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Abstract

Deflagration-to detonation transition (DDT) of the tip of self-accelerating elongated front of lami-
nar flames in tubes filled with gas mixtures that are very energetic is studied by employing the one-
dimensional model sketched in figure 1b. The first part of the present work parallels the nonlinear
analysis of the self-similar solution of the double discontinuity model performed by Deshaies and
Joulin (1989) (termed DJ herein) in the double limit of weak lead shocks and flame speeds that
are very sensitive to the flame temperature. The very energetic mixtures addressed herein exhibit
only mild flame-speed dependence on flame temperature but large density ratio so that the critical
condition concerns a Mach number of the lead-shock exceeding unity by an amount of order unity.
A double-feedback mechanism, in which compressional heating by the lead shock is augmented
by an effective piston acceleration due to a back-flow of burnt-gas towards the flame-tip, is shown
to yield self-similar solutions that exhibit a turning point at a critical propagation velocity as in DJ
but for a lead shock which is not weak. Beyond self-similarity, a further analysis of the upstream-
running simple waves generated ahead of the self-accelerating flame then predicts the spontaneous
formation of a shock wave on the flame front as a consequence of the finite-time singularity of the
acceleration of the flame front at the critical velocity (turning point). Such a shock formation is a
good candidate to blow up the inner flame structure, producing the abrupt transition of the flame
(a subsonic, quasi-isobaric reaction-diffusion wave) into a detonation (a supersonic compressive
wave generating rapid chemical heat release), observed in previously reported experiments, the
results of which are consistent with the present scaling.
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1. Introduction

Deflagration-to-detonation transition (DDT) remains a poorly understood problem in combus-
tion. Despite more than a century of research, complete identification of the fundamental mech-
anisms of DDT, namely the abrupt transition from a reaction-diffusion wave (markedly subsonic
and quasi-isobaric) to a supersonic reaction wave (a shock generating an exothermic reaction)
has not yet been achieved. Ever since the pioneering experiments of Oppenheim and co-workers
[1], DDT has been known to develop in various forms and there is no mechanism of DDT that
is generally agreed upon as being universal. Reviews are presented in relatively recent textbooks
[2, 3] and the state of knowledge in the mid-twentieth century can be found in a Russian book
[4]. Considering the double-discontinuity model of a planar shock wave generated by a turbulent
flame, treated as a self-propagating discontinuity from the closed end of a tube, Shchelkin and
Troshin [4] conjectured that DDT is produced when the flame reaches a velocity large enough to
generate a strong shock with a short induction time for igniting the compressed gas. This would
require the Mach number of the lead shock M = D/a, to be no smaller than M ~ 5, necessitating
a turbulent flame speed much larger than the laminar flame speed by two orders of magnitude for
a typical density ratio. Henceforth, 9 denotes the shock velocity and a is the speed of sound, the
subscript o identifying conditions in the initial quiescent reactant mixture. Recent experiments
[5-8] and numerical simulations by Liberman and coworkers [7, 9] shed new light on DDT of
self-accelerating laminar flames propagating in tubes filled with very energetic mixtures (stoichio-
metric mixtures of hydrogen and oxygen or ethylene and oxygen). The flow ahead of the flame is
laminar, and the transition to detonation occurs abruptly, after an exponential acceleration of the
tip. The unsteady compression waves that are generated by the accelerating flame, heat the reac-
tive mixture and steepen the shock waves just ahead of the tip of the elongated flame experiencing
a sudden transition [6, 7]. The Mach numbers of these shocks are between 2 and 3, and the tem-
perature of the compressed mixture near the axis of the tube does not exceed 850 K, which rules
out both the Shchelkin mechanism [4] and the Zel’dovich gradient mechanism [10]. Advanced

multi-dimensional numerical simulations have emphasized the role of different mechanisms of
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DDT, ranging from the compressible waves in the unreacted mixtures, the viscous dissipation in
the boundary layers in micro-channels to the flame instabilities in macro-channels [9, 11, 12]. We
will show in the present paper that a simple one-dimensional mechanism, independent of viscous
effects, reproduces DDT on the tip of elongated flames in tubes for the same conditions as in the
experiments.

More than thirty years ago, Deshaies & Joulin [13] (DJ) published an enlightening theoretical
analysis of DDT which was overlooked by the combustion community until 2015-2016, may be
due to the fact that the analysis involved a weak lead shock. They derived self-similar solutions
of the double-discontinuity model by taking into account the thermal feedback of the lead shock
on the flame speed Uz, which for a turbulent flame in the wrinkled-flame-regime is equal to the
laminar flame speed U, multiplied by a constant folding parameter o > 1, Uy = oU,. Using the
approximation of a small Mach number of the lead shock (M—1 < 1) and considering high thermal
sensitivity 8 > 1 of the laminar flame speed U; combined with a large o in the distinguished limit
BoU,/a, = O(1) where a, is the sound speed in the initial mixture, DJ showed that the self-similar
solutions no longer exist (turning point) above a critical value of o, roughly o > 10 for a typical
density ratio in ordinary flames. If a sudden transition of a quasi-isobaric flame to a supersonic
combustion wave could be systematically produced at the loss of self-similarity (turning point),
DDT would have been observed with weakly energetic mixture (p,/p, = 5) and weak shocks
(M -1 < 1), contrary to experiments. Additional phenomena should be involved in abrupt
DDT. As mentioned by DJ, loss of self-similarity does not mean DDT but only that the unsteady
compressible effects cannot be neglected.

Recently, a turning point of the self-similar solutions has also been obtained [14—16] beyond
the DJ approximation [13] for different flame models based on the same folding concept.

The unsteady compressible waves upstream a self-accelerating flame have been considered
long ago as a key mechanism of DDT [2, 3]. Their dynamics is neglected in the self-similar
solutions in which the flow of unreacted gas is uniform between the flame and the lead shock.
According to experiments [6, 7], the unsteadiness of the compressible waves plays an important
role just before DDT near the axis of the tube; a train of coalescing shock waves is produced in

the immediate proximity ahead of the flame. Investigating the coupling with the flame requires the
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numerical simulation of the unsteady inner structure of planar flames. This has been performed
by Sivashinsky and coworkers [14—16] and in a contribution by Oran and coworkers [17] for
flame models that are not realistic. In order to reproduce the critical condition of the self-similar
solutions, they addressed fast planar flames having a rate of chemical heat-release (or a rate of
molecular diffusion) larger than in gaseous mixtures by two orders of magnitude corresponding
to a rate of elastic collisions much larger than in the kinetic theory of gases. Such numerical
simulations [14—16] are however instructive; they show a sudden DDT of planar flames as soon as
the flame velocity is larger than the critical velocity of the self-similar solutions, typically larger
than in real flame by an order of magnitude but still well below the sound speed.

