estimate X3.

—e3 = &3 — f(Ez) (sliding mode differentiator)
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€3 :w:;—fé)
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: 5 \ Transient regim zoom ]
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(linear differentiator)

(proposed differentiator)

Fig. 2. Estimation errors (e3 = X3 —féz) =X3 —X3).

0.4 T T T T
—Varying homogeneity degree d|

0.2

-0.2
-0.4-
-0.6

-0.8

Fig. 3. Varying degree of homogeneity d.

4.1.2. Large initial estimation errors
The initial conditions for the three differentiators are chosen

as zero. For the system they are selected far from those of the
differentiators, i.e. fy = 1000, f\” = 20000, f*’ = 3000. As

expected, in Fig. 4 it can be seen that the proposed fixed-time
differentiator with time-varying d converges before the fixed time
Tr = 3s of Eq. (4), while the linear and the Levant’s (sliding mode)
differentiators have not converged before within this time.
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12000

10000 —e3 = @3 — féz) (sliding mode differentiator)
8000 —ey = @3 — féﬂ (linear differentiator)

6000 |

—e3 = &3 — f(gQ) (proposed differentiator)

4000

2000

-2000 |||

-4000 | f
-6000 ‘ | |/ !
7

_8000 . . : . . . . .
0 2 4 6 8 10 12 14 16 18 20

Fig. 4. Estimation errors (e3 = X3 —féz)).

4.2. Estimation of the first derivative

For the sake of space, the estimation results of the first deriva-
tive fom (t) = x(]U (t) are not displayed. They are in concordance
to those of the second derivative, although, as expected, the first
derivative is less prone to noise.

5. Proof of the main results
5.1. Proof of Theorem 1
In the Cruz-Zavala and Moreno (2016), Sanchez et al. (2018)

(see also Cruz-Zavala and Moreno (2019) for the discontinuous
case in particular) it is shown that the function

n—1
V@) =) 8%z z,+1)+ﬂn |zal? (10)
j=1
p—ri
Zi (zi, ziy1) = |Zz|r’ =z [zi41] "1
+(p p ') |Ziyq |1, (11)

is r—homogeneous of degree p, positive definite and radially
unbounded for any 8; > 0,i =1, , 1, i.e. there exist positive
constants 0 < «; < ay for each value of d such that

V@ <ozl . (12)

V is differentiable for every —1 < d < ﬁ if p > 2n — 1. Note
that V is a function of d through the homogeneity weights r;,
appearing in the powers and in the coefficients. We assume that p
is independent of d. The bounds «; and «; of (12) can be selected
independent of d for any compact subinterval of —1 < d < ﬁ
The same is valid for all bounding constants in the sequel. It is also
shown in Cruz-Zavala and Moreno (2016), Sanchez et al. (2018)
that the derivative of V along the trajectories of the error system
(3) is given by

ar z|g

Q)
fo  ® FLRG )+ Vv (2)

V=—LW (z2) — 0,V (z) e 5d

d, (13)

~ nt+1
W (z) = Zj41) + knOnV [z1] 1,

n—1 X
- i1
=Y kg V([z1] "
j=1
L Tj+1
R(z, v) =) kv (fzuT -~
j=1

Tl
[zg —v] 1 ) ) (14)
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where 9;V stands for 9}V = 3= and

av = B (rzu% - rlzJ%) :

p—ri_ Prio1—Ti fi-1
iV = =i r'l Lz (Zi—l —[z] " >
1
p—ri Pt
+Bi (fZiJ = fZi+1J”'+1> ,
V==B-10—Tn-1) |Zn|pir”7]71 (anl - onJrnfl)

+ Bu [zalP71

In (13) the first term corresponds to the stabilizing effect of the
correction terms, the second and third terms are due to the nth
derivative fo(”) (t) and the noise v, respectively. The last term is
new in this paper, and it reflects the effect of the variation of d
(the exponents) in the differentiator.

In Cruz-Zavala and Moreno (2016, 2019), Sanchez et al. (2018)
it is shown that for each value of —1 < d < 0 there exist gains
ki > 0 such that W (z) > 0 (W is positive definite), so that in the
absence of noise (v = 0), for constant d and iffo(”) (t) = 0, the
differentiator converges globally. The same procedure is valid for
the whole range —1 < d < .

Since V is r-homogeneous of degree p and W is r-
homogeneous of degree p + d, there exists a constant & > 0
such that W (z) > QV P (2). Since 9;V is r-homogeneous of
degree p — 1; there exist constants w; > 0 such that |3,V (2)| <

-1

wJV P(2).

