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Numerical approximation of the stochastic
Navier-Stokes equations through artificial

compressibility

Jad Doghman*

CNRS, Fédération de Mathématiques de CentraleSupélec FR 3487, Univ. Paris-Saclay,
CentraleSupélec, 91190 Gif-sur-Yvette, France

Abstract

A constructive numerical approximation of the two-dimensional unsteady stochastic
Navier-Stokes equations of an incompressible fluid is proposed via a pseudo-compressibility
technique involving a parameter ε. Space and time are discretized through a finite element
approximation and an Euler method. The convergence analysis of the suggested numerical
scheme is investigated throughout this paper. It is based on a local monotonicity property
permitting the convergence toward the unique strong solution of the Navier-Stokes equations
to occur within the originally introduced probability space. Justified optimal conditions are
imposed on the parameter ε to ensure convergence within the best rate.

Keywords: stochastic Navier-Stokes, multiplicative noise, Penalty method, finite element, Euler
method

1 Introduction
The first thought that springs to mind when it comes to the numerical simulation of the Navier-Stokes

equations (NSEs) is the complexity of the occurring situation, which can be represented by turbulent
behaviors and physical processes by which energy becomes not only unavailable but irrecoverable in any
form. The notorious NSEs are widely-known for their essential role in modeling phenomena that emerge
from aeronautical science, thermo-hydraulics, ocean dynamics, and so on. They read in this paper’s
context: 

∂t v − ν∆v + [v · ∇]v + ∇p = f + g(v) ÛW,

div(v) = 0,
v(0, ·) = v0,

(1.1)
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2 Numerical analysis of the stochastic Navier-Stokes

with v = v(ω, t, x) being the fluid velocity, p = p(ω, t, x) is the pressure, f = f (ω, t, x) embodies an
external force, g represents the diffusion coefficient, and ν > 0 is the fluid kinematic viscosity. The
term W is regarded as a Wiener process admitting a trace-class covariance operator, with the notation
ÛW = ∂tW(ω, t, x).

The present paper deals with numerical approximations of the two-dimensional incompressible
NSEs driven by multiplicative noise, equipped with homogeneous Dirichlet boundary conditions, within
a bounded polygonal domain of R2. Since the construction of divergence-free subspaces is not an
effortless task (see for instance [2, 10, 19]), the attention will be turned toward a variant of the underlying
equations involving a pseudo-compressibility method, avoiding divergence-free fields, and owning the
unique, strong solution of the NSEs when passing to the limit, under a few assumptions. To be more
accurate, the model which will undergo the discretization later on satisfies:

∂t v
ε − ν∆vε + [vε · ∇]vε + 1

2 [div vε]vε + ∇pε = f + g(vε) ÛW,

ε∂tpε + div vε = 0,(
vε(0, ·), pε(0, ·)

)
= (v0, p0) ,

(1.2)

where vε and pε are the associated fluid velocity and pressure, respectively. The parameter ε > 0
represents a small scale that will eventually tend to zero with the other discretization parameters to
recover a solution to equations (1.1), and (v0, p0) is the initial condition. The supplementary term
1
2 [div vε]vε ensures the well-posedness of the model (1.2), which is why it cannot be taken out. Notice
that alternative configurations (also known as penalty methods) might have been possible, especially for
the mass conservation equation of problem (1.2). For instance,

εpε + div vε = 0,

ε∆pε − div vε = 0 with
∂pε

∂n
= 0,

ε∆∂tpε − div vε = 0 with
∂

∂n
(∂tpε) = 0,and pε(0, ·) = p0.

The readermay refer to [26], [22], [24], and [23] for thorough deterministic studies of the abovementioned
techniques, including the one considered here.

The mass conservation equation in problem (1.2) returns, in terms of regularity, good a priori
estimates for the pressure pε (see [17, Proposition 3.1]), which may be taken advantage of during the
convergence rate analysis. In point of fact, the pressure’s lack of time-regularity in equations (1.1) (see
for instance [15, Theorem 4.1]) has a negative effect on the convergence rate of those equations, which
appears through the time-rate O(∆t−1), as it was illustrated in [6, Corollary 4.2].

Problem (1.2) was theoretically investigated in [17] where the authors conducted the existence and
uniqueness properties of the associated solution. The proof technique therein consists of the local
monotonicity property of the sum of the Stokes operator and the nonlinear term. A discrete version
of this method will be considered in the present paper in order to demonstrate the convergence of the
proposed numerical scheme and to avoid the Skorokhod theorem as well.

This paper is split into five sections and is organized as follows. Section 2 provides the adequate
preliminaries and configurations, including the required assumptions, solutions’ definitions to prob-
lems (1.1), (1.2), and the numerical scheme. Section 3 is devoted to giving the main theorem of this
paper. Solvability, stability, and convergence of the numerical approximation are given in Section 4 along
with a linear version of the proposed numerical scheme. This same section grants a small analysis scope
concerned with the best choice of the scale ε in terms of the discretization parameters. The present
paper ends with Section 5 whose role is to supply the reader with pieces of evidence through numerical
experiments.
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2 Notations, materials and algorithm

Let T > 0 be a finishing time. Given a bounded polygonal domain D ⊂ R2 (for simplicity’s sake),
denote by ∂D its boundary, and by ®n : ∂D → R2 its corresponding unit outward normal vector field.
Function spaces in the Navier-Stokes framework are commonly denoted by H and V and are defined by

V B
{
z ∈ [C∞c (D)]

2 �� div(z) = 0 in D
}
,

H B

{
z ∈

(
L2(D)

)2 �� div z = 0 a.e. in D, z.®n = 0 a.e. on ∂D
}
,

V B

{
z ∈

(
H1

0 (D)
)2 �� div z = 0 a.e. in D

}
,

where C∞c (D) denotes the space of C∞(D) functions with compact support. The vector spaces will be
henceforth indicated by blackboard bold letters for clarity’s sake (e.g. H1 =

(
H1(D)

)2). The inner
product of the Lebesgue space L2 and the duality product between H1

0 and H−1 are denoted by (·, ·) and
〈·, ·〉, respectively. The parameter ε of equation (1.2) satisfies all this paper long the condition ε ≤ 1, the
Gelfand triple

(
H1

0,L
2,H−1) will solely be employed, and the trilinear form

b̂(u, v, w) B ([u · ∇]v, w) +
1
2
([div u]v, w)

will be linked with equation (1.2). Two operators can be associated with b̂; the trilinear form b(u, v, w) B
([u · ∇]v, w) that arises from the NSEs and the bilinear operator B̂ : H1

0 × H1
0 → H−1 which reads:

〈B̂(u, v), w〉 = b̂(u, v, w), for all u, v, w ∈ H1
0. The upcoming proposition lists a few properties of the

trilinear form b̂ (cf. [22]).

Proposition 2.1 (i) b̂ : H1
0 × H1

0 × H1
0 → R is continuous.

(ii) b̂(u, v, v) = 0 for all u, v ∈ H1
0.

(iii)
��b̂(u, v, w)�� ≤ CD | |u| |

1
2
L2 | |∇u| |

1
2
L2 | |∇v | |L2 | |∇w | |L2 , for all u, v, w ∈ H1

0.

Let (Ω,F ,P) be a probability space endowed with a filtration {Ft }0≤t≤T such that F0 contains all the null
sets and Ft =

⋂
s>t

Fs. Let K be a separable Hilbert space equipped with a complete orthonormal basis

{wk}k≥1, andQ be a nuclear operator onK such that wk is an eigenvector ofQ for all k ≥ 1. The noise term
W will be considered hereafter as a Q-Wiener process and it is defined byW(t, x) =

∑
k≥1
√

qk βk(t)wk(x),
where βk(·), k ∈ N is a sequence of independent and identically distributed real-valued Brownianmotions,
and qk , k ≥ 1 is the eigenvalue of Q that is associated with wk . With that said, the required assumptions
are listed below.

Assumptions

(S1) Q : K → K is a symmetric positive definite nuclear operator.

(S2) For p ∈ [2,+∞), v0 ∈ L2p

(Ω; L2) and p0 ∈ L2p
(Ω; L2(D)) are F0-measurable.

(S3) For p ∈ [1,+∞), f ∈ L2p

(Ω; L2(0,T ; H−1)) and g : L2 → L2(K,L2) satisfies

| |g(u) − g(v)| |L2(
√
Q(K),L2) ≤ Lg | |u − v | |L2 , ∀u, v ∈ L2,
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| |g(u)| |L2(K ,L2) ≤ K1 + K2 | |u| |L2 , ∀u ∈ L2,

for some positive time-independent constants K1,K2, Lg such that Lg ≤
√

ν
2C2

P

, where CP is the
Poincaré constant.

Throughout this paper, the writing x . y designates x ≤ cy for a universal constant c ≥ 0, the
constant CD may vary from one calculation to another; however, it will depend only on the domain D,
and finally the symbol L2(X,Y ) refers to the space of Hilbert-Schmidt operators from X to Y , where X
and Y are two Hilbert spaces.

To derive high-ordermoment estimates, the following Jensen-type inequality will be needed hereafter:
for all J, p ∈ N\{0}, and for all real-valued sequence (αn)n,(

J∑
n=1
|αn |

)2p

≤ 32p−1
J∑

n=1
|αn |

2p

. (2.1)

The proof of inequality (2.1) follows from an induction argument applied on
(∑J

n=1 |αn |
)2
≤ 3

∑J
n=1 |αn |

2.