Stimulated by these numerical results [14—16], the first objective of the present paper is to set
up a configuration of realistic planar flames showing that the DDT observed in the experiments
[6, 7] on the tip of a self-accelerating flame in a tube corresponds to the critical condition of
self-similar solutions. The key ingredient of this model, called the piston-model, is the back-
flow of burned gas towards the flame tip of an elongated flame. Such a flow has been observed
in PIV experiments [18] and also in numerics by Bychkov and coworkers [19, 20] before the
formation of the tulip shape. Acting like a piston at the exit of the reaction zone of the planar
flame, the back-flow is the mechanism with which the critical condition can be reached by planar
laminar flames sustained by a realistic reaction rate. This is all the more true in very energetic
mixtures since the density change across the flame is as large as the non-dimensional activation
energy (reduced by the enthalpy of the fresh mixture). The corresponding laminar burning velocity
is quasi-independent of pressure and increases only mildly with the initial temperature of the
mixture. In addition to the successful comparison between the self-similar criticality and the
sudden transition observed in the experiments [6, 7], it will be shown that the acceleration of the
tip of a self-accelerating flame diverges whatever the growth rate of the elongated front, leading to
the formation of a finite-time singularity of the flow on the flame front, followed by the formation
of a shock wave. Depending on their intensity, such shocks could blow up the inner structure of
the laminar flame quasi-instantaneously, even if the Mach number is not strong enough to produce
self-ignition in the unreacted mixture ahead of the flame. The intriguing phenomenon of the abrupt

transition observed in experiments cannot be deciphered on the basis of self-similar solutions since
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the coupling of the unsteady solution of the inner flame structure with the compression waves
is required. A further advantage of the piston-model is that it is ideally suitable to investigate
this sharp transient phenomenon inside the inner flame structure for a real (or at least realistic)
chemistry of flames, by using the high-order spectral difference flow solver of Lodato [21]. The
formulation of the problem is briefly given at the end of the present article, see the legend of figure

3, the numerical analysis being left for future work.

2. Back-flow of burned gas to the tip of an elongated flame. Piston-model

Consider a flame which is ignited punctually at the center of the closed end of a tube. In
connection with their revealing experimental investigation of the mechanism by which tulip flames
are formed, Clanet and Searby [22] (CS) present a model for the acceleration of the tip of an
elongated flame. The flow of burned gas inside the volume delimited by the elongated flame front
is fed by the combustion of the lateral wing of the flame skirt, producing a back-flow of burned

gas towards the flame tip which is the basic ingredient of the piston model, see figure 1.

2.1. Self-accelerating flame

In a rough approximation, following CS, the flow of burned gas on the axis of the cylindrical
tube is modeled by the solution of the one-dimensional equation for the conservation of mass with
a source term describing the effect of the combustion of the lateral wings. Neglecting the curvature
effect, the tip of the flame front is considered as a planar wave perpendicular to the axis. The flow
uy(x, t) of burned gas is delimited by the wall at x = 0 (1, = 0) and the flame at the tip x = L
(up = upr). Denoting Uy and U, the laminar flame speeds relative to the fresh mixture and the
burned gas respectively, p,U. = pyU,, p, and p;, being the corresponding densities, the rate of
mass production per unit volume by the lateral wings of the elongated front is 2p,U,/R where R
is the radius of the tube. The laminar flame speed U, corresponds to the condition of temperature
T =T, and density p = p, just ahead of the flame as they are modified by the compression waves
propagating in the unreacted mixture just upstream of the flame.

If the rate of increase of the length of the elongated flame L(z) is slow at the scale of the transit

time of a fluid particle across the flame, the inner flame structure is quasi-steady. If, in addition,
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dL/dt < ap, L/(dL/dt) > L/a,, where a,, is the speed of sound in the burned gas, unsteadiness
of the compressible effects are negligible in the burned gas, so that the temperature and pressure
of the fresh mixture on the lateral wings are the same as at the tip of the elongated flame and
the thermodynamic properties of the burnt gas are quasi-uniform and quasi-steady. The variation
of density being negligible in the flow of burned gas, the velocity of burned gas u,(x, ) in the

laboratory frame increases linearly with the distance from the closed end of the tube (x = 0) [22],

U,. (1)

ou, Pur U Uy, _ L\ Py
dL/dt < ap = ﬂ = 2_—f—L = 2—b, Upr = (2—) /
Ox Pps R R ‘ R/ pyy

Henceforth, the overbar denotes the self-similar solutions and the subscript f refers to the tip of
the elongated flame. The inner flame structure being in a quasi-steady state, the flow velocities of
burned and unburned gas u,; and u,; respectively (just behind and ahead the tip of the flame) are
related to the velocity of the tip of the flame in the laboratory frame U/(f) = dL/dt by the isobaric

conservation of mass 9 (p [u— Uf]) [0x =0, p,(Usr —uys) = p,s(Uy — Upy)

L _ IBbf _ l_?bf
>TL = uuf:_ubf+ 1__
] puf

L Pof
Ur=2U;,—+|1 -—|Uy,. 2
dL/dt P ) f LR+( = ) f (2

puf

Introducing the laminar flame speed U;, of an unreacted mixture at temperature T, f
U f= ﬁu f +U L (3)

into (2) yields the expressions of u,y and Uy in terms of the laminar flame speed U (T, p,), the

density ratio p,/p),; = T,/T, > 1 and the length L of the elongated flame front

ﬁuf

fo™W, Lo
Pps UL Ppr

L
o-U, -+ ) o, where o= [2— + 1]. 4)
U, R

ﬁuf = UL

The elongation of the flame (ratio of the flame surface area to the cross-section area of the tube) is
characterized by o. The classical expression of the flow generated ahead of a planar flame when
the burned gas is at rest u, = (p./pp — 1) Ur, Uy = (pu/pp) Uy 1s recovered from the first equation

(4) for 2L/R = 0. Equations (2) and (4) are relevant locally at the tip of the elongated flame. The
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overall conservation of mass between the closed end of the tube and a cross-section sufficiently
ahead of the tip leads to the same flow velocity as in [13] [(p, y /Pp )~ 1]oU; where o denoted the
degree of folding of the turbulent wrinkled flame. Here, the local flow velocity u, is much larger,
as discussed now. Equations (2-4) correspond to a one-dimensional piston model of a planar flame

pushed by a moving piston whose velocity Up is equal to uy,

Up =ups = (0= D)©0yr/0p)ULs )

see figure 1-b. The burnt-gas flow u, generated just behind the flame tip by the lateral wing of
the elongated flame front, see figure 1-a, is the essential difference from the DJ model of wrinkled
flame [13]. Because of a large density ratio p,,/p,, ~ 10, Uy/U. ~ 10, this flow is large in
very energetic mixtures, even when the flame length L is not much larger than the tube diameter.
According to (1), the flow of burnt gas u,; depends on the laminar flame speed U L(Tu,ﬁu) and thus
on the shock-induced increase of temperature and density ahead of the flame.

