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Abstract

A constructive numerical approximation of the two-dimensional unsteady stochastic
Navier-Stokes equations of an incompressible fluid is proposed via a pseudo-compressibility
technique involving a penalty parameter ε. Space and time are discretized through a finite
element approximation and an Euler method. The convergence analysis of the suggested
numerical scheme is investigated throughout this paper. It is based on a local monotonicity
property permitting the convergence toward the unique strong solution of the stochastic
Navier-Stokes equations to occur within the originally introduced probability space. Justi-
fied optimal conditions are imposed on the parameter ε to ensure convergence within the
best rate.
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1 Introduction
The first thought that springs to mind when it comes to the numerical simulation of the Navier-Stokes

equations (NSEs) is the complexity of the occurring situation, which can be represented by turbulent
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2 Numerical analysis of the stochastic Navier-Stokes

behaviors and physical processes by which energy becomes not only unavailable but irrecoverable in any
form. The notorious NSEs are widely-known for their essential role in modeling phenomena that emerge
from aeronautical science, thermo-hydraulics, ocean dynamics, and so on. They read in this chapter’s
context: 

∂v
∂t − ν∆v + [v · ∇]v +∇p = f + g(v)∂W∂t ,

div(v) = 0,

v(0, ·) = v0,

(1.1)

with v = v(ω, t, x) being the fluid velocity, p = p(ω, t, x) is the pressure, f = f(ω, t, x) embodies
an external force, g represents the diffusion coefficient, and the positive constant ν designates the fluid
kinematic viscosity. The quantityW is regarded as a cylindrical Wiener process.

The present paper deals with numerical approximations of the two-dimensional incompressible NSEs
driven by a multiplicative noise, equipped with homogeneous Dirichlet boundary conditions, within a
bounded polygonal domain of R2. Since the construction of divergence-free subspaces is not an effortless
task (see for instance [2, 9, 19]), the attention will be turned toward a variant of the underlying equations
involving a pseudo-compressibility method, avoiding divergence-free fields. This variant possesses the
unique strong solution of the stochastic NSEs when passing to the limit (in ε), under a few assumptions.
To be more accurate, the model which will undergo the discretization later on satisfies:

∂vε

∂t − ν∆vε + [vε · ∇]vε + 1
2 [div(vε)]vε +∇pε = f + g(vε)∂W∂t ,

ε∂p
ε

∂t + div(vε) = 0,(
vε(0, ·), pε(0, ·)

)
= (v0, π0) ,

(1.2)

where vε and pε are the associated fluid velocity and pressure, respectively. The constant ε > 0 is called
the penalty parameter and it represents a small scale that will eventually tend to zero with the other
discretization parameters to recover a solution to equations (1.1), and (v0, π0) is the initial condition.
Observe that system (1.2) has a supplementary initial datum pε(0, ·) denoted by π0 because it does not
need to depend on ε. The notation π0 shall not be considered as a quantity arising from the pressure
of equations (1.1) either; namely π0 6= p(0). The supplementary term 1

2 [div(vε)]vε ensures the well-
posedness of the model (1.2), which is why it cannot be taken out. Notice that alternative configurations
(also known as penalty methods) might have been possible, especially for the mass conservation equation
of problem (1.2). For instance,

εpε + div(vε) = 0,

ε∆pε − div(vε) = 0 with
∂pε

∂n
= 0,

ε∆∂tp
ε − div(vε) = 0 with

∂

∂n
(∂tp

ε) = 0, and pε(0, ·) = π0.

The readermay refer to [22], [23], [24], and [26] for thorough deterministic studies of the abovementioned
techniques, including the one considered here. The convergence rate of the Stokes problem driven by a
multiplicative noise and subject to an artificial compressibility was conducted in [10] where optimal rates
are obtained.

The mass conservation equation in problem (1.2) returns, in terms of regularity, good a priori
estimates for the pressure pε (see [17, Proposition 3.1]), which may be taken advantage of during the
convergence rate analysis. In point of fact, the pressure’s lack of time-regularity in equations (1.1) (see
for instance [15, Theorem 4.1]) has a negative effect on the convergence rate of those equations, which
appears through the time convergence rate O(∆t−1), as it was illustrated in [5, Corollary 4.2].

Problem (1.2) was theoretically investigated in [17] where the authors conducted the existence and
uniqueness properties of the associated solution. The proof technique therein consists of the local
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monotonicity property of the sum of the Stokes operator and the nonlinear term. A discrete version
of this method will be considered in the present paper in order to demonstrate the convergence of the
proposed numerical scheme and to avoid the Skorokhod theorem as well.

Finite element analysis of system (1.2) will be carried out hereafter, allowing the space variables to
be discretized across the domain D. The proposed approximate finite element spaces for the velocity
vector vε and the pressure field pε consist of continuous piecewise polynomials whose degrees can be
chosen arbitrarily without any constraint, unlike the case of a saddle point problem where a discrete
inf-sup condition must be imposed, leading to restrictive choices. Time discretization relies on the Euler
method and is offered in two options: linear and nonlinear (Algorithms 1 and 2). As broadly known,
an implicit numerical scheme gathers more stability properties than an explicit version. This appears in
both Algorithms 1 and 2, especially regarding the initial datum’s regularity. In contrast, when it comes
to iterates’ uniqueness, explicit numerical schemes for stochastic partial differential equations perform
better than implicit ones. Finally, in order for the proposed numerical scheme to convergence toward the
unique strong solution of equations (1.1), the spatial and temporal discretization parameters along with
the scale ε should vanish at the same time.

Unlike article [24] where a numerical scheme for the deterministic version of equations (1.2) is
investigated, there will be no need for ∆t/ε to converge toward 0 when ∆t, ε → 0, with ∆t being the
time discretization step size, thanks to the finite element method and the used demonstration technique
herein. According to the artificial compressibility method that has been chosen here, the supplementary
term ε∂tp

ε allows the pressure to gain time-regularity that is not traditional for the incompressible Navier-
Stokes equations (1.1). This extra regularity is usually linked to the penalty parameter when studying the
convergence rate. For instance, penalizing by ε∆pε instead of ε∂tpε imposes that h2/

√
ε should go to 0

as ε, h → 0, with h being the space discretization step size, as illustrated in [10, Theorem 5.9] for the
stochastic time-dependent Stokes problem.

This paper is split into five sections and is organized as follows. Section 2 provides the adequate
preliminaries and configurations, including the required assumptions, solutions’ definitions to prob-
lems (1.1), (1.2), and the numerical scheme. Section 3 is devoted to giving the main theorem of this
paper. Solvability, stability, and convergence of the numerical approximation are given in Section 4
along with a linear version of the proposed numerical scheme. This same section grants a small analysis
scope concerned with the best choice of the scale ε in terms of the discretization parameters regarding
numerical schemes with saddle point aspects. Section 5 supplies the reader with pieces of evidence
through numerical experiments and comparisons with other schemes. The last section concludes all the
work in this paper.

2 Notations, materials and algorithm

Let T > 0 be a finishing time. Given a bounded polygonal domain D ⊂ R2 (for simplicity’s sake),
denote by ∂D its boundary, and by ~n : ∂D → R2 its corresponding unit outward normal vector field.
Function spaces in the Navier-Stokes framework are commonly denoted by H and V and are defined by

V :=

{
z ∈ [C∞c (D)]2

∣∣ div(z) = 0 in D
}
,

H :=

{
z ∈

(
L2(D)

)2 ∣∣ div(z) = 0 a.e. in D, z.~n = 0 a.e. on ∂D
}
,

V :=

{
z ∈

(
H1

0 (D)
)2 ∣∣ div(z) = 0 a.e. in D

}
,
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where C∞c (D) denotes the space of C∞(D) functions with compact support. The vector spaces will
be henceforth indicated by blackboard bold letters for clarity’s sake (e.g. H1 =

(
H1(D)

)2). The inner
product of the Lebesgue space L2 and the duality product between H1

0 and H−1 are denoted by (·, ·) and
〈·, ·〉, respectively. The parameter ε of equation (1.2) satisfies all this paper long the condition ε ≤ 1, the
Gelfand triple

(
H1

0,L
2,H−1

)
will solely be employed, and the trilinear form

b̂(u, v, w) := ([u · ∇]v, w) +
1

2
([div(u)]v, w)

will be linked to equation (1.2). Two operators can be associated with b̂; the trilinear form b(u, v, w) :=
([u · ∇]v, w) that arises from the NSEs and the bilinear operator B̂ : H1

0 × H1
0 → H−1 which reads:

〈B̂(u, v), w〉 = b̂(u, v, w), for all u, v, w ∈ H1
0. The upcoming proposition lists a few properties of the

trilinear form b̂ (cf. [22]).

Proposition 2.1 (i) b̂ : H1
0 × H1

0 × H1
0 → R is continuous.

(ii) b̂(u, v, v) = 0 for all u, v ∈ H1
0.

(iii)
∣∣∣b̂(u, v, w)

∣∣∣ ≤ CD ||u|| 12L2 ||∇u||
1
2

L2 ||∇v||L2 ||∇w||L2 , for all u, v, w ∈ H1
0.

Let (Ω,F ,P) be a probability space endowed with a filtration (Ft)0≤t≤T such thatF0 contains all the null
sets and Ft =

⋂
s>t

Fs. Let K be a separable Hilbert space equipped with a complete orthonormal basis

{wk, k ≥ 1}. The noiseW will be considered hereafter as aK-valued cylindrical Wiener process and it
is defined by

W (t, x) =
∑
k≥1

βk(t)wk(x),

where {βk(·), k ≥ 1} is a sequence of independent and identically distributed real-valued Brownian
motions. With that said, the required assumptions are listed below.

Assumptions

(S1) For p ∈ [2,+∞), v0 ∈ L2p(Ω; L2) and π0 ∈ L2p(Ω;L2
0(D)) are F0-measurable.

(S2) For p ∈ [1,+∞), f ∈ L2p(Ω;L2(0, T ; H−1)) and g ∈ L2(Ω;L2(0, T ; L2(K,L2))) satisfies

||g(u)− g(v)||L2(K,L2) ≤ Lg ||u− v||L2 , ∀u, v ∈ L2,

||g(u)||L2(K,L2) ≤ K1 +K2 ||u||L2 , ∀u ∈ L2,

for some positive time-independent constantsK1,K2, Lg such that Lg ≤
√

ν
2C2

P
, where CP is the

Poincaré constant.

Throughout this paper, the writing x . y designates x ≤ cy for a universal constant c ≥ 0, the
constant CD may vary from one calculation to another; however, it will depend only on the domain D,
and finally the symbol L2(X,Y ) refers to the space of Hilbert-Schmidt operators from X to Y , where
X and Y are two Hilbert spaces.
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2.1 Concept of solutions
According to [17], a solution to equations (1.2) satisfies the following definition.