2.1 Concept of solutions
According to [17], a solution to equations (1.2) satisfies the following definition.

Definition 2.1 Given a filtered probability space (Ω,F ,Ft,P), a stochastic process vε is said to be a strong
solution to equations (1.2) under assumptions (S1)-(S3) if it belongs to L2 (

Ω; C([0,T]; L2) ∩ L2(0,T ; H1
0)
)
,

and it satisfies for all t ∈ [0,T], P-a.s.
(vε(t), ϕ) + ν

∫ t

0
(∇vε(s),∇ϕ) ds +

∫ t

0
b̂(vε(s), vε(s), ϕ)ds −

∫ t

0
(pε(s), div ϕ) ds

= (v0, ϕ) +

∫ t

0
〈 f (s), ϕ〉ds +

(∫ t

0
g(vε(s))dW(s), ϕ

)
, ∀ϕ ∈ H1

0,

(ε∂tpε(t) + div vε(t),q) = 0, ∀q ∈ L2(D),

along with the energy inequality

E

[
sup

0≤t≤T

(
| |vε(t)| |p

L2 + ε | |p
ε(t)| |p

L2

)
e−δt + pν

∫ T

0
| |∇vε(t)| |2L2 | |v

ε(t)| |p−2
L2 e−δtdt

]
≤ C ,

for all p ∈ [2,+∞), ε > 0, δ > 0, and for some constant C > 0 depending on δ, p,T, v0, p0, f ,K1,K2 and
ε.

On the other hand, a solution to problem (1.1) in 2D can be defined as follows.

Definition 2.2 Assume (S1)-(S3) and letT > 0. A stochastic process v on a given filtered probability space
(Ω,F , (Ft )0≤t≤T ,P) is a strong solution to equations (1.1) if it belongs to L2 (

Ω; C([0,T]; H) ∩ L2(0,T ; V)
)
,

and it fulfills for all 0 ≤ t ≤ T , P-a.s.

(v(t), ϕ) + ν
∫ t

0
(∇v(s),∇ϕ) ds +

∫ t

0
([v(s) · ∇]v(s), ϕ) ds

= (v0, ϕ) +

∫ T

0
〈 f (s), ϕ〉ds +

(∫ t

0
g(v(s))dW(s), ϕ

)
, ∀ϕ ∈ V.
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2.2 Discretization
The time interval [0,T] will be decomposed into M ∈ N\{0} subintervals with equidistant nodes

{t`}M`=0 C Ik for simplicity’s sake. The corresponding step is denoted k B T
M .

The spatial domain D, which is assumed to be convex, bounded and polygonal, will be covered by
a quasi-uniform triangulation Th, with h being the diameters’ maximum of all triangles. Let Hh be a
subspace of H1

0 consisting of [C(D̄)]
2-valued piecewise polynomials over Th, and fulfilling for all m ≥ 2:

inf
vh ∈Hh

{| |v − vh | |L2 + h | |∇(v − vh)| |L2} ≤ Chm | |v | |Hm , ∀v ∈ H1
0 ∩ Hm. (2.2)

The quasi-uniformity of Th permits the inverse inequality (cf. [3, Lemma 4.5.3]):

| |vh | |H` ≤ C hm−` | |vh | |Hm , ∀vh ∈ Hh, ∀ 0 ≤ m ≤ `, (2.3)

for some C > 0 independent of h. Let Lh be a subspace of L2
0(D) consisting of C(D̄) piecewise

polynomial functions over Th, and satisfying for all m ≥ 1:

inf
ph ∈Lh

| |p − ph | |L2 ≤ Chm | |p| |Hm , ∀p ∈ L2
0(D) ∩ Hm(D). (2.4)

For (v, p) ∈ L2×L2(D), the associated orthogonal projections are denotedΠh : L2 → Hh and ρh : L2(D) →
Lh and are defined by the following identities, respectively:

(v − Πhv, ϕh) = 0, ∀ϕh ∈ Hh and (p − ρhp,qh) = 0, ∀qh ∈ Lh . (2.5)

Thanks to the pseudo-compressibility method which is provided by equations (1.2), the finite element
pair (Hh, Lh) is not forced to satisfy the discrete LBB condition.

For the sake of clarity, the notations ϕ+ and ϕ− will designate throughout this paper piecewise
constant functions with respect to time. For instance, ϕ+(t) B ϕm,∀t ∈ (tm−1, tm] and ϕ−(t) B ϕm−1,∀t ∈
[tm−1, tm) for the a given sequence {ϕm}m. The discrete derivation with respect to time will also intervene
later on. For this purpose, the below proposition (cf. [5, Appendix B]) lists a few associated properties.

Proposition 2.2 Given a sequence {ϕm}m, the discrete derivative is defined by dtϕm =
ϕm−ϕm−1

k , for all
m ∈ {1, . . . ,M}, and it fulfills the following assertions:

(i) dt (ϕ+ψ+) = ϕ+dtψ+ + ψ−dtϕ+,

(ii)
∫ T

0
ϕ+dtψ+dt = ϕ+(T)ψ+(T) − ϕ−(0)ψ−(0) −

∫ T

0

(
dtϕ+

)
ψ−dt,

(iii) dteϕ
+

= eϕ
−

dtϕ+ + eδ
(ϕ+ − ϕ−)2

2k
, for some δ ∈ (ϕ−, ϕ+).

Relying on Definition 2.1 and the space-time discretization, the numerical scheme which will be
studied throughout the rest of this paper is given by:

Algorithm 1 Let m ∈ {1, . . . ,M} and (v0
h
, p0

h
) ∈ Hh×Lh be a starting point. For a given

(
Vm−1
ε ,Πm−1

ε

)
∈

Hh × Lh such that
(
V0
ε ,Π

0
ε

)
B (v0

h
, p0

h
), find

(
Vm
ε ,Π

m
ε

)
∈ Hh × Lh that satisfies

(
Vm
ε − Vm−1

ε , ϕh

)
+ kν

(
∇Vm

ε ,∇ϕh
)
+ kb̂(Vm

ε ,V
m
ε , ϕh) − k

(
Π

m
ε , divϕh

)
= k 〈 f m, ϕh〉 +

(
g(Vm−1

ε )∆mW, ϕh

)
, ∀ϕh ∈ Hh,

ε
k

(
Πm
ε − Π

m−1
ε ,qh

)
+

(
divVm

ε ,qh
)
= 0, ∀qh ∈ Lh,

where for all m ∈ {1, . . . ,M}, f m B 1
k

∫ tm

tm−1
f (t)dt and ∆mW B W(tm) −W(tm−1).
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The initial datum (v0
h
, p0

h
) of Algorithm 1 is required to be uniformly bounded in L2 × L2(D) with respect

to h. To this end, it suffices to consider v0
h
= Πhv0 and p0

h
= ρhp0 because both projectors Πh and ρh are

stable in L2 (cf. [9]):

| |Πhu| |L2 ≤ ||u| |L2 , ∀u ∈ L2 and | |ρhq | |L2 ≤ ||q | |L2 , ∀q ∈ L2. (2.6)

Owing to [25, Lemma III.4.5], there holds

k
M∑
m=1
| | f m | |2H−1 ≤

∫ T

0
| | f (t)| |2H−1 dt. (2.7)

3 Main result

Theorem 3.1 For T > 0, let (Ω,F , (Ft )0≤t≤T ,P) be a filtered probability space, D ⊂ R2 be a polygonal
domain, assumptions (S1)-(S3) be satisfied, ε > 0 be a small scale, and (k, h) be a finite positive pair such
that k corresponds to the step of an equidistant time partitionIk and h is associated with a quasi-uniform
triangulation Th of the domain D. For a finite element pair (Hh, Lh), let (v0

h
, p0

h
) belong to Hh × Lh such

that
����(v0

h
, p0

h
)
����

L2×L2 is uniformly bounded in h. Then, Algorithm 1 has a solution {Vm
ε ,Π

m
ε }

M
m=1 satisfying

Lemmata 4.1, 4.2, 4.3. Further, if v0
h
→ v0 in L2(Ω; L2) as h → 0 then, as ε, k, h → 0, Algorithm 1

converges toward the unique strong solution of equations (1.1) provided k
ε → 0.

To obtain a solution to equations (1.1) from Algorithm 1, the condition k
ε → 0 in Theorem 3.1 can not be

avoided on account of the finite element space Hh which does not accept divergence-free test functions
(the reader may refer to section 4.2.2 for more details). However, the aforementioned condition could be
eliminated if the convergence of Algorithm 1 is carried out to achieve a solution to equations 1.2. In other
words, ε should be non-vanishing within this step (which is not the target of this paper). Afterwards, one
can take advantage of [17, Proposition 4.1] to gain a solution to equations (1.1).

4 Discussion

4.1 Existence and uniqueness of solutions
This section is devoted to giving existence and uniqueness properties to the discrete solution

{(Vm
ε ,Π

m
ε )}

M
m=1. The solvability of Algorithm 1 and the measurability of its iterates are handled first in

the following lemma.

Lemma 4.1 Let T > 0 be fixed. Under assumptions (S1)-(S3), Algorithm 1 has at least one discrete
solution. Moreover, for all m ∈ {1, . . . ,M}, the processes Vm

ε : Ω → Hh and Πm
ε : Ω → Lh are

Ftm -measurable.