After ignition and before the time at which the skirt of the elongated front leaves the closed
end of the tube (namely the time R/U, for the lateral wing of the flame to reach the lateral wall of
the tube), the geometrical relation Uy(f) = dL/d¢, combined with (4) leads to the CS exponential

growth of the length of the elongated front [22]

d(L/R) _Us PusU (L Uy (L
(/)s—f:ff—L(2—+1):—"(2—+1) ©)
dr R  p, R\ R R
involving the characteristic time scale
Tey = R/2Ub = (Uho/Ub)Tevo where 7., = R/ZUbo with U, = (Tbo/To)ULo- (7)

According to (6), the conditions for a quasi-steady approximation in the burned gas (dL/dt < ay)
and also inside the flame structure (d; /U, < 1,..,, Where d; is the thickness of the laminar flame)

read

2L/R < ay/Uy, = NT,/Tpa,/U; and di/R <« 1 respectively. (8)
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However, the acceleration of the tip stops suddenly after a lapse of time of order R/U,, pro-
ducing the formation of a tulip flame (associated with the strong deceleration [3, 22]). This phe-
nomenon usually occurs before DDT and is followed by a second stage of weaker acceleration in
the DDT experiments [6, 7]. Taking into account the viscous effect, the two-dimensional numeri-
cal simulations of flames in a tube with no-slip condition at the wall, carried out by Bychkov and
coworkers [19, 20], have shown that a curved flame accelerates during a longer period of time with
a growth rate smaller than (7) by a factor depending on the Reynolds number. In the following,
the expression (7) of the characteristic time for the growth rate of the length of the elongated flame
has to be understood as a dimensional equation, 7,,, «< R/2U,,. The forthcoming results are valid
regardless of the numerical coefficient, see the end of § 5. The essential point is that, according
to (1)-(5), the flows u,r = [(ou/pp)(c — DU and u,y = upr + (0u/pp — 1)U, are proportional to
and much larger than the laminar flame speed U L(Tu,ﬁu) in very energetic mixture p,/p, = 10,

u,r > upy > Uy, even for a moderate elongation L/R ~ 2 as in flame bubbles.

2.2. Thermal sensitivity of the flame speed in very energetic mixtures

Because of a large density ratio p,/p, = 10, the thermal sensitivity of the laminar flame-
speed of very energetic mixtures is weaker than for ordinary mixtures. This can be checked
on the burning-velocity derived by Zel’dovich and Frank-Kamenetskii [23] for a one-step ki-
netics scheme governed by an Arrhenius law, in the limit of large Zel’dovich number g8, =
[E/(kgTp)lqm/(c,Tp)] > 1 where g,, and c, are respectively the heat released and the specific

heat capacity per unit mass at constant pressure. The result for a second order reaction is

1D 1 ~ElkaTy
U, = i 4!Le2—3 " with the reaction rate — = (&) B ¢ 9)
Pu By Tr T \Pu)  (Teow)s
0 3/2 ka C 3
U = a (—b) TyK e BT = q, (T, T, )P K e”#2%T0 K = 4 [4!BLe? (EB—”) (10)
Pu m

where the subscripts u# and b denote the unburnt and burnt mixture respectively, Le is the Lewis
number, kg stands for the Boltzmann constant and 1/7.,; represents the (elastic) collision fre-

quency. The derivation of equations (9)-(10) is reproduced in [3]. The relation Dy /7.y = a?
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has been used in (10) showing that the laminar flame velocity does not depend on the pressure.
According to the kinetic theory of gas, the factor B in (9) is of order unity and cannot be large,
B < 1. Flames, in general, have contributions from unimolecular, bimolecular, and three-body
elementary steps affecting their effective one-step reaction order, but (largely computational) con-
siderations of laminar burning velocities suggest that the bimolecular steps are dominant for highly
energetic mixtures, leading to the effective reaction order being close to 2 and thus to a negligi-
ble pressure dependence of the constant dimensional factor K (dimension 1/Kelvin*?). The ratio
ULla, = (pp]pu)* e BT /BZ/ ? is a small number not larger than 2 1072 in very energetic mix-
tures (p,/p, < 1) and much smaller, typically 1.5 1073, in other mixtures (E/kzT, ~ 10) so that
the isobaric approximation p,T, = p,T, used in (10) is verified for flames in any premixed gas.
Considering the reference state just ahead of the lead shock, denoted by the subscript o, using
the relations ay/ap, = VT5/Tro» PbTp = puTy and ppoTho = PuoTuo, the laminar flame velocity
U, (T,,p,) in (10) takes the form

u, (T, \V(T.,\" E (1 1 an
= exp|l—|— — s
ULo Tbo Tuo P 2kB Tb Tbo

where T}, = T, + gn/c, and U, = U (T, puo) 1s the laminar flame velocity in the fresh mixture

ahead of the shock where temperature and density are T, and po, Ty = Tuo + gm/cp. It will be

convenient in the self-similar solutions to express the Arrhenius factor in (11) in the form

E (Thf—Tba) £ (Tuf_T”) h (Tuf_Tﬂ)

— — _E(1_ 1 1 S -
Toy=Tu = CIm/Cp =Ty, —T,: e ZkB(Tb Tb,,) — e2f8Tho Ty — e%kBTbu To [T,; = ] . (12)

For very energetic mixtures the temperature ratio 7,/T, ~ 10 is of the same order of magnitude
as the activation energy reduced by the initial temperature E/kgT,, = 20, the latter insuring that
the initial mixture is frozen far from the chemical equilibrium. Therefore the activation energy, re-
duced by the enthalpy of the burned gas E/kgT}, is of order unity, and the exponential factor in (11)
does not represent a strong variation of the laminar flame-speed with the flame temperature. The
Zeldovich number being of order unity 8, =~ 2, equations (9)-(11) are questionable. However, they

can be employed with a reasonable accuracy, the precise functional dependence of U,(T})/ U}, on
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the burnt-gas temperature 7, not being important in our analysis, see the discussion below (27).
For example, equation (11) can be replaced by the T),-dependence of U, issued from the numer-
ical study of the steady flame-structure. It turns out that (11) provides a good fit with the DDT

experiments [6, 7], see § 4.

3. Self-similar solutions.

According to the experimental results [5—8], the abrupt transition to detonation occurs for
Mach numbers of the lead shock of order unity M € [2.5,3.5] that are too small for self ignition
of the fresh mixture. For the purpose of comparison with the experimental data, we determine the
turning of the self-similar solutions obtained in this section with the one-dimensional piston-model

of figure 1.