Definition 2.1 Let T > 0 and ε > 0 be given. For a filtered probability space (Ω,F , (Ft)0≤t≤T ,P),
a stochastic process {(vε(t), pε(t)) , t ∈ [0, T ]} is said to be a strong solution to equations (1.2) under
assumptions (S1)-(S2) if it belongs toL2

(
Ω;C([0, T ]; L2) ∩ L2(0, T ; H1

0)
)
×L2(Ω;C

(
[0, T ];L2

0(D)
)
),

and it satisfies for all t ∈ [0, T ], P-a.s.

(vε(t), ϕ) + ν

∫ t

0
(∇vε(s),∇ϕ) ds+

∫ t

0
b̂(vε(s), vε(s), ϕ)ds−

∫ t

0
(pε(s), div(ϕ)) ds

= (v0, ϕ) +

∫ t

0
〈f(s), ϕ〉ds+

(∫ t

0
g(vε(s))dW (s), ϕ

)
, ∀ϕ ∈ H1

0,

(εpε(t)− επ0, q) +

∫ t

0
(div(vε(s)), q) ds = 0, ∀q ∈ L2(D),

along with the energy inequality

E

[
sup

0≤t≤T

(
||vε(t)||pL2 + ε ||pε(t)||pL2

)
e−δt + pν

∫ T

0
||∇vε(t)||2L2 ||vε(t)||p−2

L2 e−δtdt

]
≤ C ,

for all p ∈ [2,+∞), δ > 0, and for some constant C > 0 depending on δ, p, T, v0, π0, f,K1,K2 and ε.

On the other hand, a solution to problem (1.1) in 2D can be defined as follows.

Definition 2.2 Assume (S1)-(S2) and let T > 0. A stochastic process {v(t), t ∈ [0, T ]} on a given
filtered probability space (Ω,F , (Ft)0≤t≤T ,P) is a strong solution to equations (1.1) if it belongs to
L2
(
Ω;C([0, T ]; H) ∩ L2(0, T ; V)

)
, and it fulfills for all 0 ≤ t ≤ T , P-a.s.

(v(t), ϕ) + ν

∫ t

0
(∇v(s),∇ϕ) ds+

∫ t

0
([v(s) · ∇]v(s), ϕ) ds

= (v0, ϕ) +

∫ T

0
〈f(s), ϕ〉ds+

(∫ t

0
g(v(s))dW (s), ϕ

)
, ∀ϕ ∈ V.

2.2 Discretization
The time interval [0, T ] will be decomposed into M ∈ N\{0} subintervals with equidistant nodes

{t`}M`=0 =: Ik for simplicity’s sake. The corresponding step is denoted by k := T
M .

The spatial domain D, which is assumed to be convex, bounded and polygonal, will be covered by
a quasi-uniform triangulation Th, with h being the diameters’ maximum of all triangles. Let Hh be a
subspace of H1

0 consisting of [C(D̄)]2-valued piecewise polynomials over Th, and fulfilling for allm ≥ 2:

inf
vh∈Hh

{||v − vh||L2 + h ||∇(v − vh)||L2} ≤ Chm ||v||Hm , ∀v ∈ H1
0 ∩ Hm. (2.1)

The quasi-uniformity of Th permits the inverse inequality (cf. [3, Lemma 4.5.3]):

||vh||H` ≤ Chm−` ||vh||Hm , ∀vh ∈ Hh, ∀ 0 ≤ m ≤ `, (2.2)

for some C > 0 independent of h. Let Lh be a subspace of L2
0(D) :=

{
q ∈ L2(D) |

∫
D qdx = 0

}
consisting of C(D̄) piecewise polynomial functions over Th, and satisfying for allm ≥ 1:

inf
ph∈Lh

||p− ph||L2 ≤ Chm ||p||Hm , ∀p ∈ L
2
0(D) ∩Hm(D). (2.3)
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For (v, p) ∈ L2 × L2(D), the associated orthogonal projections are denoted by Πh : L2 → Hh and
ρh : L2(D)→ Lh and are defined by the following identities, respectively:

(v −Πhv, ϕh) = 0, ∀ϕh ∈ Hh and (p− ρhp, qh) = 0, ∀qh ∈ Lh. (2.4)

Thanks to the pseudo-compressibility method which is provided by equations (1.2), the finite element
pair (Hh, Lh) is not forced to satisfy the discrete LBB condition.

For the sake of clarity, the notations ϕ+ and ϕ− will designate throughout this paper piecewise
constant functions with respect to time. For instance, ϕ+(t) := ϕm,∀t ∈ (tm−1, tm] and ϕ−(t) :=
ϕm−1,∀t ∈ [tm−1, tm) for the a given sequence {ϕm}m. The discrete derivation with respect to time
will also intervene later on. For this purpose, the below proposition (cf. [4, Appendix B]) lists a few
associated properties.

Proposition 2.2 Given a sequence {ϕm}m, the discrete derivative is defined by dtϕm = ϕm−ϕm−1

k , for
allm ∈ {1, . . . ,M}, and it fulfills the following assertions:

(i) dt(ϕ+ψ+) = ϕ+dtψ
+ + ψ−dtϕ

+,

(ii)
∫ T

0
ϕ+dtψ

+dt = ϕ+(T )ψ+(T )− ϕ−(0)ψ−(0)−
∫ T

0

(
dtϕ

+
)
ψ−dt,

(iii) dteϕ
+

= eϕ
−
dtϕ

+ + eδ
(ϕ+ − ϕ−)

2

2k
, for some δ ∈ (ϕ−, ϕ+).

Relying on Definition 2.1 and the space-time discretization, the numerical scheme which will be
studied throughout the rest of this paper is given by:

Algorithm 1 Let m ∈ {1, . . . ,M} and (v0
h, p

0
h) ∈ Hh × Lh be a starting point. For a given(

V m−1
ε ,Πm−1

ε

)
∈ Hh × Lh such that

(
V 0
ε ,Π

0
ε

)
:= (v0

h, p
0
h), find (V m

ε ,Πm
ε ) ∈ Hh × Lh that satis-

fies 
(
V m
ε − V m−1

ε , ϕh
)

+ kν (∇V m
ε ,∇ϕh) + kb̂(V m

ε , V m
ε , ϕh)− k (Πm

ε , div(ϕh))

= k〈fm, ϕh〉+
(
g(V m−1

ε )∆mW,ϕh
)
, ∀ϕh ∈ Hh,

ε
k

(
Πm
ε −Πm−1

ε , qh
)

+ (div(V m
ε ), qh) = 0, ∀qh ∈ Lh,

where for allm ∈ {1, . . . ,M}, fm :=
1

k

∫ tm

tm−1

f(t)dt and ∆mW := W (tm)−W (tm−1).

The initial datum (v0
h, p

0
h) of Algorithm 1 is required to be uniformly bounded in L2×L2

0(D) with respect
to h. To this end, it suffices to consider v0

h = Πhv0 and p0
h = ρhπ0 because both projectors Πh and ρh

are stable in L2 (cf. [8]):

||Πhu||L2 ≤ ||u||L2 , ∀u ∈ L2 and ||ρhq||L2 ≤ ||q||L2 , ∀q ∈ L2. (2.5)

Owing to [25, Lemma III.4.5], it holds that

k
M∑
m=1

||fm||2H−1 ≤
∫ T

0
||f(t)||2H−1 dt. (2.6)
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3 Main result

Theorem 3.1 For T > 0, let (Ω,F , (Ft)0≤t≤T ,P) be a filtered probability space,D ⊂ R2 be a polygonal
domain, and assumptions (S1)-(S2) be satisfied. Given a positive integer M , define the discretization
step size k := T

M such that k ∈ (0, 1) and Ik forms a uniform partition of the time interval [0, T ]. Let
ε ∈ (0, 1) be a given penalty parameter, and h ∈ (0, 1) be the space discretization step size such that the
triangulation Th is quasi-uniform. Define the finite element triple

(
Hh, Lh, (v

0
h, p

0
h)
)
such that the initial

datum
(
v0
h, p

0
h

)
belongs to (Hh, Lh). Then, the following results are true:

• For a given triple (k, h, ε) ∈ (0, 1)3, there exists a solution {(V m
ε ,Πm

ε )}Mm=1 to Algorithm 1
satisfying Lemmata 4.1, 4.2, and 4.3.

• For a family {k, h, ε} of parameters fulfilling k, h, ε → 0 simultaneously, such that the initial
datum v0

h → v0 as h → 0 in L2(Ω; L2), the solution {(V m
ε ,Πm

ε )} of Algorithm 1 converges
toward the unique strong solution of the stochastic Navier-Stokes equations (1.1) in the sense of
Definition 2.2.

All this paper long, the penalty parameter ε is meant to be a vanishing scale, just as the discretization
parameters k and h. The passage to the limit in ε, h, and k will be simultaneous, meaning that none of
the mentioned parameters should vanish on its own.

The convergence of Algorithm 1 can also be investigated with a fixed non-vanishing ε to obtain a
solution to equations (1.2) in the sense of Definition 2.1. Then, one can take advantage of [17, Proposition
4.1] to gain a solution to equations (1.1) in the sense of Definition 2.2. However, this idea is beyond the
scope of this paper.

4 Discussion

4.1 Existence and uniqueness of solutions
This section is devoted to giving existence and uniqueness properties to the discrete stochastic process

{(V m
ε ,Πm

ε )}Mm=1. The solvability of Algorithm 1 and the measurability of its iterates are handled first in
the following lemma.

Lemma 4.1 Let T > 0 be fixed. Under assumptions (S1)-(S2), Algorithm 1 has at least one discrete
solution. Moreover, for all m ∈ {1, . . . ,M}, the processes V m

ε : Ω → Hh and Πm
ε : Ω → Lh are

Ftm-measurable.