Proof: The solvability of Algorithm 1 can be proven by induction. Indeed, assume that iterates V`
ε and

Π`ε exist for all ` ∈ {1, . . . ,m − 1}. The existence of (Vm
ε ,Π

m
ε ) is therefore the target. To this end, let

E B H1
0 × L2

0 , and Bε : E → E be define by

(Bε(u, p), (v,q))L2×L2 =
(
u − Vm−1

ε (ω), v
)
+ kν (∇u,∇v) + kb̂(u,u, v) − k (p, div v) − k 〈 f m, v〉

−

(
g(Vm−1

ε (ω))∆mW(ω), v
)
+ ε

(
p − Πm−1

ε (ω),q
)
+ k (div u,q) ,
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for all (u, p), (v,q) ∈ E , and for almost all ω ∈ Ω. The symbol (·, ·)L2×L2 denotes the L2 × L2(D)-inner
product. Thanks to Proposition 2.1-(i), the continuity of Bε can be tackled easily. Through the application
of Proposition 2.1-(ii), the Poincaré and Young inequalities, estimate (2.7), and assumption (S3), one
obtains

(Bε(u, p), (u, p))L2×L2 ≥
1
2
| |u| |2L2 −

1
2
| |Vm−1

ε | |2L2 + kν | |∇u| |2L2 − k | | f m | |H−1 | |u| |H1

− ||g(Vm−1
ε )| |L2(K ,L2) | |∆mW | |K | |u| |L2 +

ε

2
| |p| |2

L2 −
ε

2
| |Πm−1

ε | |2
L2 ≥

1
4
| |u| |2L2 +

ε

2
| |p| |2

L2

−
1
2
| |Vm−1

ε | |2L2 −
ε

2
| |Πm−1

ε | |2
L2 −

C2
D

4ν
| | f | |2

L2(0,T ;H−1)
− (K1 + K2 | |Vm−1

ε | |L2)
2 | |∆mW | |2K ≥ 0,

for all (u, p) ∈ Eh(ω) B
{
(v,q) ∈ Hh × Lh | | |v | |L2 ≥

√
S(ω), | |q | |L2 ≥ ||Πm−1

ε (ω)| |L2

}
, where S(ω) B

2| |Vm−1
ε (ω)| |2

L2 +
C2

D

ν | | f | |
2
L2(0,T ;H−1)

+ 4(K1 + K2 | |Vm−1
ε (ω)| |L2)2 | |∆mW | |2K . Both S(ω) and | |Πm−1

ε (ω)| |L2

are P-a.s. finite, thanks to the induction supposition. With that said, the Brouwer fixed point theorem [13,
Corollary IV.1.1] implies the existence of at least one (uω, pω) ∈ Hh × Lh such that Bε(uω, pω) = (0,0),
| |uω | |L2 ≤

√
S(ω) and | |pω | |L2 ≤ ||Πm−1

ε | |L2 . Therewith, it suffices to set (Vm
ε ,Π

m
ε ) = (uω, pω). On

the other hand, the measurability of {(Vm
ε ,Π

m
ε )}

M
m=1 can be also demonstrated by induction. The idea

consists in expressing the newly obtained iterates (uω, pω) in terms of the existing ones. This can be done
through a universally Borel-measurable selector function σ : Hh × Lh × K → Hh × Lh. For instance,
(uω, pω) = σ(Vm−1

ε ,Πm−1
ε ,∆mW), and the Ftm -measurability arises from the Brownian increment ∆mW .

The reader may refer to [8, Page 744] for a detailed approach. �

Lemma 4.1 dealt with the existence of a discrete solution which might not be unique. In point of
fact, uniqueness in the whole probability set Ω does not seem to hold due to the nonlinearity interaction.
Also, a contraction argument does not perform well in the discrete settings because the discrete time-
derivative of an exponential function leads to a supplementary term which blocks the demonstration (see
Proposition 2.2-(iii)). However, it can be proven that iterates’ uniqueness holds true in a sample subset
of Ω as demonstrated in the following lemma.

Lemma 4.2 Assume (S1)-(S3) and let δ > 0 be a small constant. Solutions {(Vm
ε ,Π

m
ε )}

M
m=1 to Algorithm 1

are P-almost surely unique within either of the following probability subsets:

(i) Ω1
δ B

{
ω ∈ Ω | k

M∑
m=1

����Vm
ε

����4
L4 ≤

1
δ

}
provided that

1
ν3δ
≤ 4c3

0 ,

(ii) Ω2
δ B

{
ω ∈ Ω | max

1≤m≤M

����Vm
ε

����4
L2 ≤

1
δ

}
provided that

k
ν3δh2 ≤

2c3
0

C 2 ,

for some universal constant c0 ∈ (0,3−12
2
3 ]. Furthermore, P(Ω1

δ) ≥ 1− δE

[
k

M∑
m=1

����Vm
ε

����4
L4

]
and P(Ω2

δ) ≥

1 − δE
[

max
1≤m≤M

����Vm
ε

����4
L2

]
.

Proof: Assume that {(Vm
ε ,Π

m
ε )}

M
m=1 and {(U

m
ε ,P

m
ε )}

M
m=1 are solutions to Algorithm 1 starting from the

same initial condition (v0
h
, p0

h
). For all m ∈ {0,1, . . . ,M}, let Zm

ε B Vm
ε − Um

ε and Qm
ε B Π

m
ε − Pm

ε .
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Then, iterates {(Zm
ε ,Q

m
ε )}

M
m=1 satisfy for all m ∈ {1, . . . ,M} and P-a.s. the following equations


(
Zm
ε − Zm−1

ε , ϕh

)
+ kν

(
∇Zm

ε ,∇ϕh
)
+ k 〈B̂(Vm

ε ,V
m
ε ) − B̂(Um

ε ,U
m
ε ), Z

m
ε 〉 − k

(
Qm
ε , divϕh

)
=

(
[g(Vm−1

ε ) − g(Um−1
ε )]∆mW, ϕh

)
, ∀ϕh ∈ Hh,

ε
k

(
Qm
ε −Qm−1

ε ,qh
)
+

(
divZm

ε ,qh
)
= 0, ∀qh ∈ Lh .

(4.1)

Observe that the stochastic term in equation (4.1) can be eliminated if one had Vm−1
ε = Um−1

ε . Since
U0
ε = V0

ε = v
0
h
, an induction argument seems to be legitimate. Indeed, for m = 1 and (ϕh,qh) = (Z1

ε,Q
1
ε),

equation (4.1) turns into

| |Z1
ε | |

2
L2 + ε | |Q

1
ε | |

2
L2 + kν | |∇Z1

ε | |
2
L2 = k 〈B̂(U1

ε,U
1
ε) − B̂(V1

ε ,V
1
ε ), Z

1
ε〉

≤ 2k | |∇Z1
ε | |

3
2
L2 | |Z

1
ε | |

1
2
L2 | |V

1
ε | |L4 ≤ 3.2−

2
3 c0kν | |∇Z1

ε | |
2
L2 +

k
4ν3c3

0
| |Z1

ε | |
2
L2 | |V

1
ε | |

4
L4,

(4.2)

where the first inequality employs the estimate
��〈B̂(u,u) − B̂(v, v), z〉

�� ≤ 2| |∇(u − v)| |3/2
L2 | |u − v | |

1/2
L2 | |z | |L4

for all u, v, z ∈ H1
0 (see the proof in [17, Lemma 2.3]), and the second inequality uses Young’s inequality

for some constant c0 ∈ (0,3−12
2
3 ]. Subsequently, equation (4.2) becomes(

1 − k4−1ν−3c−3
0 | |V

1
ε | |

4
L4

)
| |Z1

ε | |
2
L2 + ε | |Q

1
ε | |

2
L2 ≤ 0. (4.3)

One way to obtain uniqueness is by multiplying equation (4.3) by the indicator function 1Ω1
δ
which

grants (1 − 4−1ν−3c−3
0 δ−1)1Ω1

δ
| |Z1

ε | |
2
L2 + ε1Ω1

δ
| |Q1

ε | |
2
L2 ≤ 0. It follows that Z1

ε = Q1
ε = 0 a.e. in D

and P-a.s. in Ω1
δ provided that the coefficient of | |Z1

ε | |
2
L2 is positive. The second way for uniqueness

consists inmultiplying equation (4.3) by 1Ω2
δ
after employing the inverse estimate (2.3). That is, | |V1

ε | |
4
L4 ≤

2| |V1
ε | |

2
L2 | |∇V1

ε | |
2
L2 ≤ 2C 2h−2 | |V1

ε | |
4
L2 , where the first inequality is due to Ladyzhenskaya (see [14, Lemma

I.1]). Therefore, equation (4.3) turns into (1 − 2−1ν−3c−3
0 C 2δ−1h−2k)1Ω2

δ
| |Z1

ε | |
2
L2 + ε1Ω2

δ
| |Q1

ε | |
2
L2 ≤ 0

which implies Z1
ε = Q1

ε = 0 a.e. in D and P-a.s. in Ω2
δ provided the coefficient of | |Z1

ε | |
2
L2 is positive.

With that being said, it suffices to assume that Zm−1
ε = Qm−1

ε = 0 a.e. in D, P-a.s. in either Ω1
δ or Ω2

δ ,
and re-apply the same technique to obtain a similar result for the rank m. Finally, estimates of P(Ω1

δ) and
P(Ω2

δ) derive from the Markov inequality. �

Remark 4.1 Picking betweenΩ1
δ andΩ

2
δ in Lemma 4.2 depends on the choice of the viscosity ν. Observe

that the condition 1
ν3δ
≤ 4c3

0 does not allow δ to be small when ν is tiny. Therewith, choosing ν large
(resp. small) corresponds to Ω1

δ (resp. Ω
2
δ). Moreover, lower bounds associated with P(Ω1

δ) and P(Ω2
δ)

in Lemma 4.2 are finite as illustrated in Lemma 4.3. It is worth mentioning that E
[
k
∑M

m=1
����Vm
ε

����4
L4

]
.

E

[
max

1≤m≤M

����Vm
ε

����4
L2

] 1
2

E

[(
k
∑M

m=1
����∇Vm

ε

����2
L2

)2
] 1

2

.

4.2 A priori bounds and convergence
The first part of this section is dedicated to achieving stability of Algorithm 1, whose convergence

toward the unique solution of equations (1.1) is handled in the second part.
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4.2.1 A priori bounds

Lemma 4.3 Let p ∈ [2,+∞) ∩ N be fixed and assumptions (S1)-(S3) be satisfied. Then, iterates
{(Vm

ε ,Π
m
ε )}

M
m=1 of Algorithm 1 fulfill the following estimates:

(i) E

[
max

1≤m≤M

����Vm
ε

����2
L2 + kν

M∑
m=1

����∇Vm
ε

����2
L2 +

M∑
m=1

����Vm
ε − Vm−1

ε

����2
L2

]
≤ C1,

(ii) E

[
max

1≤m≤M

����Πm
ε

����2
L2 +

M∑
m=1

����Πm
ε − Π

m−1
ε

����2
L2

]
≤

C1

ε
,

(iii) E

[
max

1≤m≤M

����Vm
ε

����2p

L2 +
(
kν

M∑
m=1

����∇Vm
ε

����2
L2

)2p−1

+
( M∑
m=1

����Vm
ε − Vm−1

ε

����2
L2

)2p−1 ]
≤ Cp,

(iv) E

[
max

1≤m≤M

����Πm
ε

����2p

L2 +
( M∑
m=1

����Πm
ε − Π

m−1
ε

����2
L2

)2p−1 ]
≤ ε−2p−1

Cp,

for some constant Cp ≥ 0 depending only on | |v0 | |L2p (Ω;L2), | |p0 | |L2p (Ω;L2),D, ν, | | f | |L2p (Ω;L2(0,T ;H−1)),
T,Tr(Q),K1, p and K2, with C1 = Cp=1.

