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Dans ce travail, nous utilisons la finitude du groupe de Mordell-weil et les espaces de Riemann Roch pour donner une paramétrisation géométrique de l'ensemble des points algébriques de degré quelconque donné de la courbe affine C 3 (11) : y 11 = x 3 (x -1) 3 sur le corps des nombres rationnels Q. L'énoncé obtenu est un cas spécial des quotients de courbes de Fermat d'équations C r,s (p) :

Ces courbes sont décrites par O.SALL dans [Sa03] qui étend les travaux de Gross et Rohrlich .

I. Introduction

Soit C une courbe algébrique définie sur un corps de nombres K. On note C(K) l'ensemble des points algébriques sur C définis sur K. Le degré d'un point algébrique R est le degré de son corps de définition sur Q, i.e, deg(R)

= [Q(R) : Q].
Un théorème célèbre de Faltings affirme que si g ≥ 2 alors l'ensemble C(K) des points algébriques sur C définis sur K est fini. Une généralisation aux sous-variétés d'une variété abélienne permet une étude qualitative de l'ensemble

[K:Q]≤l
C(K) des points algébriques sur C de degré au plus l donnée sur Q (voir ). La situation est plus favorable dans le cas où le rang du groupe de Mordell-Weil J(Q) de la jacobienne de C est nul. Notre courbe d'équation affine C 3 (11) : y 11 = x 3 (x -1) 3 est un cas spécial des quotients de courbes de Fermat d'équations C r,s (p) :

y p = x r (x -1) s , 1 ≤ r, s, r + s ≤ p -1 étudiées dans [Sa03] pour r = s = 3.
Nous nous proposons d'étudier en détail les points algébriques de degré quelconque donnée sur le corps Q de la courbe C 3 (11) d'équation affine : y 11 = x 3 (x -1) 3 . La courbe C 3 (11) est hyper-elliptique de genre g = 5 et de rang nul. Dans ([Gr-Ro78]) et [START_REF] Faddeev | on the divisor class groups of some algebraic curves[END_REF]), le groupe de Mordell-Weil J(Q) des points rationnels de la jacobienne J de C 3 (11) :

y 11 = x 3 (x -1) 3 est fini et donné par J(Q) = (Z/11Z).
Notre objectif est de donner une description géométrique de l'ensemble des points algébriques de C de degré quelconque l donné sur Q. On note P 0 = (0 : 0 : 0), P 1 = (1 : 0 : 1) et P ∞ = (1 : 0 : 0) le point à infini de C 3 (11) et considérons le plongement jacobien

j : C 3 (11)(Q) -→ J(Q) P -→ [P -∞].
Notre étude résulte des travaux de Gross-Rohrlich dans [Gr-Ro78] qui ont déterminé

[K:Q]≤2 C 1 (11)(K)
l'ensemble des points algébriques sur C 1 (11) de degré au-plus 2 sur Q par la proposition suivante : Proposition 1. l'ensemble des points algébriques sur C 1 (11) de degré au-plus 2 sur Q est donné par

[K:Q]≤2 C 1 (11)(K) = 1 2 ± y 11 + 1 4 , y
Théorème L'ensemble des points algébriques de degré l ≥ 9 sur C 3 (11) est :

[K:Q]≤l C 3 (11)(K) = F 0 10 k=1 F k avec F 0 =                          - i≤ l 2 a i y i 3 j≤ l-11 2 b j y j 3
, y a 0 = 0, a l 2 = 0 si l est pair, b l-11 2 = 0 si l est impair et y racine de l'équation

y 11 j≤ l-11 2 b j y j 2 = i≤ l 2 a i y i i≤ l 2 a i y i 3 + j≤ l-11 2 b j y j 3 3                          F k =                          - 11-k≤i≤ l+11-k 2 a i y i 3 j≤ l-k 2 b j y j 3 , y b 0 = 0, a l+11-k 2 = 0 si l est pair, b l-k 2 = 0 si l est impair et y racine de l'équation y k j≤ l-k 2 b j y j 2 = 11-k≤i≤ l+11-k 2 a i y i-(11-k) 11-k≤i≤ l+11-k 2 a i y i 3 + j≤ l-k 2 b j y j 3 3                         

II. Résultats auxiliaires

Soient x et y les fonctions rationnelles définies sur C 3 (11) par :

x(X, Y, Z) = X Z et y(X, Y, Z) = Y Z
Pour un diviseur D sur C 3 (11), nous notons L(D) le Q-espace vectoriel des fonctions rationnelles f définies par