5.1.1. The noise term R (z, v)
Ti+1
The effect of the noise v on V is given by the term <f21J -

Tji+1 Tj+1

[z1 — vJT> in (14). When d € (—1, 0] functions [z;] ™ are

globally Holder (or Lipschitz for d = 0) continuous, and therefore
i1 1
there exist constants h; > O such that |[z;] 7 —[z; —v] T | <

h; |v| ' When d ¢ (0, -15) the ratios %1 > 1 and functions

[z1] fl are differentiable and locally (but not globally) Lipschitz

continuous. Using the mean-value theorem of differential calculus

T+ T+ s

we obtain [z;] T — [z; —v] "1 rJ” lzs—&| v, £ e

(0, v) , and thus (using the classical generallzed mean value
inequality)

Ti+1

[z —v]| N

Ti+1
[z 7 —

Tiy 1
< —a v 4+
L
~  TH17M
hv=r @l ),

for some «; and h;. We conclude, that for some constants h; and

h; the following inequality is satisfied globally for any —1 <d <
1

n—1
no7 Lt} yial
Yim kwil (VTP @) vl +

~  PHhipi—n .
R(Z, V) < th (2) |V|> s ifde (O, n%])

N P
ijokjw]‘hjv P ()vln o, ifd=<0.
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5.1.2. The term a‘;%d

To calculate 42 recall that £0* = a*Inaifa > 0 (a # 1)

and r; = 1 — (n — i) d. A simple calculation shows that
Vv (2)

ad
where

Vl(z)_Z,BJ ( |Z|J>

vz(z)—Zﬂz<(n D 155 3 -

j=1
1 1 Ly
(W) 5[z |7 In fzj] +
J+

(n—j 2)(p ") |21 |1 ln|zj+1|>~

=V1 @)+ (),

Tita

V1 (z) and V, (z) are continuous functions and they vanish at the
origin, i.e. V1 (0) = 0 and V; (0) = 0 (see Lemma 1 for the terms
containing the logarithms).

Since Vi (z) is r-homogeneous of the same degree as V (z),
there exists 6; > 0 (independent of L) such that

V1) <01V (2), Vz.

The following result, useful in the sequel, allows us to conclude
that x* dominates x” Inx near x = 0 if « < 8, and near x — oo
if « > . Its proof is elementary.

Lemma 1. Supose that « > 0, § > 0 and x > 0. Then function
r(x)2 "ﬁx.# has the following limits

0 if B—a>0

—o0 if B—a <0’

if B—a<0O

if B—a>0"

lim r (x) = lim x**Inx = {
x—0t1 x—0t

. . Ba 0
lim r (x) = lim x*~%Inx =
X— 00 X— 00 X0

5.1.3. Global bound of V, (z)
Although V; (z) is not homogeneous, using Lemma 1, we can
obtain a global bound with two homogeneous functions.
Consider first the function
bound the function globally by

|7|. It is possible to upper-

—8

» p—9y ptdy
ZlTInlzl| <nlg| T +rlzl T,

VZjGR,(S]>O,62>O,

where §; and §, can be selected arbitrarily. The first term on the
righthand side of the inequality is homogeneous of degree p — §;
while the second term is homogeneous of degree p+4§,. Moreover,
using also Young's inequality, we obtain the following inequality
VY (7, z41) € R?

L T 2h
zj [Zj+1J i+1 |n ‘Zj+1’ < ( ‘Zj +
p— 61
P ) o (O
P20, 4 (—— |z 7 +
p— 41 ‘H] 2 P+52‘j

— 1 b P+
I)pi;z!zjﬂ}'f“) Vp>68;>0,68>0.

It is important to note that y; and y, are independent of L and
can also be selected independent of d and j. This implies that
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there exist constants 6, > 0, 63 > 0 (independent of L) such
that Vz € R", p> 81 >0, §, > 0, we have

V@) <67 a2 @ +6,V 7 i @ .

5.1.4. Global inequality for 1%
Using all previous bounds with Assumptlon 1 in the expression
(13), we obtain, when —1 < d < the following globally valid

inequality for V

ﬁ'
V< GLVP (z)—i—ﬂ—v (z)+

<91v @ +6V T @ +ovT (z)) d©] +

n
—14+(n—jd 1-(n—j—1d
LY o= @ N e (15)
j=0

1
190=Oifd¢(0, 71>,

Sincep—1>p—14+(n—j)dford <O0andp—1+(n —j)d > p—1

—1+ (n—j)d

for d > 0, for large values of z, i.e. V(z) > 1,V
v i (z) foranyj=0, ..., nand

-1 —-1<d<0
H=1-14nd d>o0
p+s
Similarly, since §; > 0 > —4§y, for V(z) > 1 the term V PZ
dominates. And therefore the inequality (15) becomes, for V (z) >
1andany0<r<1

V<—rov (z)—(l—r)é)LV ‘O + oV @)

+ chT

(16)

1-(n—j—1d

where cp (A, N, L) = L” 4o +LZ} o N TGN
%o Olfd<OCd—91+92+93 Notethatp+d>,ufor

all -1 < d < 71, and therefore the term (with coefﬁaent cp)
due to noise and perturbation, is dominating near the origin, but
is dominated by the negative term far from it. Furthermore, and
since §; and &, can be selected arbitrarily close to zero, the term
due to d is dominated by the negative term far from the origin
for d > 0 and near the origin for d < 0.