Proof: Replace (ϕh,qh) by (Vm
ε ,Π

m
ε ) in Algorithm 1 and employ the identity (a − b,a) = 1

2 (| |a| |
2
L2 −

||b| |2
L2−||a−b| |2

L2) together with Proposition 2.1-(ii), Cauchy-Schwarz, Poincaré andYoung’s inequalities:

1
2
| |Vm

ε | |
2
L2 −

1
2
| |Vm−1

ε | |2L2 +
1
4
| |Vm

ε − Vm−1
ε | |2L2 +

ε

2

(
| |Πm

ε | |
2
L2 − ||Π

m−1
ε | |2

L2 + | |Π
m
ε − Π

m−1
ε | |2

L2

)
+

kν
2
| |∇Vm

ε | |
2
L2 ≤

C2
Dk
2ν
| | f m | |2H−1 + | |g(V

m−1
ε )∆mW | |2L2 +

(
g(Vm−1

ε )∆mW,Vm−1
ε

)
.

(4.4)

Summing equations (4.4) over m from 1 to ` ∈ {1, . . . ,M}, then applying the mathematical expectation,
condition ε ≤ 1, estimates (2.6) and (2.7) yield

E
[
| |V`

ε | |
2
L2 + ε | |Π

`
ε | |

2
L2 + kν

∑̀
m=1
| |∇Vm

ε | |
2
L2 +

∑̀
m=1

(1
2
| |Vm

ε − Vm−1
ε | |2L2 + ε | |Π

m
ε − Π

m−1
ε | |2

L2

)]
≤ E

[
| |v0 | |

2
L2 + | |p0 | |

2
L2 +

C2
D

ν
| | f | |2

L2(0,T ;H−1)
+ 2

∑̀
m=1
| |g(Vm−1

ε )∆mW | |2L2

]
,

(4.5)

where the mathematical expectation of last term in equation (4.4) vanishes due to theFtm−1-measurability
ofVm−1

ε together with assumption (S3). On the other hand, the last term of inequality (4.5) can be handled
through the Itô isometry and assumption (S3) as follows:

E
[
| |g(Vm−1

ε )∆mW | |2L2

]
= E

[������ ∫ tm

tm−1

g(Vm−1
ε )dW(t)

������2
L2

]
= kE

[������g(Vm−1
ε )

������2
L2(
√
Q(K),L2)

]
≤ 2kTr(Q)K2

1 + 2kTr(Q)K2
2 E

[
| |Vm−1

ε | |2L2

]
.

(4.6)

Thus, the discrete Grönwall inequality implies

max
1≤m≤M

E
[
| |Vm

ε | |
2
L2 + ε | |Π

m
ε | |

2
L2

]
+

M∑
m=1

E

[
kν | |∇Vm

ε | |
2
L2 +

1
2
| |Vm

ε − Vm−1
ε | |2L2

]
+ E

[
M∑
m=1

ε | |Πm
ε − Π

m−1
ε | |2

L2

]
≤ C1,

(4.7)
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where C1 > 0 depends only on | |v0 | |L2(Ω;L2), | |p0 | |L2(Ω;L2),D, ν, | | f | |L2(Ω;L2(0,T ;H−1)),T,Tr(Q),K1 and K2.
To terminate the proof of estimates (i) and (ii), it suffices to reconsider equation (4.4), sum it over m from
1 to ` ∈ {1, . . . ,M}, take the maximum over `, then apply the mathematical expectation to get

E
[

max
1≤`≤M

(| |V`
ε | |

2
L2 + ε | |Π

`
ε | |

2
L2)

]
≤ E

[
| |v0 | |

2
L2 + | |p0 | |

2
L2 + C2

Dν
−1 | | f | |2

L2(0,T ;H−1)

+ 2
M∑
m=1
| |g(Vm−1

ε )∆mW | |2L2 + 2 max
1≤`≤M

∑̀
m=1

(
g(Vm−1

ε )∆mW,Vm−1
ε

) ]
.

(4.8)

The penultimate term is estimated in inequality (4.6). The last term is controlled by

. 6E


(
k

M∑
m=1
| |g(Vm−1

ε )| |2
L2(K ,L2)

| |Vm−1
ε | |2L2

) 1
2 

≤
3
4

E

[
max

1≤`≤M
| |V`

ε | |
2
L2

]
+ E

[
3
4
| |v0

h | |
2
L2 + 3k

M∑
m=1
(K2

1 + K2
2 | |V

m−1
ε | |2L2)

]
,

where Young’s inequality and assumption (S3) are used together with the Davis inequality which is
applicable since the integrand can be considered as a simple function with respect to time. Obviously, the
first term on the right-hand side must be absorbed into the left side of equation (4.8) and the remaining
terms can be readily controlled through estimates (2.6) and (4.7). This completes the proof of assertions
(i) and (ii). Estimates (iii) and (iv) can be demonstrated as follows: let p ≥ 2 be an integer. Summing
equation (4.4) over m from 1 to ` ∈ {1, . . . ,M}, making use of estimates (2.6),(2.7), raising both sides to
the power 2p−1, then employing inequality (2.1) multiple times yield

max
1≤`≤M

(| |V`
ε | |

2p

L2 + ε
2p−1
| |Π`ε | |

2p

L2 ) +
( M∑
m=1
(| |Vm

ε − Vm−1
ε | |2L2 + ε | |Π

m
ε − Π

m−1
ε | |2

L2)

)2p−1

+
(
kν

M∑
m=1
| |∇Vm

ε | |
2
L2

)2p−1

. | |v0 | |
2p

L2 + | |p0 | |
2p

L2 + CDν
−2p−1
| | f | |2

p

L2(0,T ;H−1)

+

M∑
m=1
| |g(Vm−1

ε )∆mW | |2
p

L2 +
(

max
1≤`≤M

∑̀
m=1

(
g(Vm−1

ε )∆mW,Vm−1
ε

) )2p−1

.

(4.9)

The mathematical expectation of the penultimate term is estimated through the Burkholder-Davis-Gundy
inequality as follows:

M∑
m=1

E

[������ ∫ tm

tm−1

g(Vm−1
ε )dW(t)

������2p

L2

]
.

M∑
m=1

(∫ tm

tm−1

E
[
| |g(Vm−1

ε )| |2
p

L2(K ,L2)

] 1
2p−1

dt
)2p−1

= k2p−1
M∑
m=1

E
[
| |g(Vm−1

ε )| |2
p

L2(K ,L2)

]
. K2p

1 T + k2p−1
M∑
m=1

K2p

2 E
[
| |Vm−1

ε | |2
p

L2

]
,

(4.10)

thanks to inequality (2.1) and assumption (S3). The last term of equation (4.9) can be controlled by

. E

[(
k

M∑
m=1
| |g(Vm−1

ε )| |2
L2(K ,L2)

| |Vm−1
ε | |2L2

)2p−2
]
≤

1
4

E
[

max
1≤`≤M

| |V`
ε | |

2p

L2

]
+ E

[1
4
| |v0

h | |
2p

L2 + 32p−1−1k2p−1
M∑
m=1
| |g(Vm−1

ε )| |2
p

L2(K ,L2)

]
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where the Burkholder-Davis-Gundy inequality is employed (see [4, Theorem 2.4]) together with esti-
mate (2.1) and Young’s inequality. By virtue of assumption (S3), the last term can be bounded by almost
the same right-hand side of equation (4.10). Putting it all together and applying the discrete Grönwall
inequality to equation (4.9) complete the proof. �

4.2.2 Convergence

Stability properties that were derived in Lemma 4.3 will play a crucial role in this part, especially to
offer convergence results to {(Vm

ε ,Π
m
ε )}

M
m=1 as ε, k, h → 0 . For this purpose, a few new notations must

be summoned along with one important lemma consisting of a monotonicity property that allows the
convergence of Algorithm 1 toward equations (1.1) to occur. For all m ∈ {1, . . . ,M}, the new notations
read: (

V +ε,k ,h(t),Π
+
ε,k ,h(t)

)
B

(
Vm
ε ,Π

m
ε

)
, ∀t ∈ (tm−1, tm],(

V −ε,k ,h(t),Π
−
ε,k ,h(t)

)
B

(
Vm−1
ε ,Πm−1

ε

)
, ∀t ∈ [tm−1, tm).

There will also be similar notations in the upcoming part such as f + and r−; the reader may refer
to section 2.2 for an adequate definition. Note that it is not mandatory for ε to be dependent on the
discretization parameters k and h. If so, it suffices that ε = ε(k, h) → 0 as k, h → 0. It is worth
mentioning the assumption k

ε → 0 as k, h, ε → 0, which will be imposed later on to achieve the
convergence toward the solution of equations (1.1). Such a hypothesis arises from the chosen finite
element space Hh, which does not offer divergence-free test functions for the sake of eliminating the term
〈∇Πm

ε , ϕh〉, which appears during the calculations hereafter. Another way to justify this hypothesis is
through the following proposition.

Proposition 4.1 Let
{(

Vm
ε ,Π

m
ε

)}M
m=1 be the iterates of Algorithm 1. Then,

(i) E

[
max

1≤m≤M
ε
����Πm

ε

����2
L2

]
≤ ε | |p0 | |

2
L2(Ω;L2)

+ c
k
ε
,

(ii) E

[
M∑
m=1

ε
����Πm

ε − Π
m−1
ε

����2
L2

]
≤ c

k
ε
,

for some genuine constant c > 0 independent of k, h and ε.