3.1. Quasi-steady approximation and nonlinear equation

Consider the self-similar solution of the double discontinuity model when the acceleration of
the tip of the elongated flame is neglected, Uy ~ cst, u, s ~ cst. More precisely, according to (8),
the change of the flame velocity is assumed to be sufficiently slow for making the unsteady com-
pressible effects negligible ahead of the flame front. Thus, the flow of fresh mixture is considered
as quasi-uniform and quasi-steady in the region delimited by the planar flame and the lead-shock
propagating upstream with a constant supersonic velocity O, M = D/a, > 1, the subscript o
denoting the initial gas ahead of the shock wave. In other words the interaction between the flame
and the lead shock is considered as instantaneous in the self-similar solutions. This cannot be the
case in the vicinity of the turning point where the flame acceleration involves timescales shorter
than the transit time of the acoustic waves between the two fronts, especially when the lead shock
is far away from the flame, see §§ 5 and 6.

In the self-similar solutions, the quasi-instantaneous feedback of the lead shock on the flame
is given by the Rankine-Hugoniot relations at the Neumann state (denoted by the subscript N),

expressing the density and temperature of the fresh mixture ahead the flame p,,, = pn, Ty = Ty
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in terms of the Mach number M of the shock,

p_oz(y—l)M2+2 Uy 2

(=D
2yM?

v (DM a4, oyl [2+ &= DM

1 TN_ 2’)/
M|” T, (y+1)?

so that the laminar flame speed U L(ﬁuf,Tuf) in (11) can be expressed in terms of M. Equation
(4) in which the quasi-isobaric approximation of the flame structure p,, y 1Py ;= (Tu r+ qml/cy)/ T, y
is used, leads to express the flow velocity u,, in terms of M and the flame elongation L/R. For
a given elongation of the finger flame, the second relation in (13) with uy = u,s then leads to a

nonlinear equation for M characterized by a turning point.

3.2. Self-similar solution of the piston-model using the DJ approximation

It is useful to begin the analysis of the self-similar solutions of the piston-model by using the
same approximations as in DJ for the turbulent wrinkled flame [13]. Even though these basic
approximations are not valid at the critical condition of the finger flames in tubes filled with an
energetic mixture, this simplified analysis provides instructive physical insights. A key point of
the preceding discussion below (13) is the increase of the Neumann temperature 7y with the flow
velocity uy. For a weak shock M — 1 < 1, neglecting the terms of order (M — 1)? in (13), the
temperature jump 7'y /T, — 1 increases linearly with uy/a, so that the temperature T, ¢ and the flow

velocity u, s of the unreacted gaseous mixture ahead of the flame are linearly related

4y Ty Uyf
= M-+ =g-DM g 4
e L -1=-D=Lr (4

4 o

Puy —1= @
Po ao

O<M-1«x1:

the only non-linearity left being the high sensitivity of the flame speed to the flame temperature.
This is the basic assumption of the DJ analysis leading to an analytical expression of the nonlinear

equation for the flame speed. For a large activation energy, the Arrhenius factor (12) reads

E(1_ 1 | B 7y Tup=To)

E/kgTyp, > 1, (E/kBTbo)(Tuf =T,)/ Ty, = O(1) = C_E(ﬁ_m) ~ e 8T Too T (15)
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On the one hand, introducing the last equation (14) into (15), equation (11) then gives an expres-

sion of the laminar flame speed in terms of the flow velocity u, s
Vel Lo (1)t
O<M-1<«1 : Ur/Ur, = €570 Tho ‘o, (16)

On the other hand, in the piston model, the flow velocity u,, is expressed in terms of U, and
L by the first equation (4) into which the density ratio is approximated by p,;/0,; ~ Tio/T, in

agreement with the approximation M — 1 < 1
ﬁuf/UL ~ (Tbo/To)[ 2L/R + (Tbo - T(J)/Tbo]- (17)
Introducing (17) into (16) yields a nonlinear equation for the ratio U, /Uy,

U,

(18)

(1)L [(2L/R+1)—%]

O<M-1«x1: UL/UL(,:e%ﬁ
which is meaningful in the distinguished limit used by DJ, E/kgT,, > 1, o0 > 1 such that (y —
D)o (E/kgTp,)(Ury/a,) = O(1). Using the notation m = U, /U,,, equation (18) can be written in a
form similar to (19) and (20) in [13]

L Tbo

- To — 1 E U 0
m=e>" where Szb[2_+—] and bE(V ) L
R Tbo

2 kB Tbo a,

< 1, (19)

the relation b < 1 coming from the fact that the laminar flame speed is substantially subsonic
Ui,/a, < 1, see (9). In the limit used by DIJ for the turbulent flame problem o > 1: bo = O(1),
S = O(1), a turning point is exhibited in (19) by the piston-model for a critical ratio L/R; there is no
solution for an elongation S above a critical value S* = 1/e, m*= e, while two solutions exist below
form <m*, S <§* = 1/e, the physical solution being the one for which the unperturbed velocity
U,, is recovered when the thermal effect (14) vanishes T, ¢ = Ty ttyy — 0, limg_o0 U /U, = 1.
According to (19), the laminar flame velocity U, of the physical solutions m < m* is still markedly
subsonic, U; = e Uy, and the critical length of the elongated flame L* is substantially larger than

the radius of the tube L*/R =~ 1/(2e b).
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A main difference with the forthcoming analysis of the very energetic mixtures in § 3.3 is that
the linear relations (14) are no longer accurate. However, two important conclusions can be drawn
from this simple calculation. Firstly, the back flow of the elongated flame is essential to reach a
critical condition at the tip; this follows from (19) showing that the critical condition can never be
attained by a planar flame propagating from the closed end of a tube when the burnt gas is at rest
upy = 0, the scalar § being well below the critical value 1/e for L = 0, § = b(Ty, — T,)/ T, still
too small by a factor 107! for U;,/a, =~ 1.6 1072, T},,/T, = 10, E/kzT, ~ 10,y = 1.4 = b =~ 0.032.
Moreover, for such a energetic mixture, according to (19), the critical elongation of the flame front
is not very large, 2L*/R + (T}, — T,)/Tp, = 1/(be) = 10.5, L*/R ~ 5. Secondly, the critical flow
ﬁ}u ~ 1.76 a, is supersonic yielding a Mach number of the lead shock close to 2, in contradiction
with the the weak shock assumption M — 1 < 1 in (14). Therefore, one has to be back to the full

Rankine-Hugoniot conditions (13).

3.3. Critical condition for elongated flames in tube filled with a very energetic mixture

In this section the self-similar solutions are computed by the method discussed at the end of §
3.1. Assuming that the heat release and the specific heat per unit mass are constant, Ty — T s =
Tyo =T, = gum/cp, the density and temperature ratios p, ;/p;,, and T, +/ Ty, to be introduced into (4)

and (11), respectively, are expressed in terms of T, /T,

puf — E -1+ be_Tuf — 14 Ty, —T,) 14 qm/CpTo

= — — , (20)
pbf Tuf Tuf Tuf Tuf/TU
be _ Tuf + Qm/cp _ Tuf/To + Qm/(CpTo) (21)
Tbo To + Qm/cp I+ q’n/(cpTo) ’
which can be written by using the short notation y = T, /T, >0and g = q,/c,T, > 1as

ﬁu T + Tu m T o T()

4 9, Y79 where y=-Y and g=-In -2t %)

Py y T, 1l+g¢g T, c,T, T,

According to the Rankine-Hugoniot equation (13) for Ty /T, with Ty = T4, the scalar y in (22) is

a function of M?. The algebra in (13) simplifies by anticipating that y — 1 ~ 0.3 — 0.4 is negligible
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in front of 2yM 2 near criticality, which is the case as soon as M* > 2,
2yM? T, 2
4 o1 f 24

2
= . X Y
y-1 T, ~(y+1)?