Proof: The solvability of Algorithm 1 can be proven by induction. Indeed, assume that iterates V `
ε and

Π`
ε exist for all ` ∈ {1, . . . ,m − 1}. The existence of (V m

ε ,Πm
ε ) is therefore the target. To this end, let

E := H1
0 × L2

0, and Bε : E → E be define by

(Bε(u, p), (v, q))L2×L2 =
(
u− V m−1

ε (ω), v
)

+ kν (∇u,∇v) + kb̂(u, u, v)− k (p, div(v))− k〈fm, v〉
−
(
g(V m−1

ε (ω))∆mW (ω), v
)

+ ε
(
p−Πm−1

ε (ω), q
)

+ k (div(u), q) ,

for all (u, p), (v, q) ∈ E, and for almost all ω ∈ Ω. The symbol (·, ·)L2×L2 denotes the L2×L2(D)-inner
product. Thanks to Proposition 2.1-(i), the continuity ofBε can be tackled easily. Through the application
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of Proposition 2.1-(ii), the Poincaré and Young inequalities, estimate (2.6), and assumption (S2), one
obtains

(Bε(u, p), (u, p))L2×L2 ≥
1

2
||u||2L2 −

1

2
||V m−1

ε ||2L2 + kν||∇u||2L2 − k||fm||H−1 ||u||H1

− ||g(V m−1
ε )||L2(K,L2)||∆mW ||K ||u||L2 +

ε

2
||p||2L2 −

ε

2
||Πm−1

ε ||2L2 ≥
1

4
||u||2L2 +

ε

2
||p||2L2

− 1

2
||V m−1

ε ||2L2 −
ε

2
||Πm−1

ε ||2L2 −
C2
D

4ν
||f ||2L2(0,T ;H−1) − (K1 +K2||V m−1

ε ||L2)2||∆mW ||2K ≥ 0,

for all (u, p) ∈ Eh(ω) :=
{

(v, q) ∈ Hh × Lh | ||v||L2 ≥
√
S(ω), ||q||L2 ≥ ||Πm−1

ε (ω)||L2

}
, where

S(ω) := 2||V m−1
ε (ω)||2L2 +

C2
D
ν ||f ||

2
L2(0,T ;H−1) + 4(K1 + K2||V m−1

ε (ω)||L2)2||∆mW ||2K . Both S(ω)

and ||Πm−1
ε (ω)||L2 are P-a.s. finite, thanks to the induction supposition. With that said, the Brouwer

fixed point theorem [13, Corollary IV.1.1] implies the existence of at least one (uω, pω) ∈ Hh × Lh
such that Bε(uω, pω) = (0, 0), ||uω||L2 ≤

√
S(ω) and ||pω||L2 ≤ ||Πm−1

ε ||L2 . Therewith, it suffices
to set (V m

ε ,Πm
ε ) = (uω, pω). On the other hand, the measurability of {(V m

ε ,Πm
ε )}Mm=1 can also be

demonstrated by induction. The idea consists in expressing the newly obtained iterates (uω, pω) in
terms of the existing ones. This can be done through a universally Borel-measurable selector function
σ : Hh × Lh × K → Hh × Lh. For instance, (uω, pω) = σ(V m−1

ε ,Πm−1
ε ,∆mW ), and the Ftm-

measurability arises from the Wiener increment ∆mW . The reader may refer to [7, Page 744] for a
detailed approach. �

Lemma 4.1 dealt with the existence of a discrete solution which might not be unique. In point of
fact, uniqueness in the whole probability set Ω does not seem to hold due to the nonlinearity interaction.
Also, a contraction argument does not perform well in the discrete settings because the discrete time-
derivative of an exponential function leads to a supplementary term that blocks the demonstration (see
Proposition 2.2-(iii)). However, it can be proven that iterates’ uniqueness holds true in a sample subset
of Ω as demonstrated in the following lemma.

Lemma 4.2 Assume (S1)-(S2) and let δ > 0 be a small constant. Solutions {(V m
ε ,Πm

ε )}Mm=1 to
Algorithm 1 are P-almost surely unique within either of the following probability subsets:

(i) Ω1
δ :=

{
ω ∈ Ω | k

M∑
m=1

||V m
ε ||

4
L4 ≤

1

δ

}
provided that

1

ν3δ
≤ 4c3

0,

(ii) Ω2
δ :=

{
ω ∈ Ω | max

1≤m≤M
||V m

ε ||
4
L2 ≤

1

δ

}
provided that

k

ν3δh2
≤ 2c3

0

C 2
,

for some universal constant c0 ∈ (0, 3−12
2
3 ]. Furthermore, P(Ω1

δ) ≥ 1 − δE

[
k

M∑
m=1

||V m
ε ||

4
L4

]
and

P(Ω2
δ) ≥ 1− δE

[
max

1≤m≤M
||V m

ε ||
4
L2

]
.

Proof: Assume that {(V m
ε ,Πm

ε )}Mm=1 and {(Umε , Pmε )}Mm=1 are solutions to Algorithm 1 starting from
the same initial condition (v0

h, p
0
h). For allm ∈ {0, 1, . . . ,M}, letZmε := V m

ε −Umε andQmε := Πm
ε −Pmε .

Then, iterates {(Zmε , Qmε )}Mm=1 satisfy for allm ∈ {1, . . . ,M} and P-a.s. the following equations
(
Zmε − Zm−1

ε , ϕh
)

+ kν (∇Zmε ,∇ϕh) + k〈B̂(V m
ε , V m

ε )− B̂(Umε , U
m
ε ), Zmε 〉

− k (Qmε , div(ϕh)) =
(
[g(V m−1

ε )− g(Um−1
ε )]∆mW,ϕh

)
, ∀ϕh ∈ Hh,

ε
k

(
Qmε −Qm−1

ε , qh
)

+ (div(Zmε ), qh) = 0, ∀qh ∈ Lh.
(4.1)



9 J. Doghman

Observe that the stochastic term in equation (4.1) can be eliminated if one had V m−1
ε = Um−1

ε . Since
U0
ε = V 0

ε = v0
h, an induction argument seems to be legitimate. Indeed, for m = 1 and (ϕh, qh) =

(Z1
ε , Q

1
ε), equation (4.1) turns into

||Z1
ε ||2L2 + ε||Q1

ε||2L2 + kν||∇Z1
ε ||2L2 = k〈B̂(U1

ε , U
1
ε )− B̂(V 1

ε , V
1
ε ), Z1

ε 〉

≤ 2k||∇Z1
ε ||

3
2

L2 ||Z1
ε ||

1
2

L2 ||V 1
ε ||L4 ≤ 3.2−

2
3 c0kν||∇Z1

ε ||2L2 +
k

4ν3c3
0

||Z1
ε ||2L2 ||V 1

ε ||4L4 ,
(4.2)

where the first inequality employs the estimate
∣∣∣〈B̂(u, u)− B̂(v, v), z〉

∣∣∣ ≤ 2||∇(u − v)||3/2L2 ||u −

v||1/2L2 ||z||L4 for all u, v, z ∈ H1
0 (see the proof in [17, Lemma 2.3]), and the second inequality uses

Young’s inequality for some constant c0 ∈ (0, 3−12
2
3 ]. Subsequently, equation (4.2) becomes(

1− k4−1ν−3c−3
0 ||V

1
ε ||4L4

)
||Z1

ε ||2L2 + ε||Q1
ε||2L2 ≤ 0. (4.3)

One way to obtain uniqueness is by multiplying equation (4.3) by the indicator function 1Ω1
δ
which

grants (1 − 4−1ν−3c−3
0 δ−1)1Ω1

δ
||Z1

ε ||2L2 + ε1Ω1
δ
||Q1

ε||2L2 ≤ 0. It follows that Z1
ε = Q1

ε = 0 a.e. in D
and P-a.s. in Ω1

δ provided that the coefficient of ||Z1
ε ||2L2 is positive. The second way for uniqueness

consists in multiplying equation (4.3) by 1Ω2
δ
after employing the inverse estimate (2.2). That is,

||V 1
ε ||4L4 ≤ 2||V 1

ε ||2L2 ||∇V 1
ε ||2L2 ≤ 2C 2h−2||V 1

ε ||4L2 , where the first inequality is due to Ladyzhenskaya
(see [14, Lemma I.1]). Therefore, equation (4.3) turns into (1− 2−1ν−3c−3

0 C 2δ−1h−2k)1Ω2
δ
||Z1

ε ||2L2 +

ε1Ω2
δ
||Q1

ε||2L2 ≤ 0 which implies Z1
ε = Q1

ε = 0 a.e. in D and P-a.s. in Ω2
δ provided the coefficient of

||Z1
ε ||2L2 is positive. With that being said, it suffices to assume that Zm−1

ε = Qm−1
ε = 0 a.e. in D, P-a.s.

in either Ω1
δ or Ω2

δ , and re-apply the same technique to obtain a similar result for the rank m. Finally,
estimates of P(Ω1

δ) and P(Ω2
δ) derive from the Markov inequality. �

Remark 4.1 Picking between Ω1
δ and Ω2

δ in Lemma 4.2 depends on the choice of the viscosity ν. Observe
that the condition 1

ν3δ
≤ 4c3

0 does not allow δ to be small when ν is tiny. Therewith, choosing ν large
(resp. small) corresponds to Ω1

δ (resp. Ω2
δ). Moreover, lower bounds associated with P(Ω1

δ) and P(Ω2
δ)

in Lemma 4.2 are finite as illustrated in Lemma 4.3. It is worth mentioning that E
[
k
∑M

m=1 ||V m
ε ||

4
L4

]
.

E

[
max

1≤m≤M
||V m

ε ||
4
L2

] 1
2

E

[(
k
∑M

m=1 ||∇V m
ε ||

2
L2

)2
] 1

2

.

4.2 A priori bounds and convergence
The first part of this section is dedicated to achieving stability of Algorithm 1, whose convergence

toward the unique solution of equations (1.1) is handled in the second part.

4.2.1 A priori bounds

Lemma 4.3 Let p ∈ [2,+∞) ∩ N be fixed and assumptions (S1)-(S2) be satisfied. Then, iterates
{(V m

ε ,Πm
ε )}Mm=1 of Algorithm 1 fulfill the following estimates:

(i) E

[
max

1≤m≤M
||V m

ε ||
2
L2 + kν

M∑
m=1

||∇V m
ε ||

2
L2 +

M∑
m=1

∣∣∣∣V m
ε − V m−1

ε

∣∣∣∣2
L2

]
≤ C1,

(ii) E

[
max

1≤m≤M
||Πm

ε ||
2
L2 +

M∑
m=1

∣∣∣∣Πm
ε −Πm−1

ε

∣∣∣∣2
L2

]
≤ C1

ε
,
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(iii) E

[
max

1≤m≤M
||V m

ε ||
2p

L2 +
(
kν

M∑
m=1

||∇V m
ε ||

2
L2

)2p−1

+
( M∑
m=1

∣∣∣∣V m
ε − V m−1

ε

∣∣∣∣2
L2

)2p−1
]
≤ Cp,

(iv) E

[
max

1≤m≤M
||Πm

ε ||
2p

L2 +
( M∑
m=1

∣∣∣∣Πm
ε −Πm−1

ε

∣∣∣∣2
L2

)2p−1
]
≤ ε−2p−1

Cp,

for some constant Cp ≥ 0 depending only on ||v0||L2p (Ω;L2), ||π0||L2p (Ω;L2), D, ν, ||f ||L2p (Ω;L2(0,T ;H−1)),
T,K1, p andK2, with C1 = Cp=1.