Proof: Let q ∈ L2(D)\{0}. By identity (2.5), it holds that (Πm
ε − Π

m−1
ε ,q) =

(
Πm
ε − Π

m−1
ε , ρhq

)
.

Therefore, using Algorithm 1, one obtains

ε(Πm
ε − Π

m−1
ε ,q) = −k(divVm

ε , ρhq) . k | |∇Vm
ε | |L2 | |q | |L2, (4.11)

thanks to the Cauchy-Schwarz inequality and the stability of ρh in L2(D). Summing both sides over m
from 1 to an arbitrary ` ∈ {1, . . . ,M}, then using the Cauchy-Schwarz inequality lead to

ε
(Π`ε,q)
| |q | |L2

. ε | |Π0
ε | |L2 + k

M∑
m=1
| |∇Vm

ε | |L2, ∀q ∈ L2(D)\{0}.

Since L2(D) is the pivot space, the supremum over q ∈ L2(D)\{0} of the left-hand side returns the
L2-norm of εΠ`ε . Therewith, squaring both sides, taking the maximum over `, employing inequal-

ity (2.1), applying the mathematical expectation and using Lemma 4.3-(i) give E

[
max

1≤m≤M
ε2 | |Πm

ε | |
2
L2

]
.
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E
[
ε2 | |Π0

ε | |
2
L2

]
+ kC1. Dividing by ε and employing estimate (2.6) complete the proof of assertion (i).

On the other hand, by arguing in the same way, equation (4.11) implies ε | |Πm
ε −Π

m−1
ε | |L2 . k | |∇Vm

ε | |L2 .
Squaring both sides, summing over m from 1 to M , taking the mathematical expectation and utilizing
Lemma 4.3-(i) terminate the proof. �

The following lemma states a monotonicity property of the operator u 7→ −ν∆u+ B̂(u,u). This feature
together with the Lipschitz-continuity of the diffusion coefficient g allow the avoidance of the Skorokhod
theorem which forces the filtered probability space that was defined in Section 2 to be exchanged with a
new one.

Lemma 4.4 Assume that Lg ≤
√

ν
2C2

P

where CP > 0 is the Poincaré constant, and let u, w ∈ H1
0. For

z B u − w, the following inequality holds true:〈
−ν∆z + B̂(u,u) − B̂(w,w) +

27
2ν3 | |w | |

4
L4 z, z

〉
− ||g(u) − g(w)| |2

L2(
√
Q(K),L2)

≥ 0.

Proof: From [17, Lemma 2.4], it holds that

〈−ν∆z + B̂(u,u) − B̂(w,w) +
27
2ν3 | |w | |

4
L4 z, z〉 ≥

ν

2
| |∇z | |2L2 .

It suffices now to subtract from both sides the term | |g(u) − g(w)| |2
L2(
√
Q(K),L2)

, use assumption (S3), then
employ the Poincaré inequality. �

Beside Lemma 4.4, it is worth highlighting the strong convergence of {g(V +
ε,k ,h
) − g(V −

ε,k ,h
)}k ,h

in L2(Ω; L2(0,T ; L2(K,L2))), which can be illustrated through assumption (S3) and Lemma 4.3-(i) as
follows

E

[∫ T

0

����g(V +ε,k ,h) − g(V −ε,k ,h)����2L2(K ,L2)
dt

]
≤ L2

gkE

[
M∑
m=1
| |Vm

ε − Vm−1
ε | |2L2

]
≤ L2

gC1k → 0. (4.12)

The convergence demonstration down below is broken down into steps for clarity’s sake.
Step1: Weak convergence and divergence-free
By virtue of Lemma 4.3, the sublinearity of g (see assumption (S3)) and inequality (2.6), the sequences
{V +

ε,k ,h
}ε,k ,h, {

√
εΠ+

ε,k ,h
}ε,k ,h, {g(V −ε,k ,h)}ε,k ,h are bounded in the Banach spaces L2(Ω; L∞(0,T ; L2) ∩

L2(0,T ; H1
0)), L2(Ω; L∞(0,T ; L2(D))) and L2(Ω; L2(0,T : L2(K,L2))), respectively. Therefore, the

Banach-Alaoglu theorem ensures the existence of the limiting functions v ∈ L2(Ω; L∞(0,T ; L2) ∩

L2(0,T ; H1
0)), χ ∈ L2(Ω; L∞(0,T ; L2(D))), G0 ∈ L2(Ω; L2(0,T ; L2(K,L2))) and two subsequences (still

denoted as their original sequences) {V +
ε,k ,h
}ε,k ,h, {

√
εΠ+

ε,k ,h
}ε,k ,h such that

V +ε,k ,h
∗
⇀ v in L2(Ω; L∞(0,T ; L2)), (4.13)

V +ε,k ,h ⇀ v in L2(Ω; L2(0,T : H1
0)), (4.14)

√
εΠ+ε,k ,h

∗
⇀ χ in L2(Ω; L∞(0,T ; L2(D))), (4.15)

g(V −ε,k ,h)⇀ G0 in L2(Ω; L2(0,T ; L2(K,L2))). (4.16)

Beside convergence (4.16), it is also possible to acquire g(V +
ε,k ,h
)⇀ G0 in L2(Ω; L2(0,T ; L2(K,L2))) as

follows: for all φ ∈ L2(Ω; L2(0,T ; L2(K,L2))),(
g(V +ε,k ,h) − G0(t), φ(t)

)
L2
=

(
g(V +ε,k ,h) − g(V

−
ε,k ,h), φ(t)

)
L2
+

(
g(V −ε,k ,h) − G0(t), φ(t)

)
L2
. (4.17)
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Now, integrate with respect to t, take the mathematical expectation, use results (4.12) and (4.16) to
complete the proof.
The obtained function v is divergence-free. Indeed, let q ∈ C∞c (D) be a scalar function. FromAlgorithm1,
one has ε

(
Πm
ε − Π

m−1
ε , ρhq

)
= −k

(
divVm

ε , ρhq
)
. Summing both sides over m from 1 to M leads to∫ T

0

(
divV +

ε,k ,h
, ρhq

)
dt = ε

(
Π0
ε, ρhq

)
−
√
ε
(√
εΠ+

ε,k ,h
(T), ρhq

)
. The mathematical expectation of the

right-hand side goes to 0 as ε, k, h→ 0 due to convergence (4.15) and estimate (2.6). Hence,

E

[∫ T

0

(
divV +ε,k ,h,q

)
dt

]
= E

[∫ T

0

(
divV +ε,k ,h,q − ρhq

)
dt

]
+ E

[∫ T

0

(
divV +ε,k ,h, ρhq

)
dt

]
converges to 0 as ε, k, h → 0, thanks to estimate (2.4) and convergence divV +

ε,k ,h
→ div(v) in

L2(Ω; L2(0,T ; L2(D))) which follows straightforwardly from result (4.14). Subsequently, divV +
ε,k ,h

⇀ 0
in L2(Ω; L2(0,T ; L2(D))) which implies div(v) = 0 P-a.s. and a.e. in (0,T) × D.
Let R : H1

0 → H−1 be defined by R(u) B −ν∆u + B̂(u,u), for all u ∈ H1
0. From Algorithm 1, and for all

ϕ ∈ V such that ϕh B Πhϕ, it follows∫ T

0
〈R(V +ε,k ,h) + ∇Π+ε,k ,h, ϕh〉dt = −

(
V +ε,k ,h(T) −V −ε,k ,h(0), ϕh

)
+

∫ T

0
〈 f +, ϕh〉dt

+

(∫ T

0
g(V −ε,k ,h)dW(t), ϕh

)
.

(4.18)

Owing to results (4.13) and (4.16) along with the strong convergence of f + in L2(Ω; L2(0,T ; H−1)) (see
[25, Lemma III.4.9]), themathematical expectation of the right-hand side of equation (4.18) is convergent.
Therewith, define R0 by

E

[∫ T

0
〈R0(t), ϕ〉dt

]
= lim
ε,k ,h→0

E

[∫ T

0
〈R(V +ε,k ,h) + ∇Π+ε,k ,h,Πhϕ〉dt

]
, ∀ϕ ∈ V .

Subsequently, the limiting function v satisfies P-a.s. and for all (t, ϕ) ∈ [0,T] ×V the following:

(v(t) − v0, ϕ) +

∫ t

0
〈R0(s), ϕ〉ds =

∫ t

0
〈 f (s), ϕ〉ds +

(∫ t

0
G0(s)dW(s), ϕ

)
. (4.19)

Step2: Identification of R0 and G0

For σ ∈ C
(
[0,T], [C∞c (D)]2

)
and all m ∈ {1, . . . ,M}, denote σ+

h
(t) B σm

h
= Πhσ(tm) and define

r+(t) B rm B
27
ν3 k

m∑
n=1

����σn
h

����4
L4 for all t ∈ (tm−1, tm], together with an exponential non-increasing

function η : [0,T] → R verifying η(0) = 0, and having the discrete forms η+(t) B ηm B e−r
+(t) for all

t ∈ (tm−1, tm] and η−(t) B ηm−1 for all t ∈ [tm−1, tm). Setting (ϕh,qh) =
(
Vm
ε ,Π

m
ε

)
in Algorithm 1, using

Cauchy-Schwarz and Young’s inequalities, identity (a − b,a) = 1
2 | |a| |

2
L2 −

1
2 | |b| |

2
L2 +

1
2 | |a − b| |2

L2 , and
finally multiplying by ηm−1 yield

ηm−1(| |Vm
ε | |

2
L2 − ||V

m−1
ε | |2L2) + 2ηm−1k

〈
R(Vm

ε ) + ∇Π
m
ε ,V

m
ε

〉
≤ 2ηm−1k 〈 f m,Vm

ε 〉

+ ηm−1 | |g(Vm−1
ε )∆mW | |2L2 + 2ηm−1

(
g(Vm−1

ε )∆mW,Vm−1
ε

)
.