(y + 1)?

2+ @y -DM*], y(M?)= 2+ (- DM’ (23)

The flow velocity u, s, generated ahead of the flame in (4),

_M U U 0 2L
M o Gl 9 oo 1| where o=22+1 (24)
a, ULo a, R

y

then takes the form of a function of M? when the ratio U; /U, is expressed in terms of y (M?) by

using (11) in which, according to (22), 1/7bf -1/T, =/T,)(1-y)/(+q)

(1+‘—1)a—1
y

For a given reactive mixture characterized by the set of parameters (Uj,/a,, g, 5, and ), the

ﬁuf _ ULo
a, d,

=0(1). (25

2kB Tbo

2
Y+4ay\ sp Bo(y—1) _
(—1 " q) y'<exp [—(y e, where S, =

first Rankine-Hugoniot relation (13) uy/a, = u,s/a, = 2(M — 1/M)/(y + 1), combined with (25),
leads to a nonlinear equation for M parametrized by the parameter o characterizing the elongation
L/R. This equation takes a simpler form if (1 + g/y) o > 1 which is the case for a large heat
release g = 10 (very energetic mixtures ) so that the elongation of the flame o = 2L/R + 1 appears

as a factor in the right-hand side of (25). The equation for M then takes the form

M-1/M +1Ug,
/ AE)’ LO_

-1 _ =
AN L(M) = R(M), where L(M)= Trq/y > a (26)
_ U, y+q2 3/2 Boy—1)
and R(M) = U, - (1 " q) y'<exp —(y e, 27

where the elongation o appears only in the coefficient A and the laminar flame-speed U, only in
R(M). According to (23), L(M) and R(M) are increasing functions of M in the range M > 1,
involving two parameters (in addition to the ratio of specific heats y), the reduced heat release
q =~ 10 and the reduced activation energy 3, ~ 2 for very energetic mixtures. However the function
R(M) increases more rapidly than £(M) when M increases while the function £(M) goes to zero

and R(M) approaches unity in the limit M — 1 — 0*. This is true for the laminar flame-speed of
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any energetic mixture, so that the method is not limited to the particular expression (11) of U, /Uy,
used in (27).

The roots of (26) correspond to the intersection of the two graphs A~! £(M) and R(M). When
the parameter A is too large, namely for either a large elongation o or a large flame-speed Uy, /a,,
the function A~' £(M) is smaller than R(M) everywhere ¥ M > 1 so that equation (26) has no
roots and there is no self-similar solution of the complex flame-shock, see figure 2. Decreasing
A, a critical value A" is obtained when the two graphs become tangent at a critical value M*
corresponding to a turning point of the self-similar solutions like in § 3.2, see figure 2. For a small
elongation A < A* there are two solutions and the physical one belongs to the branch for which
the elongation L/R decreases with M — 1, since it is a stable branch according to (28). The critical
elongation corresponding to A* is easily obtained as follows. For typical values of the parameters
(g, Bo, v), the ratio R(M)/ L(M) first decreases and then increases when M increases from M = 1
so that it goes through a minimum. This is because the function R(M) increases more strongly
than L(M) for large M, but L(M) goes to zero in the opposite limit M — 1 — 0" while R(M) goes
to a number close to unity. The minimum of R(M)/L(M) corresponds to the critical Mach number

M = M" yielding the critical elongation A* given by the ratio R(M*)/ L(M*) = 1/A".

4. Comparison with the experimental data.

The critical condition obtained from (26)-(27) is now compared with the experiments [6, 7]
in which DDT is observed for M e [2.5, 3]. Using a set of parameters corresponding to very
energetic mixtures similar to those used in these experiments, Uy, = 8.54m/s (Uy,/a, = 0.016),
T,/T, =10(qg =9), E/kgT, = 25 (B, = 1.25), v = 2 and y = 1.4, the critical condition for the
loss of self-similarity obtained from (26)-(27) is M* = 2.5 and A* = 0.089 (see figure 2), that is
o* = 4.63. The corresponding critical values of the temperature ratio 7, #/T, and the flame velocity
in the laboratory frame U/ are TZ #/To = 2.19 and Uy ~ 890 m/s respectively. These values are
in good agreement with M and U, measured just before the abrupt transition in the experiments
[6, 7], occurring near the tube axis on the tip of the curved flame front at the end of a second
stage of flame acceleration (sometimes after the transient formation of a tulip shape). Moreover

0" = 4.63 leads to a small elongation L*/R =~ 2 which is in relatively good agreement with the
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curved flame front at the transition visualized by shadow photographs. Interesting enough is the
large flow velocity of gas ahead of the flame u,, ~ 928 m/s which is supersonic u,,/a, ,=1.18
(@,r/a, = 1.48) but subsonic relatively to the lead shock at it should be (D" - 4, )/a,, = 0.5.
Moreover the laminar flame velocity at the transition U; /U, = 4.62 is still markedly subsonic
U; = 39m/s, U; /Ezf ~ 0.05. The large ratio ﬁ;f/ U; ~ 25 is due to the large density ratio across
the laminar flame p,/p, = 10. These results are in good agreement with the experimental data.

To conclude this section, the sudden DDT of self-accelerating elongated flames propagating in
tubes filled with very energetic mixtures seems to occur nearby the critical condition of the turning

point of the self-similar solutions obtained with the planar piston-model.