Proof: Replace (ϕh, qh) by (V m
ε ,Πm

ε ) in Algorithm 1 and employ the identity (a− b, a) = 1
2(||a||2L2 −

||b||2L2−||a−b||2L2) togetherwith Proposition 2.1-(ii), Cauchy-Schwarz, Poincaré andYoung’s inequalities:

1

2
||V m

ε ||2L2 −
1

2
||V m−1

ε ||2L2 +
1

4
||V m

ε − V m−1
ε ||2L2 +

ε

2
||Πm

ε ||2L2 −
ε

2
||Πm−1

ε ||2L2

+
ε

2
||Πm

ε −Πm−1
ε ||2L2 +

kν

2
||∇V m

ε ||2L2 ≤
C2
Dk

2ν
||fm||2H−1 + ||g(V m−1

ε )∆mW ||2L2

+
(
g(V m−1

ε )∆mW,V
m−1
ε

)
.

(4.4)

Summing equations (4.4) overm from 1 to ` ∈ {1, . . . ,M}, then applying the mathematical expectation,
condition ε ≤ 1, estimates (2.5) and (2.6) yield

E
[
||V `

ε ||2L2 + ε||Π`
ε||2L2 + kν

∑̀
m=1

||∇V m
ε ||2L2 +

1

2

∑̀
m=1

||V m
ε − V m−1

ε ||2L2

+
∑̀
m=1

ε||Πm
ε −Πm−1

ε ||2L2

]
≤ E

[
||v0||2L2 + ||π0||2L2 +

C2
D

ν
||f ||2L2(0,T ;H−1)

+ 2
∑̀
m=1

||g(V m−1
ε )∆mW ||2L2

]
,

(4.5)

where the mathematical expectation of last term in equation (4.4) vanishes due to theFtm−1-measurability
ofV m−1

ε togetherwith assumption (S2). On the other hand, the last term of inequality (4.5) can be handled
through the Itô isometry and assumption (S2) as follows:

E
[
||g(V m−1

ε )∆mW ||2L2

]
= E

[∣∣∣∣∣∣ ∫ tm

tm−1

g(V m−1
ε )dW (t)

∣∣∣∣∣∣2
L2

]
= kE

[∣∣∣∣∣∣g(V m−1
ε )

∣∣∣∣∣∣2
L2(K,L2)

]
≤ 2kK2

1 + 2kK2
2E
[
||V m−1

ε ||2L2

]
.

(4.6)

Thus, the discrete Grönwall inequality implies

max
1≤m≤M

E
[
||V m

ε ||2L2 + ε||Πm
ε ||2L2

]
+

M∑
m=1

E

[
kν||∇V m

ε ||2L2 +
1

2
||V m

ε − V m−1
ε ||2L2

]

+ E

[
M∑
m=1

ε||Πm
ε −Πm−1

ε ||2L2

]
≤ C1,

(4.7)

where C1 > 0 depends only on ||v0||L2(Ω;L2), ||π0||L2(Ω;L2), D, ν, ||f ||L2(Ω;L2(0,T ;H−1)), T,K1 and K2.
To terminate the proof of estimates (i) and (ii), it suffices to reconsider equation (4.4), sum it over m
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from 1 to ` ∈ {1, . . . ,M}, take the maximum over `, then apply the mathematical expectation to get

E
[

max
1≤`≤M

(||V `
ε ||2L2 + ε||Π`

ε||2L2)
]
≤ E

[
||v0||2L2 + ||π0||2L2 + C2

Dν
−1||f ||2L2(0,T ;H−1)

+ 2
M∑
m=1

||g(V m−1
ε )∆mW ||2L2 + 2 max

1≤`≤M

∑̀
m=1

(
g(V m−1

ε )∆mW,V
m−1
ε

) ]
.

(4.8)

The penultimate term is estimated in inequality (4.6). The last term is controlled by

. 6E

(k M∑
m=1

||g(V m−1
ε )||2L2(K,L2)||V

m−1
ε ||2L2

) 1
2


≤ 3

4
E

[
max

1≤`≤M
||V `

ε ||2L2

]
+ E

[
3

4
||v0

h||2L2 + 3k
M∑
m=1

(K2
1 +K2

2 ||V m−1
ε ||2L2)

]
,

where Young’s inequality and assumption (S2) are used together with the Davis inequality which is
applicable since the integrand can be considered as a simple function with respect to time. Obviously,
the first term on the right-hand side must be absorbed in the left side of equation (4.8) and the remaining
terms can be readily controlled through estimates (2.5) and (4.7). This completes the proof of assertions
(i) and (ii). Estimates (iii) and (iv) can be demonstrated as follows: let p ≥ 2 be an integer. Summing
equation (4.4) over m from 1 to ` ∈ {1, . . . ,M}, making use of estimates (2.5),(2.6), then raising both
sides to the power 2p−1 yield

max
1≤`≤M

(||V `
ε ||2

p

L2 + ε2p−1 ||Π`
ε||2

p

L2) +
( M∑
m=1

(||V m
ε − V m−1

ε ||2L2 + ε||Πm
ε −Πm−1

ε ||2L2)
)2p−1

+
(
kν

M∑
m=1

||∇V m
ε ||2L2

)2p−1

. ||v0||2
p

L2 + ||π0||2
p

L2 + CDν
−2p−1 ||f ||2pL2(0,T ;H−1)

+

(
M∑
m=1

||g(V m−1
ε )∆mW ||2L2

)2p−1

+
(

max
1≤`≤M

∑̀
m=1

(
g(V m−1

ε )∆mW,V
m−1
ε

) )2p−1

.

(4.9)

The mathematical expectation of the penultimate term is estimated through assumption (S2), inequality
|a+ b|q ≤ 2q−1(|a|q + |b|q), the Burkholder-Davis-Gundy and Young inequalities as follows:

E

( M∑
m=1

||g(V m−1
ε )∆mW ||2L2

)2p−1 ≤M2p−1−1E

 M∑
m=1

∣∣∣∣∣
∣∣∣∣∣
∫ tm

tm−1

g(V m−1
ε )dW (t)

∣∣∣∣∣
∣∣∣∣∣
2p

L2


.M2p−1−1

M∑
m=1

E

(∫ tm

tm−1

||g(V m−1
ε )||2L2(K,L2)dt

)2p−1


≤ T 2p−1−1E

[
k

M∑
m=1

||g(V m−1
ε )||2pL2(K,L2)

]

. T 2p−1−1K2p

1 + T 2p−1
K2p

2 E

[
k

M∑
m=1

||V m−1
ε ||2pL2

]
.

(4.10)
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The last term of equation (4.9) can be controlled through the Burkholder-Davis-Gundy inequality, as-
sumption (S2), the Young and Hölder inequalities as follows

E

[(
max

1≤`≤M

∑̀
m=1

(
g(V m−1

ε )∆mW,V
m−1
ε

) )2p−1
]
. E

[(
k

M∑
m=1

||g(V m−1
ε )||2L2(K,L2)||V

m−1
ε ||2L2

)2p−2
]

≤ E

[
max

1≤m≤M
||V m−1

ε ||2p−1

L2 k2p−2
M2p−2−1

M∑
m=1

||g(V m−1
ε )||2p−1

L2(K,L2)

]

≤ 1

4
E

[
max

1≤m≤M
||V m

ε ||2
p

L2

]
+

1

4
E
[
||v0||2

p

L2

]
+ T 2p−1−2E

(k M∑
m=1

||g(V m−1
ε )||2p−1

L2(K,L2)

)2


≤ 1

4
E

[
max

1≤m≤M
||V m

ε ||2
p

L2

]
+

1

4
E
[
||v0||2

p

L2

]
+ T 2p−1−1E

[
k

M∑
m=1

(K1 +K2||V m−1
ε ||L2)2p

]

.
1

4
E

[
max

1≤m≤M
||V m

ε ||2
p

L2

]
+

1

4
E
[
||v0||2

p

L2

]
+ T 2p−1

K2p

1 + T 2p−1−1K2p

2 E

[
k

M∑
m=1

||V m−1
ε ||2pL2

]
.

Putting it all together and applying the discrete Gröwall inequality to equation (4.9) complete the proof. �

4.2.2 Convergence

Stability properties derived in Lemma 4.3 will play a crucial role in this part, especially to offer
convergence results to {(V m

ε ,Πm
ε )}Mm=1 as ε, k, h → 0 . For this purpose, a few new notations must be

evoked alongwith one important lemma consisting of amonotonicity property that allows the convergence
of Algorithm 1 toward equations (1.1) to occur. For allm ∈ {1, . . . ,M}, the new notations read:(

V +
ε,k,h(t),Π+

ε,k,h(t)
)

:= (V m
ε ,Πm

ε ) , ∀t ∈ (tm−1, tm],(
V −ε,k,h(t),Π−ε,k,h(t)

)
:=
(
V m−1
ε ,Πm−1

ε

)
, ∀t ∈ [tm−1, tm).

There will also be similar notations in the upcoming part such as f+ and r−; the reader may refer
to section 2.2 for an adequate definition. Note that it is not mandatory for ε to be dependent on the
discretization parameters k and h. If so, it suffices that ε = ε(k, h)→ 0 as k, h→ 0.
For instance, the penalty parameter εmay be linked to the time discretization step size k in a way that k/ε
tends to 0 when both k, ε vanish. This idea is exposed in the below proposition, but will not be utilized
for the convergence analysis of Algorithm 1.

Proposition 4.1 Let {(V m
ε ,Πm

ε )}Mm=1 be the iterates of Algorithm 1. Then,

E

[
M∑
m=1

ε
∣∣∣∣Πm

ε −Πm−1
ε

∣∣∣∣2
L2

]
≤ 2C1

k

ε
,

where C1 appears in Lemma 4.3.

Proof: Let q ∈ L2(D)\{0}. By identity (2.4), it holds that (Πm
ε − Πm−1

ε , q) =
(
Πm
ε −Πm−1

ε , ρhq
)
.

Therefore, using Algorithm 1, one obtains

ε(Πm
ε −Πm−1

ε , q) = −k(div(V m
ε ), ρhq) ≤ k

√
2||∇V m

ε ||L2 ||q||L2 , (4.11)
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thanks to the Cauchy-Schwarz inequality, the stability of ρh in L2(D) and the estimate ||div·||L2 ≤√
d||∇ · ||L2 , with d = 2 is the dimension. Therefore,

sup
q∈L2(D)\{0}

ε
(
Πm
ε −Πm−1

ε , q
)

||q||L2

≤ k
√

2||∇V m
ε ||L2 .