(4.20)

Note that
∑M

m=1 η
m−1(| |Vm

ε | |
2
L2 − ||V

m−1
ε | |2

L2) =
∫ T

0 η−(t)dt | |V +ε,k ,h | |
2
L2 dt, and through equation (4.6), it

holds that E
[
| |g(Vm−1

ε )∆mW | |2
L2

]
= kE

[
| |g(Vm−1

ε )| |2
L2(
√
Q(K),L2)

]
. Therefore, taking the sum over m from
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1 to M , employing Proposition 2.2-(ii), then applying the mathematical expectation to equation (4.20)
give

E
[
η+(T)| |V +ε,k ,h(T)| |

2
L2 − ||V −ε,k ,h(0)| |

2
L2

]
≤ E

[∫ T

0
| |V +ε,k ,h | |

2
L2 dtη+dt

]
− E

[∫ T

0
η−(t)

〈
2R(V +ε,k ,h) + 2∇Π+ε,k ,h,V

+
ε,k ,h

〉
dt

]
+ E

[
2
∫ T

0
η−(t)

〈
f +,V +ε,k ,h

〉
dt

]
+ E

[∫ T

0
η−(t)| |g(V −ε,k ,h)| |

2
L2(
√
Q(K),L2)

dt
]
C I + I I + I I I + IV,

(4.21)

where the last term on the right-hand side of equation (4.20) vanishes after taking its expectation due to
assumption (S3) and the measurability of {Vm

ε }m (see Lemma 4.1). By virtue of Proposition 2.2-(iii), it
follows that dtη+ = − 27

ν3 η
− | |σ+

h
| |4

L4 +
272k
2ν6 eδ(t) | |σ+

h
| |8

L4 , for some δ ∈ (−r+,−r−). Therefore,

I = −E

[∫ T

0
η−(t)

27
ν3 | |σ

+
h | |

4
L4 | |V +ε,k ,h | |

2
L2 dt

]
+

272

2ν6 kE

[∫ T

0
| |V +ε,k ,h | |

2
L2 eδ(t) | |σ+h | |

8
L4 dt

]
C I1 + I2.

Obviously, I2 goes to 0 as k, h, ε → 0 thanks to Lemma 4.3. I1 can be rewritten as follows

I1 = −
27
ν3 E

[∫ T

0
η− | |σ+h | |

4
L4 | |V +ε,k ,h − σ

+
h | |

2
L2 dt

]
−

27
ν3 E

[∫ T

0
η− | |σ+h | |

4
L4

{
2
(
V +ε,k ,h, σ

+
h

)
− ||σ+h | |

2
L2

}
dt

]
C I1,1 + I1,2.

Making use of result (4.14) along with the strong convergence of {σm
h
}m to σ in C([0,T]; H1

0), it can be

easily shown that I1,2 → −
27
ν3 E

[∫ T

0 η(t)| |σ(t)| |4
L4

{
2
(
v(t), σ(t)

)
− ||σ(t)| |2

L2

}
dt

]
. On the other hand,

I I = −E

[∫ T

0
η−〈2R(V +ε,k ,h) − 2R(σ+h ),V

+
ε,k ,h − σ

+
h 〉dt

]
− E

[∫ T

0
η−〈2∇Π+ε,k ,h,V

+
ε,k ,h − σ

+
h 〉dt

]
− E

[∫ T

0
η−〈2R(V +ε,k ,h) + 2∇Π+ε,k ,h − 2R(σ+h ), σ

+
h 〉dt

]
− E

[∫ T

0
η−〈2R(σ+h ),V

+
ε,k ,h〉dt

]
C I I1 + I I2 + I I3 + I I4.

I I2 goes to 0 provided k
ε → 0. Indeed, by Cauchy-Shwarz’s inequality, estimate (2.1) and Lemma 4.3, it

follows

I I2 = 2E

[
k

M∑
m=1

ηm−1 (
Π

m
ε , div(Vm

ε − σ
m
h )

) ]
. E

[
k

M∑
m=1
| |Πm

ε | |L2 | |∇(Vm
ε − σ

m
h )| |L2

]

≤

√
k
ε

E

[
ε max

1≤m≤M
| |Πm

ε | |
2
L2

] 1
2

E

[
3k

M∑
m=1
| |∇(Vm

ε − σ
m
h )| |

2
L2

] 1
2

.

√
k
ε

C1 → 0.

(4.22)

Moreover, since {σm
h
}m is strongly convergent toward σ in C([0,T]; H1

0), and by the definition of

operator R0, one obtains I I3 → −E
[∫ T

0 η(t)〈2R0(t) − 2R(σ(t)), σ(t)〉dt
]
as k, h, ε → 0. Similarly,

I I4 → −E
[∫ T

0 η(t)〈2R(σ(t)), v(t)〉dt
]
, thanks to convergence (4.14). As mentioned in Step 1, { f m}m

converges strongly toward f in L2(Ω; L2(0,T ; H−1)). The latter together with convergence (4.14) imply
that I I I → E

[
2
∫ T

0 η(t) 〈 f (t), v(t)〉 dt
]
. Moving on to term IV , it can be reformulated as follows:

IV = E
[ ∫ T

0
η−

{
| |g(V −ε,k ,h) − g(V

+
ε,k ,h)| |

2
L Q

2
+ | |g(V +ε,k ,h) − g(σ

+
h )| |

2
L Q

2
− ||g(σ+h )| |

2
L Q

2

+ 2
(
g(V +ε,k ,h),g(σ

+
h )

)
L Q

2

+ 2
(
g(V −ε,k ,h) − g(V

+
ε,k ,h),g(V

+
ε,k ,h)

)
L Q

2

}
dt

]
B IV1 + . . . + IV5,
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where L Q
2 B L2(

√
Q(K),L2). From equation (4.12), it holds that IV1 → 0. Furthermore, Lemma 4.4

yields I1,1 + I I1 + IV2 ≤ 0, the strong convergence of {σm
h
}m together with result (4.17) grant both

IV3 → −E

[∫ T

0 η(t)| |g(σ(t))| |2
L Q

2
dt

]
and IV4 → E

[
2
∫ T

0 η(t) (G0(t),g(σ(t)))L Q
2

dt
]
. Finally, IV5 → 0

by virtue of convergences (4.12) and (4.17). Putting it all together, equation (4.21) becomes

lim
ε,k ,h→0

E
[
η+(T)| |V +ε,k ,h(T)| |

2
L2 − ||V −ε,k ,h(0)| |

2
L2

]
≤ E

[∫ T

0
η′(t)

{
2
(
v,σ

)
− ||σ | |2L2

}
dt

]
− 2E

[ ∫ T

0
η(t)

{
〈R0 −R(σ), σ〉 + 〈R(σ) − f (t), v〉 +

1
2
| |g(σ)| |2

L Q
2
−

(
G0,g(σ)

)
L Q

2

}
dt

]
,

(4.23)

where η(t) = exp
(
− 27
ν3

∫ t

0 | |σ(s)| |
4
L4 ds

)
. Taking into account that E

[
η(T)| |v(T)| |2

L2 − ||v0 | |
2
L2

]
is smaller

than the left-hand side of equation (4.23) (thanks to result (4.13)) and applying Itô’s formula to the process
(t, v) 7→ η(t)| |v | |2

L2 (recall that v satisfies equation (4.19)) lead to

E

[∫ T

0
η′(t)| |v(t) − σ(t)| |2L2 dt

]
+ E

[∫ T

0
η(t)

����G0(t) − g(σ(t))
����2
L2(
√
Q(K),L2)

dt
]

≤ 2E

[∫ T

0
η(t)

〈
R(σ(t)) −R0(t), σ(t) − v(t)

〉
dt

]
, ∀σ ∈ C([0,T]; [C∞c (D)]

2).

(4.24)

Arguing by density, it can be shown that inequality (4.24) holds for all σ ∈ L4(Ω; L∞(0,T ; L2)) ∩

L2(Ω; L2(0,T ; H1
0)). Therefore, setting σ = v yields G0 = g(v) P-a.s. and a.e. in [0,T] × D. With that

said, the second term on the left-hand side of equation (4.24) cancels out. To identify R0, it suffices to
consider σ = v + µu for µ > 0 and u ∈ L4(Ω; L∞(0,T ; L2)) ∩ L2(Ω; L2(0,T ; H1

0)). Subsequently,

µE

[∫ T

0
η′(t)| |u(t)| |2L2 dt

]
≤ 2E

[∫ T

0
η(t)

〈
R(v(t) + µu(t)) −R0(t),u(t)

〉
dt

]
.

Letting µ → 0 and taking into consideration the hemicontinuity of the operator R, one infers that
E

[∫ T

0 η(t)
〈
R(v(t)) −R0(t),u(t)

〉
dt

]
≥ 0, for all u ∈ L4(Ω; L∞(0,T ; L2)) ∩ L2(Ω; L2(0,T ; H1

0)). Conse-
quently, R0 = R(v) in L2(Ω; L2(0,T ; H−1)).
Step 3: Verification of v as NSE solution
The obtained function v is henceforth a solution to equations (1.1) in the sense of Definition 2.2. Indeed,
the identifications in Step 2 turn equation (4.19) into

(v(t), ϕ) + ν
∫ t

0
(∇v(s),∇ϕ) ds +

∫ t

0
〈B̂(v(t), v(t)), ϕ〉ds

= (v0, ϕ) +

∫ t

0
〈 f (s), ϕ〉ds +

(∫ t

0
g(v(s))dW(s), ϕ

)
, ∀ϕ ∈ V.