5. Finite-time singularity of the acceleration of the flame

A runaway of the acceleration of the flame front (not of its speed) in the self-similar solutions
occurs systematically at the turning point when the elongation increases with the time o(¢). In-
troducing the notations £'(M) and R'(M) for dL(M)/dM and dR(M)/dM respectively, the time

derivative of equation (26) where A(¢) is proportional to o (¢),

dm 1 dA
AL M) - R(M)|—— = RIM)—— 28
(AT L) = R~ = RO~ — (28)
shows that the derivative dM/dr increases when the critical value M* is approached from below
and diverges at M = M*, limy;_ - dM/dt = oo. The tangency of the two graphs at the critical
root M* of L(M) = A(t) R(M) corresponds to L'(M*) = A* R'(M*) so that the factor of dM/d¢ on
the left-hand side of (28) vanishes while the left-hand side is finite. Expanding the factor on the

left-hand side in powers of M — M*, equation (28) takes the form

M-M)dM 1 (dA) (29)
A=A

M2 dr  A*\dr

where the constant of proportionality is linearly related to the inverse of the difference of curvature

of the graphs at M = M" in figure 2. The flame velocity in the laboratory frame U(¢) satisfies a
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similar equation near the critical condition

Uy-Up 1dU;  1do

U, U dr * o At lo=o

Ur< Uy, (30)
where, the definition of A in (26) has been used. The elongation growth rate appears here for the
first time in the analysis. Introducing the time ¢* at which the critical speed is reached M(t*) = M,
Uity =U ;;, (1) = ﬁ:f, and a reference time ¢, proportional to the inverse of the elongation

rate, 1/¢; oc o~ '(do/df)| o integrating (30) yields

(U -Uy) r—t r dU; t
f—1 =0 : fU* =\ df: — (31)
K t ¢ dr -t
(ﬁ;f _ﬁuf) -t t: dﬁuf t:
‘—* = ) p— - = ) (32)
i, s t i, dt -t

showing the runaway of the acceleration of the flame front dU;/dt and of the gas-flow du,/dt
when the critical condition is approached. Notice that the runaway is always produced regardless
of the elongation rate o~ !(do/dt)|,—-, the square-root scaling law taking a universal form (free
from parameters) when using the reduced time 7 = ¢/£;. The acceleration of the laminar flame-
speed dU,/dt and/or dU,/dt also diverges according to the same scaling laws as (31)-(32), the

critical values U; and U, being markedly subsonic.

6. Beyond self-similarity. Formation of a shock on the flame front

The self-similar solutions are accurate as long as the compressible waves are sufficiently fast to
make the flow quasi-uniform and quasi-steady. More precisely, the transit time of acoustic waves
in both directions between the flame and the lead shock should be shorter than the time scale of
the modifications of the flame speed. This approximation is no longer valid for large accelerations
of the flame all the more so as the lead shock is far away from the flame, and more particularly
near the turning point where the acceleration diverges pointing out the strong limitation of the
self-similar solutions.

The two-dimensional numerical simulations of Liberman and coworkers [7, 9] show a suc-
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cession of compression waves steepening into shocks ahead of the flame in close proximity of its
front. A shock seems to sit at the tip of the elongated flame just before DDT. The flame propagating
with a subsonic speed (relative to the upstream gas) while the shock is supersonic, a shock is more
likely formed spontaneously inside the inner flame structure producing quasi-instantaneously the
blow-up of the flame structure before escaping downstream into the unreacted gas. Understanding
of the abrupt DDT of a self-accelerating flame near the turning point requires the full solution
of the unsteady problem, including the inner structure of the laminar flame. Unfortunately un-
steadiness of the inner structure can be solved analytically only for much milder situations [24].
The study should be performed numerically in a one-dimensional geometry within the framework
of the piston model using a high-order spectral difference flow solver. This will be presented in
forthcoming papers. We limit our attention below to the simple waves that are generated in the
unreacted gas by the large acceleration of a piston approaching the critical velocity of the turning
point. The objective is to show that the unsteady compressible waves lead to the formation of a

singularity of the flow on the piston when the piston velocity reaches the critical velocity.

6.1. Theoretical analysis

Using the characteristics method of Riemann [25], an analytical solution of the isentropic Euler
equations can be obtained for the simple waves issued from a piston starting to move in an inert gas
initially at rest. Following the presentation in [26], the flow u(x, ) of a simple compression wave
propagating from left to right in a perfect gas, written in a Galilean frame where lim,_,., # = 0, is

solution of the equation

y+D

U+dael|t+ F(u) (33)

where a., is the initial sound speed of the gas at rest and F(u) is a function of the flow velocity
given by the condition at the piston x = X,(1): u(X,(1),1) = U,(t) = dX,/dz. Limited to isentropic
conditions, this solution is no longer valid after the apparition of a singularity in the flow gradient.
The known function X, () increasing monotonously with the time, the function F(u) is obtained

from (33) applied at the boundary condition x = X,(r) : u = U,(¢), using the functions X,(U,)
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and #(U,) obtained by inversion of U,(¢). For the classical problem corresponding to a power
law X,(r) o "*! with n > 1 for 7 > 0 and dX,/dr = O for < 0, the initial acceleration is
zero d*X »/d#*|,—o+ = 0. The analytical solution presented in [26] then shows that the flow gradient
Ou/0x diverges at a finite distance ahead of the piston after a finite time, yielding the place and time
of formation of the shock wave. This is no longer the case for n < 1; the singularity of the initial
acceleration of the piston velocity d*x bl df?|,—o+ = oo causes the shock to be formed instantaneously
on the piston. None of these cases correspond to an accelerating flame approaching the critical
velocity of a turning point. However, the divergence of the acceleration suggests that a shock will
be formed on the piston when the piston velocity reaches the critical value. The corresponding
analytical study is presented now.

Consider a piston propagating in an inert gas with a velocity Up(?) following the scaling law

(31) written, using the non-dimensional time 7 = ¢/£;, T = t*/£;, in the form

U,-U 1 dU 1 1

O<7<7: —PU};P:W’ U_}‘,drpzi —— (34)
with typically U, = 1.2 a,, as in the flame problem considered in § 4. In order to stress the effect
of the divergence of the acceleration at the turning point, consider the scaling law (34) for 7 > 0,
the velocity of the piston being constant for 7 < 0 : Up(r) = Up(0) and the flow constant and
uniform; 7 < 0 : u(x,7) = Up(0) and a(x,7) = a. ¥Yx > Xp(#). In other words we consider that
unsteadiness is negligible for 7 < 0 so that the self-similar solution is valid initially with a shock
wave at infinity. The piston starting to accelerate at T = 0", the boundary condition of the flow at

infinity is lim, . a(x, 7) = a. and lim,_,., u(x, 7) = Up(0) Y7. According to (34)

Up = Up(0) _

T, Vo (35)

7<0: UP(T) = Up(())

so that, in the Galilean frame moving with the initial flow, equation (34) takes the form
U —Up(0
O<t<t: 0<—P(T)U* QY N (36)
P
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For v fixed, there are only two free non-dimensional parameters in this problem
=1/t and m* = Up/d. (37

The only length scale in the problem being / = a..f;, one introduces the non-dimensional coordi-

nate ¢ and the non-dimensional position of the piston &p(7)

§=x/(asty),  &p(7) = Xp(D)/(a 1,) (38)

where dXp/dt = Up(#) and Xp(0) = 0, the origin of the x-axis being the initial position of the
piston. The trajectory of the piston, obtained by integrating the first equation in (34), takes the non

dimensional form

*

2 2 X 1,
|:T\/T_* + g(T* —7)}2 - 57*3/2] m", &= P _ 51*3/2171* 39)

a1

O<t<7: &p(T)

&0 =& [—(r* VT 4 (- TW] (40)