Since L2(D) is the pivot space, the supremum in the above equation turns into ε||Πm
ε − Πm−1

ε ||L2 .
Therefore, squaring both sides of the above equation, taking the sum overm from 1 toM , then applying
the mathematical expectation return the following

E

[
M∑
m=1

ε||Πm
ε −Πm−1

ε ||2L2

]
≤ 2k

ε
E

[
k

M∑
m=1

||∇V m
ε ||2L2

]
.

Finally, a simple application of Lemma 4.3-(i) completes the proof. �

Going back to the convergence demonstration ofAlgorithm1, the following lemma states amonotonic-
ity property of the operator u 7→ −ν∆u+ B̂(u, u). This feature together with the Lipschitz-continuity of
the diffusion coefficient g allow the avoidance of the Skorokhod theorem that forces the filtered probability
space, which was defined in Section 2, to be exchanged with a new one.

Lemma 4.4 Assume that Lg ≤
√

ν
2C2

P
where CP > 0 is the Poincaré constant, and let u,w ∈ H1

0. For
z := u− w, the following inequality holds true:〈

−ν∆z + B̂(u, u)− B̂(w,w) +
27

2ν3
||w||4L4 z, z

〉
− ||g(u)− g(w)||2L2(K,L2) ≥ 0.

Proof: From [17, Lemma 2.4], it holds that

〈−ν∆z + B̂(u, u)− B̂(w,w) +
27

2ν3
||w||4L4z, z〉 ≥

ν

2
||∇z||2L2 .

It suffices now to subtract from both sides the term ||g(u) − g(w)||2L2(K,L2), use assumption (S2), then
employ the Poincaré inequality. �

Besides Lemma 4.4, it is worth highlighting the strong convergence of {g(V +
ε,k,h)− g(V −ε,k,h)}k,h in

L2(Ω;L2(0, T ; L2(K,L2))), which can be illustrated through assumption (S2) and Lemma 4.3-(i) as
follows

E

[∫ T

0

∣∣∣∣g(V +
ε,k,h)− g(V −ε,k,h)

∣∣∣∣2
L2(K,L2)

dt

]
≤ L2

gkE

[
M∑
m=1

||V m
ε − V m−1

ε ||2L2

]
≤ L2

gC1k → 0.

(4.12)

The convergence demonstration down below is broken down into steps for clarity’s sake.
Step1: Weak convergence and divergence-free
By virtue of Lemma 4.3, the sublinearity of g (see assumption (S2)) and inequality (2.5), the sequences
{V +

ε,k,h}ε,k,h, {
√
εΠ+

ε,k,h}ε,k,h, {g(V −ε,k,h)}ε,k,h are bounded in the Banach spaces L2(Ω;L∞(0, T ; L2)∩
L2(0, T ; H1

0)), L2(Ω;L∞(0, T ;L2(D))) and L2(Ω;L2(0, T : L2(K,L2))), respectively. Therefore,
the Banach-Alaoglu theorem ensures the existence of the limiting functions v ∈ L2(Ω;L∞(0, T ; L2) ∩
L2(0, T ; H1

0)), χ ∈ L2(Ω;L∞(0, T ;L2(D))), G0 ∈ L2(Ω;L2(0, T ; L2(K,L2))) and two subsequences
(still denoted as their original sequences) {V +

ε,k,h}ε,k,h, {
√
εΠ+

ε,k,h}ε,k,h such that

V +
ε,k,h

∗
⇀ v in L2(Ω;L∞(0, T ; L2)), (4.13)
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V +
ε,k,h ⇀ v in L2(Ω;L2(0, T : H1

0)), (4.14)
√
εΠ+

ε,k,h
∗
⇀ χ in L2(Ω;L∞(0, T ;L2(D))), (4.15)

g(V −ε,k,h) ⇀ G0 in L2(Ω;L2(0, T ; L2(K,L2))). (4.16)

Besides convergence (4.16), it is also possible to acquire g(V +
ε,k,h) ⇀ G0 in L2(Ω;L2(0, T ; L2(K,L2)))

as follows: for all φ ∈ L2(Ω;L2(0, T ; L2(K,L2))),(
g(V +

ε,k,h)−G0(t), φ(t)
)

L2(K,L2)
=
(
g(V +

ε,k,h)− g(V −ε,k,h), φ(t)
)

L2(K,L2)

+
(
g(V −ε,k,h)−G0(t), φ(t)

)
L2(K,L2)

.
(4.17)

Now, integrate with respect to t, take the mathematical expectation, use results (4.12) and (4.16) to
complete the proof.
The obtained function v is divergence-free. Indeed, let q ∈ C∞c (D) be a scalar function. From
Algorithm 1, one has ε

(
Πm
ε −Πm−1

ε , ρhq
)

= −k (div(V m
ε ), ρhq). Summing both sides over m from

1 toM leads to
∫ T

0

(
div(V +

ε,k,h), ρhq
)
dt = ε

(
Π0
ε, ρhq

)
−
√
ε
(√

εΠ+
ε,k,h(T ), ρhq

)
. The mathematical

expectation of the right-hand side goes to 0 as ε, k, h→ 0 due to convergence (4.15) and estimate (2.5).
Hence,

E

[∫ T

0

(
div(V +

ε,k,h), q
)
dt

]
= E

[∫ T

0

(
div(V +

ε,k,h), q − ρhq
)
dt

]
+ E

[∫ T

0

(
div(V +

ε,k,h), ρhq
)
dt

]
converges to 0 as ε, k, h → 0, thanks to estimate (2.3) and convergence div(V +

ε,k,h) → div(v) in
L2(Ω;L2(0, T ;L2(D)))which follows straightforwardly from result (4.14). Subsequently, div(V +

ε,k,h) ⇀

0 in L2(Ω;L2(0, T ;L2(D))) which implies div(v) = 0 P-a.s. and a.e. in (0, T )×D.
Let R : H1

0 → H−1 be defined by R(u) := −ν∆u+ B̂(u, u), for all u ∈ H1
0. From Algorithm 1, and for

all ϕ ∈ V such that ϕh := Πhϕ, it follows∫ T

0
〈R(V +

ε,k,h) +∇Π+
ε,k,h, ϕh〉dt = −

(
V +
ε,k,h(T )−V −ε,k,h(0), ϕh

)
+

∫ T

0
〈f+, ϕh〉dt

+

(∫ T

0
g(V −ε,k,h)dW (t), ϕh

)
.

(4.18)

Owing to results (4.13) and (4.16) along with the strong convergence of f+ in L2(Ω;L2(0, T ; H−1))
(see [25, Lemma III.4.9]), the mathematical expectation of the right-hand side of equation (4.18) is
convergent. Therewith, define R0 by

E

[∫ T

0
〈R0(t), ϕ〉dt

]
= lim

ε,k,h→0
E

[∫ T

0
〈R(V +

ε,k,h) +∇Π+
ε,k,h,Πhϕ〉dt

]
, ∀ϕ ∈ V .

Subsequently, the limiting function v satisfies P-a.s. and for all (t, ϕ) ∈ [0, T ]×V the following:

(v(t)− v0, ϕ) +

∫ t

0
〈R0(s), ϕ〉ds =

∫ t

0
〈f(s), ϕ〉ds+

(∫ t

0
G0(s)dW (s), ϕ

)
. (4.19)

Step 2: Identification of R0 and G0

For σ ∈ C
(

[0, T ],V
)
, define the finite element space of weakly divergence-free functions:

Vh :=
{
uh ∈ Hh

∣∣ (div(uh), qh) = 0, ∀qh ∈ Lh
}
.
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Let Ph : L2 → Vh be the projection operator from L2 onto Vh such that for all u ∈ L2,

(Phu, ϕh) = (u, ϕh) , ∀ϕh ∈ Vh.

The space Vh is required because the function σ that was introduced shortly before is divergence-free
and shall be projected onto a finite element space that possesses a null divergence constraint. This will
become clearer when the discrete pressure {Πm

ε }
M
m=1 is dealt with in the sequel, especially because the

limit of iterates {(V m
ε ,Πm

ε )}Mm=1 takes place in divergence-free spaces, as shown earlier for v. It is worth
pointing out that the finite element space Vh does not interact with {V m

ε }
M
m=1 and {Πm

ε }
M
m=1. In other

words, the sequence {V m
ε }

M
m=1 will remain non divergence-free and will never belong to Vh. Now for all

m ∈ {1, . . . ,M}, denote σ+
h (t) := σmh = Phσ(tm) and define r+(t) := rm :=

27

ν3
k

m∑
n=1

||σnh ||
4
L4 for all

t ∈ (tm−1, tm], together with an exponential non-increasing function η : [0, T ]→ R verifying η(0) = 0,
and having the discrete forms η+(t) := ηm := e−r

+(t) for all t ∈ (tm−1, tm] and η−(t) := ηm−1 for
all t ∈ [tm−1, tm). Setting (ϕh, qh) = (V m

ε ,Πm
ε ) in Algorithm 1, using Cauchy-Schwarz and Young’s

inequalities, identity (a − b, a) = 1
2 ||a||

2
L2 − 1

2 ||b||
2
L2 + 1

2 ||a − b||
2
L2 , and finally multiplying by ηm−1

yield

ηm−1(||V m
ε ||2L2 − ||V m−1

ε ||2L2) + 2ηm−1k 〈R(V m
ε ) +∇Πm

ε , V
m
ε 〉 ≤ 2ηm−1k〈fm, V m

ε 〉
+ ηm−1||g(V m−1

ε )∆mW ||2L2 + 2ηm−1
(
g(V m−1

ε )∆mW,V
m−1
ε

)
.

(4.20)

Note that
∑M

m=1 η
m−1(||V m

ε ||2L2 − ||V m−1
ε ||2L2) =

∫ T
0 η−(t)dt||V +

ε,k,h||
2
L2dt, and through equation (4.6),

it holds that E
[
||g(V m−1

ε )∆mW ||2L2

]
= kE

[
||g(V m−1

ε )||2L2(K,L2)

]
. Therefore, taking the sum over

m from 1 to M , employing Proposition 2.2-(ii), then applying the mathematical expectation to equa-
tion (4.20) give

E
[
η+(T )||V +

ε,k,h(T )||2L2 − ||V −ε,k,h(0)||2L2

]
≤ E

[∫ T

0
||V +

ε,k,h||
2
L2dtη

+dt

]
− E

[∫ T

0
η−(t)

〈
2R(V +

ε,k,h) + 2∇Π+
ε,k,h,V

+
ε,k,h

〉
dt

]
+ E

[
2

∫ T

0
η−(t)

〈
f+,V +

ε,k,h

〉
dt

]
+ E

[∫ T

0
η−(t)||g(V −ε,k,h)||2L2(K,L2)dt

]
=: I + II + III + IV,

(4.21)

where the last term on the right-hand side of equation (4.20) vanishes after taking its expectation due to
assumption (S2) and the measurability of {V m

ε }m (see Lemma 4.1). By virtue of Proposition 2.2-(iii), it
follows that dtη+ = − 27

ν3
η−||σ+

h ||
4
L4 + 272k

2ν6
eδ(t)||σ+

h ||
8
L4 , for some δ ∈ (−r+,−r−). Therefore,

I = −E

[∫ T

0
η−(t)

27

ν3
||σ+

h ||
4
L4 ||V +

ε,k,h||
2
L2dt

]
+

272

2ν6
kE

[∫ T

0
||V +

ε,k,h||
2
L2e

δ(t)||σ+
h ||

8
L4dt

]
=: I1 + I2.