By definition, B̂(v, v) =
(
[v · ∇] + 1

2 div(v)
)
v = [v · ∇]v, thanks to Step 2, where the divergence-free of v

was illustrated. Finally, v ∈ L2(Ω; C([0,T]; L2)) can be easily proven via equation (4.19) by using [20].
Step 4: Convergence of the whole sequence
Convergence results that were discovered within Step 1 are all up to a subsequence. However, due to the
uniqueness of v (see [18, Proposition 3.2]), it follows that the whole sequence {V +

ε,k ,h
}ε,k ,h is convergent

toward v.
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4.3 A linear version of Algorithm 1
In terms of simulations, a less time-consuming numerical scheme can be embodied through a linear

Algorithm. This can be made up using a linearization of the trilinear term in Algorithm 1 as follows:

Algorithm 2 Starting from an initial datum
(
v0
h
, p0

h

)
∈ Hh × Lh, if

(
Vm−1
ε ,Πm−1

ε

)
∈ Hh × Lh is known

for some m ∈ {1, . . . ,M}, find
(
Vm
ε ,Π

m
ε

)
∈ Hh × Lh that satisfies P-a.s. the following:

(
Vm
ε − Vm−1

ε , ϕh

)
+ kν

(
∇Vm

ε ,∇ϕ
)
+ kb̂(Vm−1

ε ,Vm
ε , ϕh) −

(
Π

m
ε , divϕh

)
= k 〈 f m, ϕh〉 +

(
g(Vm−1

ε )∆mW, ϕh

)
, ∀ϕ ∈ Hh,

ε
k

(
Πm
ε − Π

m−1
ε ,qh

)
+

(
divVm

ε ,qh
)
= 0, ∀qh ∈ Lh,

where f m, ∆mW are defined in Algorithm 1 and
(
V0
ε ,Π

0
ε

)
B (v0

h
, p0

h
).

Observe that b̂(Vm−1
ε ,Vm

ε ,V
m
ε ) = 0, thanks to Proposition 2.1-(ii). Therefore, iterates {(Vm

ε ,Π
m
ε )}

M
m=1

of Algorithm 2 satisfy Lemmas 4.1, 4.3 and they fulfill better uniqueness properties than those of
Algorithm 1, as demonstrated in Lemma4.5. However, due to the infamous properties of b̂, the initial
datum v0

h
should undergo a new assumption which consists of a uniform bound in h of

����∇v0
h

����
L2 , as

explained beneath the proof of Lemma 4.5.

Lemma 4.5 Iterates {(Vm
ε ,Π

m
ε )}

M
m=1 of Algorithm 2 are unique P-a.s. in Ω and a.e. in [0,T] × D.

Proof: Let {(Vm
ε ,Π

m
ε )}

M
m=1 and {(Um

ε ,P
m
ε )}

M
m=1 be two solutions to Algorithm 2 such that (V0

ε ,Π
0
ε) =

(U0
ε,P

0
ε) = (v

0
h
, p0

h
). Denote Zm

ε B Vm
ε − Um

ε and Qm
ε B Π

m
ε − Pm

ε , for all m ∈ {0,1, . . . ,M}. The
following equation is P-a.s. satisfied by {(Zm

ε ,Q
m
ε )}

M
m=1:

(
Zm
ε − Zm−1

ε , ϕh

)
+ kν

(
∇Zm

ε ,∇ϕh
)
+ k

〈
B̂(Vm−1

ε ,Vm
ε ) − B̂(Um−1

ε ,Um
ε ), ϕh

〉
− k

(
Qm
ε , divϕh

)
=

(
[g(Vm−1

ε ) − g(Um−1
ε )]∆mW, ϕh

)
, ∀ϕ ∈ Hh,

ε
k

(
Qm
ε −Qm−1

ε ,qh
)
+

(
divZm

ε ,qh
)
= 0, ∀qh ∈ Lh .

(4.25)

For m = 1, it follows that g(V0
ε ) − g(U

0
ε) = 0 and B̂(V0

ε ,V
1
ε ) − B̂(U0

ε,U
1
ε) = B̂(V0

ε − V0
ε , Z

1
ε) = 0. Hence,

setting (ϕh,qh) = (Z1
ε,Q

1
ε) in equations (4.25) yields | |Z1

ε | |
2
L2 +ε | |Q

1
ε | |

2
L2 + kν | |∇Z1

ε | |
2
L2 = 0 which implies

Z1
ε = Q1

ε = 0 P-a.s. and a.e. in [0,T] × D. Arguing by induction completes the proof. �

All steps that were conducted in section 4.2.2 are applicable to Algorithm 2, except for Lemma 4.4
which does not suit the associated bilinear operator B̂ since its variables are not identical. Therefore, a
slight adjustment should take place, and it consists of the following:
In Step 1 of section 4.2.2, R(V +

ε,k ,h
) shall be substituted by a new operator S (V −

ε,k ,h
,V +
ε,k ,h
) B

−ν∆V +
ε,k ,h

+ B̂(V −
ε,k ,h

,V +
ε,k ,h
) and R0 by S0 which is defined by[∫ T

0
〈S0(t), ϕ〉dt

]
= lim
ε,k ,h→0

E

[∫ T

0
〈S (V −ε,k ,h,V

+
ε,k ,h) + ∇Π+ε,k ,h,Πhϕdt〉

]
, ∀ϕ ∈ V .

Equation (4.21) remains unchanged because 〈S (V −
ε,k ,h

,V +
ε,k ,h
),V +

ε,k ,h
〉 = 〈R(V +

ε,k ,h
),V +

ε,k ,h
〉, thanks to

Proposition 2.1-(ii). However, when passing to the limit, term I I3 in Step 2 is not suitable for S0, which
is why it can be modified by employing Proposition 2.1-(ii) as follows:

I I ′3 = − 2E

[∫ T

0
η−

〈
S (V −ε,k ,h,V

+
ε,k ,h) + ∇Π+ε,k ,h −S (σ−h , σ

+
h ), σ

+
h

〉
dt

]
− 2E

[∫ T

0
η−

〈
B̂

(
V +ε,k ,h −V −ε,k ,h,V

+
ε,k ,h

)
, σ+h

〉
dt

]
B I I ′3,1 + I I ′3,2.
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I I ′3,1 goes to −2E
[∫ T

0 η(t)〈S0(t) −S (σ(t), σ(t)), σ(t)〉dt
]
as ε, k, h → 0. Consequently, the whole

proof of section 4.2.2 becomes applicable to Algorithm 2, provided that I I ′3,2 goes to 0. To this end,
denote Zε,k ,h = V +

ε,k ,h
−V −

ε,k ,h
and utilize Proposition 2.1-(iii) to ensure:∫ T

0
η(t)

〈
B̂

(
Zε,k ,h,V +ε,k ,h

)
, σ+h

〉
dt .

∫ T

0
| |Zε,k ,h | |

1
2
L2 | |∇Zε,k ,h | |

1
2
L2 | |∇V +ε,k ,h | |L2 | |∇σ+h | |L2 dt

. k
1
4

(
M∑
m=1
| |Vm

ε − Vm−1
ε | |2L2

) 1
4
(
k

M∑
m=1
| |∇(Vm

ε − Vm−1
ε )| |2L2

) 1
4
(
k

M∑
m=1
| |∇Vm

ε | |
2
L2

) 1
2

,

thanks to the Hölder inequality and the high regularity of σ. Therewith,

I I ′3,2 . k
1
4 E

[
M∑
m=1
| |Vm

ε − Vm−1
ε | |2L2

] 1
4

E

[
k

M∑
m=1
| |∇(Vm

ε − Vm−1
ε )| |2L2

] 1
4

E

[
k

M∑
m=1
| |∇Vm

ε | |
2
L2

] 1
2

.

The first and third expectations are bounded by virtue of Lemma 4.3-(i). Additionally, the second
expectation, after undergoing a triangle inequality, can be controlled in a similar way provided that
| |∇v0

h
| |L2 is uniformly bounded in h. Consequently, I I ′3,2 . k

1
4 → 0. With being said, an additional

theorem can be given.

Theorem 4.1 Let the hypotheses of Theorem 3.1 be fulfilled and
����∇v0

h

����
L2 be uniformly bounded in h.

Then, there exists a discrete stochastic process {
(
Vm
ε ,Π

m
ε

)
}M
m=1 that solves Algorithm 2 and satisfies

Lemmas 4.1, 4.3, 4.5. Additionally, if v0
h
→ v0 in L2(Ω; L2) as h→ 0 then, Algorithm 2 converges toward

the unique solution of equations 1.1 in the sense of Definition 2.2, as ε, k, h→ 0, provided k
ε → 0.

One way of ensuring uniform boundedness in h of
����∇v0

h

����
L2 is through the Ritz (also known as elliptic)

operator R h : H1
0 → Hh, which is stable in H1

0 (see for instance [27]). In other words, setting v0
h
= R hv0

gets the job done, as long as v0 ∈ H1
0. Another way is to use the already defined projection Πh which can

be an alternative for R h. This is true since the triangulation Th is quasi-uniform (see [7, Theorem 4]).

4.4 How to properly choose ε?

Beside the condition k
ε → 0 which was assumed in Section 4.2 to afford the convergence of Algo-

rithm 1, some choices of ε do not seem to perform well. For simplicity’s sake and knowing that the
Stokes problem establishes an insight into the Navier-Stokes equations, the primary aim of this section
will be to evaluate a Stokes version of Algorithm 1 against a non-penalty-based numerical scheme of the
following stochastic Stokes problem:

∂tu − ν∆u + ∇p = f + g(u) ÛW, in (0,T) × D,
div(u) = 0, in (0,T) × D,
u(0, ·) = v0, in D.

(4.26)

in order to choose the parameter ε effectively. The finite element spaces Hh and Lh will be maintained
throughout this section, and the discrete LBB (also known as inf-sup) condition

sup
ϕh ∈Hh

(divϕh,qh)
| |∇ϕh | |L2

≥ β | |qh | |L2 , ∀qh ∈ Lh, (4.27)
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will be required since numerical schemes of Stokes and Navier-Stokes problems which deal with saddle
point approximations cannot converge without it. The constant β > 0 does not depend on the mesh size
h. With that said, it is now meaningful to state the convective-free version of Algorithm 1:

(
Um
ε −Um−1

ε , ϕh

)
+ kν

(
∇Um

ε ,∇ϕh
)
− k

(
pmε , divϕh

)
= k 〈 f m, ϕh〉 +

(
g(Um−1

ε )∆mW, ϕh

)
, ∀ϕh ∈ Hh,

ε
k

(
pmε − pm−1

ε ,qh
)
+

(
divUm

ε ,qh
)
= 0, ∀qh ∈ Lh,

(4.28)

together with the following saddle point-based numerical scheme of the Stokes problem:
(
Um −Um−1, ϕh

)
+ kν (∇Um,∇ϕh) − k (pm, divϕh)

= k 〈 f m, ϕh〉 +
(
g(Um−1)∆mW, ϕh

)
, ∀ϕh ∈ Hh,

(divUm,qh) = 0, ∀qh ∈ Lh .