X, = Xp(1") being the distance separating the final position of the piston at = ¢* from its initial

position (¢ = 0). Introducing the notations

&p(t) = dép/dr = [Up() = Up(0)]l/ae,  &p(1) = d*ép/dr” = £;[dUp(1)/d1]/acs (41)

for the reduced velocity and acceleration of the piston in the Galilean frame, (36)-(40) read

*

m

0<r<r  &@=|V-@=0"w,  &O =55 (42)
1 ; . *

T=T @) =3 b =V imET) = S (43)

T=0" 1 &O0)=0.  EO=0. &0 =50 (44)

<0 H0)=0,  &D=0, &@®=0 (45)

For a situation similar to the flame in § 4, the piston is subsonic at the initial condition Up(0)/a., <
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1 and supersonic at criticality Up(t*)/a. = m* > 1. Introducing the non-dimensional flow velocity

v(£€, 1) in the Galilean frame moving with U(0),

Y& 7) = [u-Up(0))/aw, &= x/(act,); 7<0: v=0, (46)

the boundary conditions at the piston and at infinity yield
0<7<7"  vp(r) = V(Ep(T),7) = €p(T) = €p(0) = [ = (7" = D)2 m" (47)
T=7" 1 V= v(&(T), ) = m E—> 00 a=ae, V(& T1)=0 V1. (48)

In this frame, the piston is initially at rest, its velocity &p(7) in (41) is nil at 7 = 0, £p(0) = 0 and,
according to (43), becomes supersonic at 7 = 7 if 1/m* < t°1/2 = &p(1*) > 1, [Up—Up(0)]/ae > 1.

Formation of a shock in a finite time 7 = 7, is produced by the acceleration of the piston which
presents a jump m* /(2 \7) at the initial condition, see (44)-(45). An analytical expression of 7,
can be obtained following the method in [26]. Introducing the constant term &, and the function

fv) = F(u)/ast, — & the reduced form of (33) in which u — u — Up(0) takes the form

1 I
£— &= [(%) V= v) - (y; )v;; - 1] (" =)= 7] + fO). (49)

The function f(vp) is computed by the boundary condition at the piston & = £p(7): v = vp(7) after

eliminating 7 in favor of vp(7) by using (47)-(48) (7" — 1) = (v} — vp)?/m*? and (40) in the form

£ 2 . N3
b6 = [——(me*zv”) Ve s 2 ]m (50)

m*3

Introducing the expressions (7" —7) = (v, — vp)?/m*? and (50) respectively into the right-hand side

and the left-hand side of (49) yields the expression of f(vp), namely the function f(v) in the form

2 Y+ 1\ (y+1 N A A SU

The relation f(0) = —m*t*3/? = —¢&;, which is obtained from (51) by using (48) v} = 7"'/*m*,
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confirms that, according to (49), the trajectory in the medium at rest of the leading edge of the
compression wave (v = 0) is effectively & = t+constant, corresponding to a propagation velocity
equal to the sound speed a.,, as it should be for a weak discontinuity. Using the notation f’(v) =

df/dv, the derivative of (51) with respect to v yields

, 2 y+1\O0p=v7  (y+1 L Yyl
f(v):—3(§— > ) s -2 > Vp+ 1 —m'r R S (52)
while the partial derivative of (49) with respect to &
v+ 1 y ov
l=|—1t+ — 53
> f(V)] pF (53)

shows that the time 7 = 7, and the velocity v = v, at which the flow gradient diverges |0v/0é| = oo,

are linked by the relation

2
y+1

') (54)

s — =

According to (52), equation (54) is verified for 7, = 7, v = v* and, according to (33) and (49), the
place of formation of the singularity is the critical position of the piston & = &. This shows that
a singularity of the flow is systematically formed on the piston at the critical time 7 = 7.
However equation (49) is limited to isentropic flows and one has to check wether or not another
singularity can be formed before 7*. It turns out that this is possible at the leading edge of the
5 43/2

compression wave, v = 0. Introducing &, = m*7*¥/* and v = 0 in (52) leads to f7(0) = -2 +/T*/m".

Therefore, according to (54), a singularity can be formed ahead the piston at time

4 VT

s — 4 D) 55
T v+ 1 m* (55)
which is earlier than 7* if
4 1
s *. 56
v+ 1 m* < VT (56)
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The relation t* /1, > [4/(y+ D’as/ Uj in (56) corresponds to a time ¢ sufficiently long for reaching
the critical velocity after the piston started to accelerate. This also corresponds to a sufficiently
long distance separating the initial and final positions of the piston X,/(a«t") > 4/(y + 1). No
other singularity can be formed for 0 < 7 < 7* since no inflection point of the flow field can be
produced in the rarefaction wave d*f/dé? = 0 simultaneously with [df/dé¢| = co. Therefore, the

relation (56) corresponds to a first singularity formed ahead of the piston. The opposite condition

4 1
v+ 1 m*

Vo' < (57)
corresponds to a first singularity formed on the piston. Notice the difference between the two

singularities, the latter being formed at the maximum flow velocity in the compression wave u =

U7 while the former is formed at the minimum u = Up(0) (v = 0).

6.2. Numerical simulation

All these analytical results have been verified by the direct numerical simulation of the solu-
tions of the Euler equations by using the high-order spectral difference solver developed by Lodato
[21]. The details of the implementation of the numerical scheme may be found in [21] and are not
reproduced here, only the most important features of the numerics and their validation is given
in a footnote !. The one-dimensional non-steady flow of a perfect gas which is generated by an
adiabatic piston has been solved numerically here when the piston velocity satisfies the power law

(34)-(35). Before the first formation of a finite-time singularity (¢ = ¢;), the analytical expression of

'The Euler equations are solved in their fully compressible form using the spectral-difference method [27, 28].
Each one-dimensional cell constitutes an element in which the coordinates are normalized. The solved signal is
reconstructed within this finite volume element from n solution points with a degree n — 1 polynomial. Similarly,
degree n polynomials are used to reconstruct the fluxes of the transported variables from 7 + 1 flux points. The Gauss-
Legendre quadrature points are retained for locating the solution points, whereas the flux points are selected to be
the Gauss-Legendre quadrature points of order n — 1 plus the two ends points. This approach can be proved to be
linearly stable whatever the order of accuracy (i.e., the value of n), to be optimal for the reduction of aliasing errors
and, finally, to provide good conditioning [27, 28].The reconstructed fluxes are only element-wise continuous, and
discontinuous across the cell interfaces. A Riemann solver is employed to compute a common flux at cell interfaces.
Here, the Roe solver with entropy fix is used [29, 30]. The choc capturing technique is based on the analysis of the
linear decay of the modes of the interpolated solution, with a calibration made from manufactured solutions [31].
Numerous validations of this numerical framework for the simulations of shock waves may be found in [31-33].
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the flow obtained from (33) is verified with an excellent accuracy?. This is also true for the condi-
tion (55) separating the case of a first finite-time singularity at the leading edge of the compression
wave (t = t;, u = 0) from the case of a first singularity on the piston, x = Xp(ty), u = Up(t,).
Moreover, when, in agreement of (56), the first singularity is formed ahead of the piston at the
leading edge of the compression wave, the numerical simulation shows that a second singularity
of the flow gradient is systematically formed on the piston at the critical condition ¢, = ¢*. This
result cannot be obtained rigorously by the analytical approach since equation (33) is limited to
an isentropic condition so that the theoretical analysis is no longer valid after the formation of a
first shock. If the piston velocity is kept fixed after the critical condition (r > 1* : Up = Uj), the
supersonic velocity of the singularity formed on the piston being larger than U3, this singularity
leaves the piston to form a final shock ahead of the piston, leading to the self-similar solution after

a time proportional to #;. An example of such a numerical simulation is given in figure 4.