Obviously, I2 goes to 0 as k, h, ε→ 0 thanks to Lemma 4.3. I1 can be rewritten as follows

I1 =− 27

ν3
E

[∫ T

0
η−||σ+

h ||
4
L4 ||V +

ε,k,h − σ
+
h ||

2
L2dt

]
− 27

ν3
E

[∫ T

0
η−||σ+

h ||
4
L4

{
2
(

V +
ε,k,h, σ

+
h

)
− ||σ+

h ||
2
L2

}
dt

]
=: I1,1 + I1,2.
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Making use of result (4.14) along with the strong convergence of {σmh }m to σ in C([0, T ]; V), it can be
easily shown that I1,2 → − 27

ν3
E
[∫ T

0 η(t)||σ(t)||4L4

{
2
(
v(t), σ(t)

)
− ||σ(t)||2L2

}
dt
]
. On the other hand,

II = −E

[∫ T

0
η−〈2R(V +

ε,k,h)− 2R(σ+
h ),V +

ε,k,h − σ
+
h 〉dt

]
− E

[∫ T

0
η−〈2∇Π+

ε,k,h,V
+
ε,k,h − σ

+
h 〉dt

]
− E

[∫ T

0
η−〈2R(V +

ε,k,h) + 2∇Π+
ε,k,h − 2R(σ+

h ), σ+
h 〉dt

]
− E

[∫ T

0
η−〈2R(σ+

h ),V +
ε,k,h〉dt

]
=: II1 + II2 + II3 + II4.

By an integration by parts, II2 can be rewritten as follows:

II2 = 2E

[∫ T

0
η−(t)

(
Π+
ε,k,h, div(V +

ε,k,h)
)
dt

]
= 2E

[
k

M∑
m=1

ηm−1 (Πm
ε , div(V m

ε ))

]
,

because σ+
h ∈ Vh i.e.

(
Πε,k,h, div(σ+

h )
)

= 0. Therefore, making use of Algorithm 1 yields

II2 = −2εE

[
M∑
m=1

ηm−1
(
Πm
ε −Πm−1

ε ,Πm
ε

)]

= −εE

[
M∑
m=1

ηm−1
(
||Πm

ε ||2L2 − ||Πm−1
ε ||2L2 + ||Πm

ε −Πm−1
ε ||2L2

)]

= −εE
[∫ T

0
η−dt||Π+

ε,k,h||
2
L2

]
− εE

[
M∑
m=1

ηm−1||Πm
ε −Πm−1

ε ||2L2

]
=: II2,1 + II2,2,

thanks to the identity (a− b, a) = 1
2

(
||a||2L2 − ||b||2L2 + ||a− b||2L2

)
. Observe first that II2,2 ≤ 0, which

is true because {ηm}m is a nonnegative sequence. Moreover, by Proposition 2.2-(ii), it holds that

II2,1 = εE

[∫ T

0
||Π+

ε,k,h||
2
L2dtη

+(t)dt

]
− εE

[
η+(T )||Π+

ε,k,h(T )||2L2 − ||Π−ε,k,h(0)||2L2

]
≤ εE

[∫ T

0
||Π+

ε,k,h||
2
L2dtη

+(t)dt

]
+ εE

[
||Π−ε,k,h(0)||2L2

]
=: II2,1,1 + II2,1,2.

Proposition 2.2-(iii) and Lemma 4.3-(ii) imply

II2,1,1 = εE

[∫ T

0
||Π+

ε,k,h||
2
L2

(
−27

ν3
η−||σ+

h ||
4
L4 +

272k

2ν6
eδ(t)||σ+

h ||
8
L4

)
dt

]
≤ 272

2ν6
||σ||8L∞(0,T ;V)E

[∫ T

0
ε||Π+

ε,k,h||
2
L2

]
k ≤ 272T

2ν6
||σ||8L∞(0,T ;V)E

[
ε max

1≤m≤M
||Πm

ε ||2L2

]
k

≤ 272TC1

2ν6
||σ||8L∞(0,T ;V)k → 0 as k → 0,

for some δ(t) ∈ (−r+(t),−r−(t)). Furthermore, since the projector ρh is stable in L2(D), it follows
that

II2,1,2 = εE
[
||p0

h||2L2

]
≤ εE

[
||π0||2L2

]
→ 0 as ε→ 0.

Moreover, since {σmh }m is strongly convergent toward σ in C([0, T ]; V), and by the definition of op-
erator R0, one obtains II3 → −E

[∫ T
0 η(t)〈2R0(t)− 2R(σ(t)), σ(t)〉dt

]
as k, h, ε → 0. Similarly,

II4 → −E
[∫ T

0 η(t)〈2R(σ(t)), v(t)〉dt
]
, thanks to convergence (4.14). As mentioned in Step 1, {fm}m
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converges strongly toward f in L2(Ω;L2(0, T ; H−1)). The latter together with convergence (4.14) imply
that III → E

[
2
∫ T

0 η(t) 〈f(t), v(t)〉 dt
]
. Moving on to term IV , it can be reformulated as follows:

IV = E
[ ∫ T

0
η−(t)

{
||g(V −ε,k,h)− g(V +

ε,k,h)||2L2(K,L2) + ||g(V +
ε,k,h)− g(σ+

h )||2L2(K,L2)

− ||g(σ+
h )||2L2(K,L2) + 2

(
g(V +

ε,k,h), g(σ+
h )
)

L2(K,L2)

+ 2
(
g(V −ε,k,h)− g(V +

ε,k,h), g(V +
ε,k,h)

)
L2(K,L2)

}
dt
]

:= IV1 + . . .+ IV5.

From equation (4.12), it holds that IV1 → 0. Furthermore, Lemma 4.4 yields I1,1 + II1 + IV2 ≤ 0, the
strong convergence of{σmh }m togetherwith result (4.17) grant IV3 → −E

[∫ T
0 η(t)||g(σ(t))||2L2(K,L2)dt

]
and IV4 → E

[
2
∫ T

0 η(t) (G0(t), g(σ(t)))L2(K,L2) dt
]
. Finally, IV5 → 0 by virtue of convergences (4.12)

and (4.17). Putting it all together, equation (4.21) becomes

lim
ε,k,h→0

E
[
η+(T )||V +

ε,k,h(T )||2L2 − ||V −ε,k,h(0)||2L2

]
≤ E

[∫ T

0
η′(t)

{
2
(
v, σ
)
− ||σ||2L2

}
dt

]
− 2E

[ ∫ T

0
η(t)

{
〈R0 −R(σ), σ〉+ 〈R(σ)− f, v〉+

1

2
||g(σ)||2L2(K,L2)

−
(
G0, g(σ)

)
L2(K,L2)

}
dt
]
,

(4.22)

where η(t) = exp
(
− 27
ν3

∫ t
0 ||σ(s)||4L4ds

)
. Taking into account that E

[
η(T )||v(T )||2L2 − ||v0||2L2

]
is

smaller than the left-hand side of equation (4.22) (thanks to result (4.13)), and applying Itô’s formula to
the process (t, v) 7→ η(t)||v||2L2 (recall that v satisfies equation (4.19)) lead to

E

[∫ T

0
η′(t)||v(t)− σ(t)||2L2dt

]
+ E

[∫ T

0
η(t)

∣∣∣∣G0(t)− g(σ(t))
∣∣∣∣2

L2(K,L2)
dt

]
≤ 2E

[∫ T

0
η(t)

〈
R(σ(t))−R0(t), σ(t)− v(t)

〉
dt

]
, ∀σ ∈ C([0, T ];V ).

(4.23)

Arguing by density, it can be shown that inequality (4.23) holds for all σ ∈ L4(Ω;L∞(0, T ; H) ∩
L2(Ω;L2(0, T ; V)). Therefore, setting σ = v yields G0 = g(v) P-a.s. and a.e. in [0, T ]×D. With that
said, the second term on the left-hand side of equation (4.23) cancels out. To identify R0, it suffices to
consider σ = v + µu for µ > 0 and u ∈ L4(Ω;L∞(0, T ; H)) ∩ L2(Ω;L2(0, T ; V)). Subsequently,

µE

[∫ T

0
η′(t)||u(t)||2L2dt

]
≤ 2E

[∫ T

0
η(t)

〈
R(v(t) + µu(t))−R0(t), u(t)

〉
dt

]
.

Letting µ → 0 and taking into consideration the hemicontinuity of the operator R, one infers that
E
[∫ T

0 η(t)
〈
R(v(t))−R0(t), u(t)

〉
dt
]
≥ 0, for all u ∈ L4(Ω;L∞(0, T ; H)) ∩ L2(Ω;L2(0, T ; V)).

Consequently, R0 = R(v) in L2(Ω;L2(0, T ; H−1)).
Step 3: Verification of v as NSE solution
The obtained function v is henceforth a solution to equations (1.1) in the sense of Definition 2.2. Indeed,
the identifications in Step 2 turn equation (4.19) into

(v(t), ϕ) + ν

∫ t

0
(∇v(s),∇ϕ) ds+

∫ t

0
〈B̂(v(t), v(t)), ϕ〉ds

= (v0, ϕ) +

∫ t

0
〈f(s), ϕ〉ds+

(∫ t

0
g(v(s))dW (s), ϕ

)
, ∀ϕ ∈ V.
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By definition, B̂(v, v) =
(
[v · ∇] + 1

2div(v)
)
v = [v · ∇]v, thanks to Step 2, where the null divergence

of v was illustrated. Finally, v ∈ L2(Ω;C([0, T ]; L2)) can be easily proven via equation (4.19) by using
the standard approach in [20].
Step 4: Convergence of the whole sequence
Convergence results that were discovered within Step 1 are all up to a subsequence. However, due to the
uniqueness of v (see [18, Proposition 3.2]), it follows that the whole sequence {V +

ε,k,h}ε,k,h is convergent
toward v.