(4.29)

Here, ∆mW and f m are identical to those of Algorithm 1, and the starting points U0
ε = U0 = Πhv0.

The convergence analysis of scheme (4.29) along with its convergence rate are provided in [11]. To
come up with effective and adequate conditions upon the parameter ε, it suffices to investigate the
quantity

����Um
ε −Um

����. This is logical because if u denotes the solution of Stokes equations (4.26), then����Um
ε − u(tm)

���� ≤ ����Um
ε −Um

����+ | |Um − u(tm)| | grants the rate at which scheme (4.28) might converge. To
this purpose, subtracting equations (4.28) and (4.29) yields(

Um
ε −Um − (Um−1

ε −Um−1) − [g(Um−1
ε ) − g(Um−1)]∆mW, ϕh

)
+ k

(
pm − pmε , divϕh

)
= kν

(
∇(Um −Um

ε ),∇ϕh
)
≤ kν | |∇(Um −Um

ε )| |L2 | |∇ϕh | |L2, ∀ϕh ∈ Hh\{0}.
(4.30)

Dividing by | |∇ϕh | |L2 , taking the supremum over ϕh ∈ Hh\{0} and employing the discrete LBB-
condition (4.27) imply

| |pm − pmε | |L2 ≤
ν

β
| |∇(Um −Um

ε )| |L2, ∀m ∈ {1, . . . ,M}. (4.31)

Estimate (4.31) is true because ω 7→ sup
ϕh ∈Hh

(Um
ε −U

m−(Um−1
ε −Um−1)−[g(Um−1

ε )−g(Um−1)]∆mW ,ϕh)
| |∇ϕh | |L2

is non-

negative which results from the fact that Hh is a vector space. In other words, this supremum can
be roughly seen as the H−1-norm of Um

ε −Um − (Um−1
ε −Um−1) − [g(Um−1

ε ) − g(Um−1)]∆mW . On the
other hand, setting ϕh = Um

ε −Um in equation (4.30), using identity 2(a−b,a) = | |a| |2
L2−||b| |

2
L2+ | |a−b| |2

L2 ,
the Cauchy-Schwarz and Young inequalities return

1
2
| |Um

ε −Um | |2L2 −
1
2
| |Um−1

ε −Um−1 | |2L2 + kν | |∇(Um
ε −Um)| |2L2 ≤ k

(
pmε − pm, divUm

ε

)
+

(
[g(Um−1

ε ) − g(Um−1)]∆mW,Um−1
ε −Um−1

)
+

1
2

����[g(Um−1
ε ) − g(Um−1)]∆mW

����2
L2 ,

(4.32)

where (pmε − pm, divUm) = 0, thanks to scheme (4.29). Summing the above equation over m from 1 to
an arbitrary ` ∈ {1, . . . ,M}, taking its mathematical expectation, employing the Itô isometry to the last
term on its right-hand side together with assumption (S3) and making use of the identity U0

ε = U0 yield

E

[
1
2
| |U`

ε −U` | |2L2 + kν
∑̀
m=1
| |∇(Um

ε −Um)| |2L2

]
≤ E

[
k
∑̀
m=1

(
pmε − pm, divUm

ε

) ]
+

L2
g

2
E

[
k
∑̀
m=1
| |Um−1

ε −Um−1 | |2L2

]
,

(4.33)



19 J. Doghman

where the mathematical expectation of the penultimate term in equation (4.32) vanishes due to assump-
tion (S3) and the measurability of {Um

ε }
M
m=1 and {U

m}M
m=1. Attention will now turn toward the first term

on the right-hand side of equation (4.33) which will eventually hand the upper-bound in terms of ε. Using
equations (4.28), one obtains

J B E

[
k
∑̀
m=1

(
pmε − pm, divUm

ε

) ]
= −E

[
ε
∑̀
m=1

(
pmε − pm−1

ε , pmε − pm
)]

≤
√
εE

[
3ε

∑̀
m=1
| |pmε − pm−1

ε | |2
L2

] 1
2

E

[
max

1≤m≤`
| |pmε − pm | |2

L2

] 1
2

≤

√
3C1ν

β

√
εE

[
max

1≤m≤M
| |∇(Um

ε −Um)| |2L2

] 1
2

≤

√
3C C1ν

β

√
ε

h
,

(4.34)

thanks to the Cauchy-Schwarz inequality, estimate (2.1), (4.31), Lemma 4.3-(i)-(ii), and the inverse

inequality (2.3). The bound of E

[
max

1≤m≤M
| |Um | |2

L2

]
in equation (4.34) is not carried out herein, but can

be found for instance in [5, Lemma 3.1]. Finally, plug the result of equation (4.34) in estimate (4.33) and
make use of the discrete Grönwall inequality to achieve

1
2

max
1≤m≤M

E
[����Um

ε −Um
����2

L2

]
+ E

[
kν

M∑
m=1

����∇(Um
ε −Um)

����2
L2

]
≤ C̃
√
ε

h
, (4.35)

for some constant C̃ > 0 depending only on β,C1, ν, Lg,C and T .
Estimate (4.35) appears to have the best upper-bound amongst the other possible ways of estimation.

Besides, some calculation techniques may be inconsistent with the assumption k
ε → 0. For instance, by

Young’s inequality, it holds that J ≤
√
εE

[∑`
m=1
√
ε
����pmε − pm−1

ε

����2
L2

]
+
ν2√ε

β2 E
[∑`

m=1
����∇(Um

ε −Um)
����2

L2

]
,

thanks to estimate (4.31). The first term is bounded by C1
√
ε by virtue of Lemma 4.3. However, the

second term needs to be absorbed in the left-hand side of equation (4.33). To this end, the assumption
kν − ν2√ε

β2 > 0 must be imposed. In other words,
√

k
ε > ν

β2
√
k
, which obviously fulfills the opposite of

k
ε → 0.

5 Numerical experiments and conclusion
The implementation within this section will be carried out through Algorithm 2 and a saddle point

based-numerical scheme [5, Algorithm 3]:

Algorithm 3 Let M ∈ N and V0 = v0
h
∈ Hh be given. For every m ∈ {1, . . . ,M}, find an Hh × Lh-valued

(Vm,Πm) such that
(
Vm − Vm−1, ϕh

)
+ kν (∇Vm,∇ϕh) + kb̂(Vm−1,Vm, ϕh) − k (Πm, divϕh)

= k 〈 f m, ϕh〉 +
(
g(Vm−1)∆mW, ϕh

)
, ∀ϕh ∈ Hh,

(divVm,qh) = 0, ∀qh ∈ Lh,

which will play the reference role with respect to the values of the parameter ε. The domain’s meshing
is carried out through the open source finite element mesh generator Gmsh [12], the implementation
of the aforementioned algorithms is executed by the open source finite element software FEniCS [16],
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and the visualization is ensured via Paraview [1]. The simulation’s configuration down below is set as
follows: T = 1, ν = 1, h = 0.16, ε = h2+δ , k = ε1+δ , with δ = 0.1 to guarantee that k

ε → 0 and
√
ε
h is

small enough. For the sake of comparison, the space discretization will be conducted by the lower order
Taylor-Hood (P2/P1) finite element for both algorithms 2 and 3. The initial data u0 and p0 are set to 0
which means that v0

h
= p0

h
= 0. The domain D is an L-shaped geometry whose figure and mesh are the

following:

Figure 1: The domain D and its mesh

The boundary condition

v(x, y) =

{
(1,0) if (x, y) ∈ {0} × [0,1],
(0,0) elsewhere,

is non-homogeneous, which is possible since a simple lifting technique can take the problem’s boundary
condition back to a homogeneous setting. The source term f takes on the value (0,0) and the diffusion
coefficient g = 1 i.e. it is an additive noise. The Wiener increment ∆mW is approximated as follows:
let J ∈ N be non-zero, and W1, W2 be two independent H1

0 (D)-valued Wiener processes such that
W = (W1,W2). Then,

∆mW` ≈
√

k
J∑

i, j=1

√
λ`i, jξ

`,m
i, j ei, j, ` ∈ {1,2}.

The parameter J takes on the value 5, λ`i, j =
1

(i+j)2
for all i, j ∈ N,

{
(ξ1,m

i, j , ξ
2,m
i, j )

}m
i, j

is a family of

independent identically distributed normal random variables, and ei, j(x, y) = 2
5 sin(iπx/5)sin( jπy/5) for

all i, j ∈ N. Although {ei, j}i, j may not be the best choice for an L-shaped domain (because they represent
the Laplace eigenfunctions on the square (0,5)2 with a Dirichlet boundary condition), they can be thought
of herein as a restriction to D. The explicit formula of the Laplace eigenfunctions on an L-shaped domain
is unknown as it is explained in [21]. With all that being said, it is now possible to exhibit the simulation
results:
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Figure 2: One realization of V M (left) and V M
ε (right) at time T = 1 for ε = 0.021

As ε gets smaller, the difference between Vm and Vm
ε becomes indistinguishable. This fact is illustrated

in an accurate way down below where the relationship between ε and the error E
[����VM − VM

ε

����2
L2

]
is

exposed:

Var
(����VM − VM

ε

����
L2

)
ε 2.9 × 10−4

ε/5 1.07 × 10−4

ε/25 2.5 × 10−5

ε/125 3.2 × 10−6

ε/625 2.7 × 10−7

Figure 3: Error and error-variance in terms of ε

The computed error in figure 3 uses a Monte-Carlo method with 1000 realizations. The obtained curve
was expected; it emphasizes the fact that ε should be taken as small as possible in order to guarantee
accurate outcomes.
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