6.3. Discussion

These theoretical and numerical results suggest that a shock can be formed inside the inner
flame structure on the tip of a self-accelerating elongated flame-front as soon as its velocity reaches
the critical value of the turning point of the self-similar solutions®. However, for an abrupt DDT at
the critical velocity of the self-similar solutions, the increase of temperature should be sufficiently
strong to blow up the inner flame structure quasi-instantaneously before the shock escapes the in-
ner structure of the subsonic flame. This looks possible for gaseous mixtures that are sufficiently
energetic even though the flow inside the inner flame structure which is increasing in the propa-
gation direction (from the burnt to the unburnt gas side) is not in favor of shock formation, see
figure 3. Therefore, the singularity is expected to be formed at a point inside the premixed zone
near the cold side where the initial gradient of the flow is not large but the temperature sufficiently
large for producing fast self-ignition, which was not possible outside the flame structure where the

temperature of the unreacted gas is too low. Moreover figure 4 suggests that a train of successive

The numerical code has been also successfully tested on the piston problem 7 > 0: X,,(r) o #"*! with n > 0 and
dX,/dt = 0 for ¢t < 0 for which an analytical solution has long been known [26].

3t could seem questionable to work beyond self-similarity near the critical condition using the scaling laws of
the self-similar solutions. This is not so because the feedback of the self-similar solution on the flame, namely the
increase of the gas temperature, is similar to that of a compression wave.
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shock waves can be produced if the time 7] is sufficiently short. These fundamental aspects of the
DDT problem will be investigated numerically in forthcoming papers with the one-dimensional
piston-model using appropriate (high-quality) numerics [21]. Since shocks cannot be formed in
the stretched multidimensional flow of burned gas inside the elongated front, the adiabatic piston
is applied at the exit of the reaction zone with the velocity in (5) u,r = [0(t) — 11(our/ppr) UL, see
figure 3 in the legend of which the formulation of the unsteady problem is briefly formulated for a

reacting flow.

7. Conclusion and perspectives

Comparison of the 2010 experiments [6, 7] with the theoretical results obtained with the one-
dimensional piston-model for very energetic mixtures, shows that the sudden DDT at the tip of a
self-accelerating elongated flame occurs when the flame velocity reaches the critical value at the
turning point of the self-similar solutions. This suggests that the feedback mechanism based on
the back-flow is involved in these experiments. The role of the back-flow of burnt gas towards the
flame tip is all the more important since the density ratio across the laminar flame is large and the
thermal sensitivity of the laminar flame speed weak.

Moreover, the solutions of the upstream-running simple waves that are generated in an inert
gas from an accelerating piston have shown that, due to the singularity of the acceleration at the
turning point, a shock is formed on the piston when the critical velocity is reached. This suggests
the formation of a finite-time singularity inside the inner structure of the flame, in agreement
with the multi-dimensional numerical simulations [7, 9] performed by Liberman and co-authors
in the experimental conditions. A detailed analysis of the sudden transition is left for future one-
dimensional numerical simulations of DDT using the piston-model.

The small elongation of the finger flame at the critical condition, of the order of the tube
diameter in § 4, suggests that cellular flames of very energetic mixtures could also experience
DDT in free space through the mechanism described in the present paper. Typical examples are
the Rayleigh-Taylor unstable flames sustained by nuclear reactions [3] explaining DDT in type I

supernovae which was recently revisited [34].
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Figure 1: (a): Sketch of the self-accelerating elongated flame propagating in the laminar regime. The streamlines of
the burnt-gas flow issuing from the lateral wings of the flame front and oriented towards the flame tip are shown in
blue. (b): One-dimensional piston model. The velocity of the piston U, () increases with the extension of the flame
front L(¢) and also with the temperature of the burnt gas (through the laminar burning velocity measured in the burnt
gas), see (1). This model defines the simplest configuration of the double mechanisms leading to DDT at the tip of an
elongated flame : firstly the compressional heating by the upstream-running simple waves generated in the unburned
gas by the flame acceleration, dU/dt > 0, and secondly the convective motion of the flame (at the tip) caused by the
back-flow of burnt-gas, u;,; > U} for very energetic mixtures p, > pj, Uj, > Uj.
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Figure 2: Plots of £(M) in (26) and R(M) in (27) fory = 1.4, g = 9 and 5, = 1.25. The tangency of the graphs
A~'L(M) and R(M) is obtained for A* = 0.089 at M* = 2.44.
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Figure 3: Velocity profiles for the problem of shock formation by an accelerating piston (34), as obtained in the case
(56) by a numerical simulation, with m* = 2.5 and 7* = 0.64, Vt* = 0.8 > (1/m*)4/(y + 1) = 0.666. The dashed
line represents the position of the piston, which is moving from left to right. (a) At 7 = 7%, the primary shock formed
earlier at the tip of the compression wave can be observed, as well as the secondary shock forming on the piston. (b)
In this figure, the piston continues to move with a constant velocity U, after 7%, while the secondary shock is catching
up with the primary one. The increase of the gas temperature at the piston is similar to that in the self-similar solution

with the piston velocity Us.
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Figure 4: The compressible version of the reactive Navier-Stokes equations have to be solved in a one-dimensional
geometry using appropriate (high-quality) numerics [21]. A quasi-isobaric flame is ignited on the closed end of a
tube, the other end being open. After a while (transit time across the laminar flame) the flame reaches a quasi-steady
state. An adiabatic piston is then applied at the exit of the reaction zone with a velocity uyy = [07(7) — 1(our/ppr)UL
for a given function o (f) with ¢-(0) = 1. In this expression, the laminar flame speed U (T, p.r) and the density ratio
correspond to T,#(?) and p, () obtained by the simulation with an eventual time delay to take into account the transit
time of the acoustical waves across the burned gas enclosed in the elongated flame. Other expressions of the back-
flow uy, () can be used, for example the one obtained from o () and u, s(f) by a spatial integration of the instantaneous
distribution of the rate of heat release.
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