5.1.5. Constant d

In this case function f (V) = — (1 —r1) QLV P + ch has
aroot at V. = V; = 0 and a positive root given by V =
V, = (mfﬁ " In the set & = {zer| Vy < V(2)} the
differential inequality (16) becomes

. p+d
V<—roLV P (2). (17)

Trajectories starting in & converge in finite-time to the sublevel
set §2y, = {z eR"|V(z) < Vz}, which is positively invariant,
and remain there for all future times. Since trajectories remain
in 2y, from (12) we conclude that z (¢) is ultimately bounded
by

_ 1 1
Vo\? _ 1 Cp d=n
eon= (2) = ()™ .

1
To describe the evolution of the trajectories in =, note that the
solution of (17) for d # 0 is given by (we use the comparison
lemma (Khalil, 2002))

ﬂdv*g (1) < ﬂdv*ﬁ (z0) — TOLL.
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Ford <0, V (z () < (V‘% (z0) — & d>r9Lt) _Using (12) and

(18) we arrive at

L —d
—d_ =d) § Mllzg I
(M llzoll, LKt)‘ Dif 0<t< ZL+
”Z (t)“r =< - =

—d
if t > MHZL?(”r
1
1+d
1—(n—j—1)d
+ gr +on ZN - : (19)
_d
with k = “2r6, M = ("‘—2) ® Ford > 0, we get
-z aq
pay b
V(z
V@) = ) ,

doed i
(1 + 4roLv’ (zo)t)
and the use of (12) and (18

M llzoll
Iz @Ol < ————

(14 Le llzoll¢ £) @

) leads to

1
T—(n—1)d
1—(n—j—1)d

A n
+ Qaty +on ZN 1=(=1d ) (20)

d

1
with k = greocf, M= (g%)p Similarly, for d = 0, solution of
(17) is given by

V(z(t)) <V (20) exp (—10Lt) ,

and this results in

A
1z(Olle =M lizollr exp (—Lxt) + (QALn + QNN> ; (21)

1

with « = %, M = (2)". The results in (19), (20) and (21)
are inspired from those in Levant (2003, 2005) for d = -1
using homogeneity properties, and for d € [—1, 0] in Cruz-Zavala
and Moreno (2016, 2019), Sanchez et al. (2018) by means of
Lyapunov functions. The proof in Cruz-Zavala and Moreno (2016),
Sanchez et al. (2018) is also applied for d € (0, —L=) with slight
modifications.

5.1.6. Time-varying d

We note that all constants a4, a and those in (15), 6, ¥, 6;, ¥;,
depend (continuously) on d. And they can be selected indepen-
dent of d in any compact subinterval of —1 < d < nl—l In this
subsection we consider that such a uniform (in d) bound is used.

Since the effect of d in V, as seen in (16), is different for d > 0
than for d < 0, we consider here two scenarios:

(a) High Degree d (t) > 0

We consider the case that ﬁ > € > d({t) = ¢ > 0,
with constant ¢;. Important here is that the negative term is
dominating for large values of z. Select §; = ¢1/2 and define 1 =
max {8, —1+nd}. Thenp+d > p+ip >p—-1+(n—j)d >p—1,
and for large values of z, i.e. V (z) > 1,

. ptd ptd Pt
V<—-10lV?r 2)—(1—=r)0LV 7 (z2)+cV 7 (2),

where ¢ = c¢p + ¢gD, according to Assumption 2. The same
analysis as in the prev10us sectlon shows that the root V, of

fV)y=—a-news s s given by

V=V ¢ o
- 2_((1—r)9L) '
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Since V, depends on d, we obtain V n.x = maxy V,. Trajectories
starting in the set

Emax = {Z eR" | VZ,max =< V(Z)} s

converge in finite-time to the positively invariant sublevel set
2y, and remain there for all future times, i.e. ||z (¢)]|,

(Vza%)p In the set Enax the differential inequality becomes

vV < —r@LV P . Since d is time dependent, it is not possible
to solve this mequallty by separation of variables. +However in

. p+d
case V > 1,sinced > ¢; > Othen VP > V 7 | and thus

. p+te
V < —rQLVT1 is valid. In this case the evolution of trajectories
is thus glven by (20) Wlth d =¢r.Incase V < 1, smce 0<d<

€ < nf then V P > V P , and thus V < —r9LV P is valid.
In this case the evolution of trajectorles is thus given by (20), with
d= €.