4.3 A linear version of Algorithm 1
In terms of simulations, a less time-consuming numerical scheme can be embodied through a linear

Algorithm. This can be made up using a linearization of the trilinear term in Algorithm 1 as follows:

Algorithm 2 Starting from an initial datum
(
v0
h, p

0
h

)
∈ Hh×Lh, if

(
V m−1
ε ,Πm−1

ε

)
∈ Hh×Lh is known

for somem ∈ {1, . . . ,M}, find (V m
ε ,Πm

ε ) ∈ Hh × Lh that satisfies P-a.s. the following:
(
V m
ε − V m−1

ε , ϕh
)

+ kν (∇V m
ε ,∇ϕ) + kb̂(V m−1

ε , V m
ε , ϕh)− (Πm

ε , div(ϕh))

= k 〈fm, ϕh〉+
(
g(V m−1

ε )∆mW,ϕh
)
, ∀ϕ ∈ Hh,

ε
k

(
Πm
ε −Πm−1

ε , qh
)

+ (div(V m
ε ), qh) = 0, ∀qh ∈ Lh,

where fm, ∆mW are defined in Algorithm 1 and
(
V 0
ε ,Π

0
ε

)
:= (v0

h, p
0
h).

Observe that b̂(V m−1
ε , V m

ε , V m
ε ) = 0, thanks to Proposition 2.1-(ii). Therefore, iterates {(V m

ε ,Πm
ε )}Mm=1

of Algorithm 2 satisfy Lemmas 4.1, 4.3 and they fulfill better uniqueness properties than those of
Algorithm 1, as demonstrated in Lemma4.5. However, due to the infamous properties of b̂, the initial
datum v0

h should undergo a new assumption that consists of a uniform bound in h of
∣∣∣∣∇v0

h

∣∣∣∣
L2 , as

explained beneath the proof of Lemma 4.5.

Lemma 4.5 Iterates {(V m
ε ,Πm

ε )}Mm=1 of Algorithm 2 are unique P-a.s. in Ω and a.e. in [0, T ]×D.

Proof: Let{(V m
ε ,Πm

ε )}Mm=1 and{(Umε , Pmε )}Mm=1 be two solutions toAlgorithm2 such that (V 0
ε ,Π

0
ε) =

(U0
ε , P

0
ε ) = (v0

h, p
0
h). Denote Zmε := V m

ε − Umε and Qmε := Πm
ε − Pmε , for allm ∈ {0, 1, . . . ,M}. The

following equation is P-a.s. satisfied by {(Zmε , Qmε )}Mm=1:
(
Zmε − Zm−1

ε , ϕh
)

+ kν (∇Zmε ,∇ϕh) + k
〈
B̂(V m−1

ε , V m
ε )− B̂(Um−1

ε , Umε ), ϕh

〉
− k (Qmε , div(ϕh)) =

(
[g(V m−1

ε )− g(Um−1
ε )]∆mW,ϕh

)
, ∀ϕ ∈ Hh,

ε
k

(
Qmε −Qm−1

ε , qh
)

+ (div(Zmε ), qh) = 0, ∀qh ∈ Lh.

(4.24)

For m = 1, it follows that g(V 0
ε )− g(U0

ε ) = 0 and B̂(V 0
ε , V

1
ε )− B̂(U0

ε , U
1
ε ) = B̂(V 0

ε − V 0
ε , Z

1
ε ) = 0.

Hence, setting (ϕh, qh) = (Z1
ε , Q

1
ε) in equations (4.24) yields ||Z1

ε ||2L2 + ε||Q1
ε||2L2 + kν||∇Z1

ε ||2L2 = 0
which implies Z1

ε = Q1
ε = 0 P-a.s. and a.e. in [0, T ]×D. Arguing by induction completes the proof. �

All steps that were conducted in section 4.2.2 are applicable to Algorithm 2, except for Lemma 4.4
which does not suit the associated bilinear operator B̂ since its variables are not identical. Therefore, a
slight adjustment should take place, and it consists of the following:
In Step 1 of Section 4.2.2, R(V +

ε,k,h) shall be substituted by a new operator S (V −ε,k,h,V
+
ε,k,h) :=

−ν∆V +
ε,k,h + B̂(V −ε,k,h,V

+
ε,k,h) and R0 by S0 which is defined by[∫ T

0
〈S0(t), ϕ〉dt

]
= lim

ε,k,h→0
E

[∫ T

0
〈S (V −ε,k,h,V

+
ε,k,h) +∇Π+

ε,k,h,Πhϕdt〉
]
, ∀ϕ ∈ V .
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Equation (4.21) remains unchanged because 〈S (V −ε,k,h,V
+
ε,k,h),V +

ε,k,h〉 = 〈R(V +
ε,k,h),V +

ε,k,h〉, thanks to
Proposition 2.1-(ii). However, when passing to the limit, term II3 in Step 2 is not suitable for S0, which
is why it can be modified by employing Proposition 2.1-(ii) as follows:

II ′3 =− 2E

[∫ T

0
η−
〈
S (V −ε,k,h,V

+
ε,k,h) +∇Π+

ε,k,h −S (σ−h , σ
+
h ), σ+

h

〉
dt

]
− 2E

[∫ T

0
η−
〈
B̂
(

V +
ε,k,h −V −ε,k,h,V

+
ε,k,h

)
, σ+

h

〉
dt

]
:= II ′3,1 + II ′3,2.

II ′3,1 goes to −2E
[∫ T

0 η(t)〈S0(t)−S (σ(t), σ(t)), σ(t)〉dt
]
as ε, k, h → 0. Consequently, the whole

proof of section 4.2.2 becomes applicable to Algorithm 2, provided that II ′3,2 goes to 0. To this end,
denote Zε,k,h = V +

ε,k,h −V −ε,k,h and employ Proposition 2.1-(iii) to ensure:

∫ T

0
η(t)

〈
B̂
(

Zε,k,h,V +
ε,k,h

)
, σ+

h

〉
dt .

∫ T

0
||Zε,k,h||

1
2

L2 ||∇Zε,k,h||
1
2

L2 ||∇V +
ε,k,h||L2 ||∇σ+

h ||L2dt

. k
1
4

(
M∑
m=1

||V m
ε − V m−1

ε ||2L2

) 1
4
(
k

M∑
m=1

||∇(V m
ε − V m−1

ε )||2L2

) 1
4
(
k

M∑
m=1

||∇V m
ε ||2L2

) 1
2

,

thanks to the Hölder inequality and the high regularity of σ. Therewith,

II ′3,2 . k
1
4 E

[
M∑
m=1

||V m
ε − V m−1

ε ||2L2

] 1
4

E

[
k

M∑
m=1

||∇(V m
ε − V m−1

ε )||2L2

] 1
4

E

[
k

M∑
m=1

||∇V m
ε ||2L2

] 1
2

.

The first and third expectations are bounded by virtue of Lemma 4.3-(i). Additionally, the second
expectation, after undergoing a triangle inequality, can be controlled in a similar way provided that
||∇v0

h||L2 is uniformly bounded in h. Consequently, II ′3,2 . k
1
4 → 0.

One way of ensuring uniform boundedness in h of
∣∣∣∣∇v0

h

∣∣∣∣
L2 is through the Ritz (also known as

elliptic) operator R h : H1
0 → Hh, which is stable in H1

0 (see for instance [27]). In other words, setting
v0
h = R hv0 gets the job done, as long as v0 ∈ H1

0. Another way is to use the already defined projection
Πh which can be an alternative for R h. This is true since the triangulation Th is quasi-uniform (see [6,
Theorem 4]). With being said, an additional theorem can be given.

Theorem 4.1 For T > 0, let (Ω,F , (Ft)0≤t≤T ,P) be a filtered probability space,D ⊂ R2 be a polygonal
domain, assumptions (S1)-(S2) be satisfied, and v0 ∈ L2(Ω; H1

0). Given a positive integerM , define the
discretization step size k := T

M such that k ∈ (0, 1) and Ik forms a uniform partition of the time interval
[0, T ]. Let ε ∈ (0, 1) be a given penalty parameter, and h ∈ (0, 1) be the space discretization step size
such that the triangulation Th is quasi-uniform. Define the finite element triple

(
Hh, Lh,

(
v0
h, p

0
h

))
such

that the initial datum
(
v0
h, p

0
h

)
belongs to (Hh, Lh), and v0

h ∈ {R hv0,Πhv0}. Then, the following results
hold:

• For a given (k, h, ε) ∈ (0, 1)3, there is a discrete solution {(V m
ε ,Πm

ε )}Mm=1 to Algorithm 2
satisfying Lemmas 4.1, 4.3, and 4.5.

• For a family {k, h, ε} of parameters fulfilling k, h, ε → 0 simultaneously, such that v0
h → v0 as

h→ 0 in the space L2(Ω; L2), the solution {(V m
ε ,Πm

ε )}Mm=1 of Algorithm 2 converges toward the
unique strong solution of stochastic Navier-Stokes equations (1.1) in the sense of Definition 2.2.
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4.4 How to properly choose ε regarding saddle point-based schemes?
For simplicity’s sake and knowing that the Stokes problem establishes an insight into the Navier-

Stokes equations, the foremost aim of this section will be to evaluate a Stokes version of Algorithm 1
against a specific numerical scheme of saddle point aspect of the following stochastic Stokes problem:

∂u
∂t − ν∆u+∇p = f + g(u)∂W∂t , in (0, T )×D,
div(u) = 0, in (0, T )×D,
u(0, ·) = v0, in D.

(4.25)

in order to choose the parameter ε effectively. The finite element spaces Hh and Lh will be maintained
throughout this section, and the discrete LBB (also known as inf-sup) condition

sup
ϕh∈Hh

(div(ϕh), qh)

||∇ϕh||L2

≥ β ||qh||L2 , ∀qh ∈ Lh, (4.26)

will be required since numerical schemes of Stokes and Navier-Stokes problems dealing with saddle point
techniques lack of velocity-pressure stability if such a condition was omitted. The constant β > 0 does
not depend on the mesh size h. With that said, it is now meaningful to state the convective-free version
of Algorithm 1: 

(
Umε − Um−1

ε , ϕh
)

+ kν (∇Umε ,∇ϕh)− k (pmε , div(ϕh))

= k〈fm, ϕh〉+
(
g(Um−1

ε )∆mW,ϕh
)
, ∀ϕh ∈ Hh,

ε
k

(
pmε − pm−1

ε , qh
)

+ (div(Umε ), qh) = 0, ∀qh ∈ Lh,
(4.27)

together with the following saddle point-based numerical scheme of the Stokes problem:
(
Um − Um−1, ϕh

)
+ kν (∇Um,∇ϕh)− k (pm, div(ϕh))

= k 〈fm, ϕh〉+
(
g(Um−1)∆mW,ϕh

)
, ∀ϕh ∈ Hh,

(div(Um), qh) = 0, ∀qh ∈ Lh.
(4.28)

Here, ∆mW and fm are identical to those of Algorithm 1, and the starting points U0
ε = U0 = Πhv0.

The convergence analysis of scheme (4.28) along with its convergence rate are provided in [11]. To
come up with effective and adequate conditions upon the parameter ε, it suffices to investigate the
quantity ||Umε − Um||. This is logical because if u denotes the solution of Stokes equations (4.25),
then ||Umε − u(tm)|| ≤ ||Umε − Um|| + ||Um − u(tm)|| grants the rate at which scheme (4.27) might
converge. To this purpose, subtracting equations (4.27) and (4.28) yields for all ϕh ∈ Hh\{0},(

Umε − Um − (Um−1
ε − Um−1)− [g(Um−1

ε )− g(Um−1)]∆mW,ϕh
)

+ k (pm − pmε , div(ϕh)) = kν (∇(Um − Umε ),∇ϕh) ≤ kν||∇(Um − Umε )||L2 ||∇ϕh||L2 .
(4.29)

Dividing by ||∇ϕh||L2 , taking the supremum over ϕh ∈ Hh\{0} and employing the discrete LBB-
condition (4.26) imply

||pm − pmε ||L2 ≤
ν

β
||∇(Um − Umε )||L2 , ∀m ∈ {1, . . . ,M}. (4.30)

Estimate (4.30) is true because ω 7→ sup
ϕh∈Hh\{0}

(Umε −Um−(Um−1
ε −Um−1)−[g(Um−1

ε )−g(Um−1)]∆mW,ϕh)
||∇ϕh||L2

is

non-negative which results from the fact that Hh is a vector space. In other words, this supremum can be
roughly seen as the H−1-norm of Umε −Um− (Um−1

ε −Um−1)− [g(Um−1
ε )− g(Um−1)]∆mW . On the
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other hand, setting ϕh = Umε − Um in equation (4.29), using identity 2(a − b, a) = ||a||2L2 − ||b||2L2 +
||a− b||2L2 , the Cauchy-Schwarz and Young inequalities return

1

2
||Umε − Um||2L2 −

1

2
||Um−1

ε − Um−1||2L2 + kν||∇(Umε − Um)||2L2 ≤ k (pmε − pm, div(Umε ))

+
(
[g(Um−1

ε )− g(Um−1)]∆mW,U
m−1
ε − Um−1

)
+

1

2

∣∣∣∣[g(Um−1
ε )− g(Um−1)]∆mW

∣∣∣∣2
L2 ,

(4.31)

where (pmε − pm, div(Um)) = 0, thanks to scheme (4.28). Summing the above equation overm from 1
to an arbitrary ` ∈ {1, . . . ,M}, taking its mathematical expectation, employing the Itô isometry to the
last term on its right-hand side together with assumption (S2) and making use of the identity U0

ε = U0

yield

E

[
1

2
||U `ε − U `||2L2 + kν

∑̀
m=1

||∇(Umε − Um)||2L2

]
≤ E

[
k
∑̀
m=1

(pmε − pm, div(Umε ))

]

+
L2
g

2
E

[
k
∑̀
m=1

||Um−1
ε − Um−1||2L2

]
,

(4.32)

where the mathematical expectation of the penultimate term in equation (4.31) vanishes due to assump-
tion (S2) and the measurability of {Umε }Mm=1 and {Um}Mm=1. Attention will now turn toward the first
term on the right-hand side of equation (4.32) which will eventually hand the upper-bound in terms of ε.
Using equations (4.27), one obtains

J := E

[
k
∑̀
m=1

(pmε − pm, div(Umε ))

]
= −E

[
ε
∑̀
m=1

(
pmε − pm−1

ε , pmε − pm
)]

≤ εν

β
E

[∑̀
m=1

||pmε − pm−1
ε ||L2 ||∇(Umε − Um)||L2

]

≤
√
εν

β
E

[
M∑
m=1

ε||pmε − pm−1
ε ||2L2

]1/2

E

[∑̀
m=1

||∇(Umε − Um)||2L2

]1/2

≤
√
εν

4β2
E

[
ε

M∑
m=1

||pmε − pm−1
ε ||2L2

]
+
√
ενE

[∑̀
m=1

||∇(Umε − Um)||2L2

]

≤
√
εν

4β2
C1 +

√
ενE

[∑̀
m=1

||∇(Umε − Um)||2L2

]
,

(4.33)

thanks to the Cauchy-Schwarz and Young inequalities, estimate (4.30), and Lemma 4.3-(ii). In order to
handle the last term on the right-hand side of equation (4.33), the penalty parameter ε shall undergo an
assumption; that is,

√
ε ≤ k. This way, it becomes absorbable in the left-hand side of equation (4.32).

Finally, plug the result of estimate (4.33) in inequality (4.32) and make use of the discrete Grönwall
inequality to achieve

1

2
max

1≤m≤M
E
[
||Umε − Um||

2
L2

]
+ E

[
(k −

√
ε)ν

M∑
m=1

||∇(Umε − Um)||2L2

]
≤ C̃
√
ε, (4.34)

for some constant C̃ > 0 depending only on β,C1, ν, Lg and T .
Estimate (4.34) seems to have the best upper-bound amongst the other possible ways of estimation.

Besides, some calculation techniques may be inconsistent with the assumption
√
ε ≤ k. For instance,
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Proposition 4.1 could have been employed for the estimation of the term J , especially for the penultimate
inequality in equation (4.33):

J ≤ C1ν

2β2

k√
ε

+
√
ενE

[
M∑
m=1

||∇(Umε − Um)||2L2

]
,

however, the second term on the right-hand side of the above inequality becomes non absorbable in the
left-hand side of equation (4.32). Indeed, if the assumption

√
ε ≤ k is imposed, the obtained rate k√

ε

will no longer go to 0, which is senseless.

5 Numerical experiments and conclusion
The implementation within this section will be carried out through Algorithm 2 and a saddle point

based-numerical scheme [4, Algorithm 3]:

Algorithm 3 LetM ∈ N and V 0 = v0
h ∈ Hh be given. For every m ∈ {1, . . . ,M}, find an Hh × Lh-

valued (V m,Πm) such that
(
V m − V m−1, ϕh

)
+ kν (∇V m,∇ϕh) + kb̂(V m−1, V m, ϕh)− k (Πm, div(ϕh))

= k〈fm, ϕh〉+
(
g(V m−1)∆mW,ϕh

)
, ∀ϕh ∈ Hh,

(div(V m), qh) = 0, ∀qh ∈ Lh,

which will play the reference role with respect to the values of the parameter ε. The domain’s meshing is
carried out through the open source finite element mesh generator Gmsh [12], the implementation of the
aforementioned algorithms is executed by the open source finite element software FEniCS [16], and the
visualization is ensured via Paraview [1]. The simulation’s configuration down below is set as follows:
T = 1, ν = 1, h = 0.16, ε = 10−5, k = 0.01. For the sake of comparison, the space discretization
will be conducted by the lower order Taylor-Hood (P2/P1) finite element for both algorithms 2 and 3.
The initial data u0 and π0 are set to 0 which means that v0

h = (0, 0) and p0
h = 0. The domain D is an

L-shaped geometry whose figure and mesh are displayed in Figure 1.

Figure 1: The domain D and its mesh

The boundary condition

v(x, y) =

{
(1, 0) if (x, y) ∈ {0} × [0, 1],

(0, 0) elsewhere,
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is non-homogeneous, which is possible since a simple lifting technique can take the problem’s boundary
condition back to a homogeneous setting. The source term f takes on the value (0, 0) and the diffusion
coefficient g = Id i.e. it is an additive noise. The Wiener increment ∆mW is approximated as follows:
let J ∈ N be non-zero, and W1, W2 be two independent H1

0 (D)-valued Wiener processes such that
W = (W1,W2). Then,

∆mW` ≈
√
k

J∑
i,j=1

ξ`,mi,j ei,j , ` ∈ {1, 2}.

The parameter J takes on the value 5,
{

(ξ1,m
i,j , ξ

2,m
i,j )

}m
i,j

is a family of independent identically distributed

normal random variables, and ei,j(x, y) = 2
5sin(iπx/5)sin(jπy/5) for all i, j ∈ N. Although {ei,j}i,j

may not be the best choice for an L-shaped domain (because they represent the Laplace eigenfunctions
on the square (0, 5)2 with a Dirichlet boundary condition), they can be thought of herein as a restriction
to D. The explicit formula of the Laplace eigenfunctions on an L-shaped domain is unknown as it is
explained in [21]. With all that being said, it is now possible to exhibit the simulation results:

Figure 2: One realization of V M (left) and V M
ε (right) at time T = 1 for ε = 10−5

As ε gets smaller, the difference between V m and V m
ε becomes indistinguishable. This fact is illustrated

in an accurate way down below where the relationship between ε and the error E
[∣∣∣∣VM − VM

ε

∣∣∣∣2
L2

]
is

exposed:

V ar
(∣∣∣∣VM − VM

ε

∣∣∣∣
L2

)
ε 2.9× 10−4

ε/5 1.07× 10−4

ε/25 2.5× 10−5

ε/125 3.2× 10−6

ε/625 2.7× 10−7

Figure 3: Error and error-variance in terms of ε
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The computed error in figure 3 uses a Monte-Carlo method with 1000 realizations. The obtained curve
was expected; it emphasizes the fact that ε should be taken as small as possible in order to guarantee
accurate outcomes.

6 Conclusion
This paper provides a new approach to simulating the two-dimensional stochastic incompressible

Navier-Stokes equations. The introduced technique can be thought of as a compromise between (strongly)
divergence-free finite element methods and saddle point problems where a discrete LBB condition is
required to prove the pressure’s existence. No relationships were assumed between ε and the discretization
parameters k and h, although it could have been possible. If so, ε must be solely linked to k on account
of the penalizing term ε∂tp

ε which offers a supplementary time regularity, meaning that h should not
intervene. Whereas, in the case where the additional term was, for example, ε∆∂tpε; that is, the mass
conservation equation of system (1.2) had the following form:

div(vε) + ε∆∂tp
ε = 0,

then, the parameter ε may be expressed in terms of both discretization step sizes k and h because the
Laplace operator offers a supplementary space-regularity to the pressure field pε, which needs to disappear
when passing to the limit in order to recover a solution to the stochastic incompressible Navier-Stokes
equations. In Section 4.4, ε was also linked to the time discretization step size k under a particular
numerical scheme that involves a discrete LBB condition. This given relationship can dramatically
deviate if another numerical method is selected to be compared with the proposed algorithm herein.
After all, the most accurate assumption involving both k and ε can come to light during the convergence
rate study of Algorithm 1 (or 2).
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