(b) Low Degree d (t) < 0

We consider the case —1 < d(t) < —e < 0 for some e.
Distinctive in this case is that the (destabilizing) effect of d is
dominating for large values of z, leading to a restricted attraction
region. Select ; = €¢/2 and 8, > 0. Since §;, > 0 > —4§;, and
p+d >p+d>p—1>p—1+4+(n—j)dford <0, for large
values of z (V(z) > 1) (16) is not satisfied outside the restricted
attractive region, where the latter is the largest neighborhood of
the origin for which (16) is satisfied.

Consider the function in (16) using Assumption 2

f)

We have seen that for D = |d| = 0 this function has two real
_p_

p+ép

+d —1
=—(1=10VD + VT 4DV P 22)

roots: V; = 0 < V, = i r)ﬁLl) . Since the roots of f (V)
change continuously with its coefficients, for small values of D
function f (V) has three positive real roots, V = {V1, Vs, V3}
with Vl =0 < Vz < V3 ]pr = 0 then V] = V2 —_0 < Vs
Moreover, f (V) > 0for0 = V; <V < V,and V3 < V,
while f (V) < 0 for V, < V < Vs. The roots V, and V3 change
continuously with D, and V3 — oo when D — 0. Since the roots
depend on d we calculate V; i = maxy V, and V3 min = Mingy Vs.
Selecting D sufficiently small it is possible to achieve that V; =
0 < V5 max < V3 min. This leads to D <« L with a fixed L, which
implies that T « L for (7).
Consider the set

E={zeR" | Vamax <1 <V (@) <> < V3 min},
for some £ and {,. The sets £2;, = {z e R" |V (z) <¢;} and
2, = {zeR"|V (z) < {,} are positively invariant, and any

trajectory starting in & will converge in finite-time to £2,, and
will remain there for all future times. Note that z € £, implies
1

0o\ P
V@) <= o lzll, <t szl < (072)
1

. +d
In the set & the differential inequality becomes V < —rGLVpT.

Slmllarly to previous paragraph, for large V we obtain Vv <
—r@LV P and trajectories in & evolve as (19) with d = —1. For

small V we get vV < —rQLVpP and trajectories in Z evolve as
(19) with d = —e.

5.2. Proof of Proposition 1

During the intervals with constant d the reaching times are
given by: (i) T (z9) = % ||zoll;d, for d < 0 to reach z = 0 from

the initial condition z. (i) T. = X for d > 0 to reach the
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ball N; = {z € R"| ||z||; < €} from any initial state. Note that
these times can be made arbitrarily small by increasing the gain
L. During the interval where d changes we have just to show that
V remains bounded. Under Assumption 2, with ¢, = 0, it follows

6), that V < GLV P +ch P D In the worst possible
case, V < ch P D i.e. solving the inequality
Vo

|:1—cmde0 ti|

The time to escape to infinity is given by T, =

from (1

V() <

——>—-. We need
83caDV,”
to assure that 177 < T, ie. 77 < ——& . This can always
3 /f er L€ g ) . y
S2caDV P (tg)
be reached by selecting Vo = V (375), the value of V reached in

the first interval t € [0, 17;], and/or &, sufficiently small. When

dr = —1and A # 0, the same argument applies since in that case
the inequality becomes V < — <9L 0y ) T CdV 52D,

6. Conclusion

In this paper, we proposed an arbitrary order differentiator
with continuous time-varying homogeneity degree (d exponent)
including positive and negative degrees. By doing so, the benefit is
to have, by varying continuously only one parameter, both fixed
time (d > 0) and finite-time (d < 0) convergence properties.
Using a strong Lyapunov function, we showed that for d(t) < 0,
only a local finite-time convergence is ensured and for d(t) >
0 a global fixed-time convergence is established. Following this
result, we gave two applications. The first proposed variation
law of d(t) ensures the continuity between fixed and finite times
convergences while the second one allows the differentiator to
be less-sensible to noise. In the future, we will firstly focus on
testing the proposed differentiator within real applications and
extending the idea of the fixed-time convergence (Proposition 1)
to the control law design. Then, we will investigate the differen-
tiator based control with varying homogeneity degree. Moreover,
we will study the case of hybrid dynamical systems where the
time-varying homogeneity degree can be written in function of
the discrete state even if its variation is continuous.
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