L(D) = f ∈ Q(C 3 (11)) * | div(f ) ≥ -D ∪ 0 L'équation affine de la courbe C 3 (11) est : y 11 = x 3 (x -1) 3 . L'équation projective de la courbe C 3 (11) est : Y 11 = X 3 Z 5 (X -Z) 3 .
On a le Lemme suivant :

Lemme 1. div(x) = 11P 0 -11P ∞ ; div(y) = 3P 0 + 3P 1 -6P ∞ ; div(x -1) = 11P 1 -11P ∞ .
Preuve 1. il s'agit d'un calcul de type

div(x -i) = ((X -iZ) = 0).C 3 (11) -(Z = 0).C 3 (11) ( )
Voir [START_REF] Sall | Points algébriques sur certains quotients de courbes de Fermat[END_REF] Conséquences 1. 11j(P 0 ) = 11j(P 1 ) = 0. 3j(P 0 ) + 3j(P 1 ) = 0, donc j(P 0 ) et j(P 1 ) engendrent le même sous-groupe J(Q).

Lemme 2. Une Q-base de L(lP ∞ ) est donnée par : 

B = x 2 (x -1) 2 y 7 i | i ∈ N, i ≤ l 2 x x 2 (x -1) 2 y 7 j | j ∈ N, j ≤ l -
l 2 = h et j ≤ l-11 2 ⇔ j ≤ 2h-11 2 ⇔ j ≤ 2h-11-1 2 = h -6 = h -g -1. Donc on obtient B = 1, x 2 (x-1) 2 y 7 , ..., x 2 (x-1) 2 y 7 h ∪ x, x x 2 (x-1) 2 y 7 , ..., x x 2 (x-1) 2 y 7 h-g-1 , et par conséquent dim(B) = (h + 1) + (h -g) = 2h -g + 1 = l -g + 1 = dim(L(lP ∞ )) cas 2 : supposons que l est impair, et posons l = 2h + 1. On a alors i ≤ l 2 ⇔ i ≤ 2h+1 2 ⇔ i ≤ h et j ≤ l-11 2 ⇔ j ≤ 2h-10 2 = h -g Donc on obtient B = 1, x 2 (x-1) 2 y 7 , ..., x 2 (x-1) 2 y 7 h ∪ x, x x 2 (x-1) 2 y 7 , ..., x x 2 (x-1) 2 y 7 h-g , et par conséquent dim(B) = (h + 1) + (h -g + 1) = 2h + 1 -g + 1 = l -g + 1 = dim(L(lP ∞ )) III. Démonstration du théorème Soit R ∈ C 3 (11)(Q) avec [Q(R) : Q] = l. Notons R 1 , ..., R l les conjugués de Galois de R, et posons t = [R 1 + ... + R l -lP ∞ ] qui est un point de J(Q) = mj(P 0 ), 0 ≤ m ≤ 10 ; donc t = mj(P 0 ) avec 0 ≤ m ≤ 10. Ce qui donne la relation [R 1 + ... + R l -lP ∞ ] = mj(P 0 ). ( 1 
)
On remarque que R / ∈ P 0 , P 1 , P ∞ .

Cas m = 0 Il existe alors une fonction rationnelle f telle que div(f

) = R 1 + ... + R l -lP ∞ , donc f ∈ L(lP ∞ ). D'après le Lemme 2, on a f = i≤ l 2 a i x 2 (x -1) 2 y 7 i + x j≤ l-11 2 b j x 2 (x -1) 2 y 7 j avec a l 2 = 0 si l est pair (sinon les R i seraient égaux à P ∞ ) et b l-11 2 = 0 si l est impair (sinon les R i seraient égaux à P ∞ ). Aux points R i on a i≤ l 2 a i x 2 (x -1) 2 y 7 i + x j≤ l-11 2 b j x 2 (x -1) 2 y 7 j = 0 d'où x = - i≤ l 2 a i x 2 (x -1) 2 y 7 i j≤ l-11 2 b j x 2 (x -1) 2 y 7 j et par suite y 11 = x 3 (x -1) 3 ⇔ y 1 3 = x 2 (x-1) 2 y 7 , ainsi x = - i≤ l 2 a i y i 3 j≤ l-11 2 b j y j 3 . Donc l'équation y 11 = x 3 (x -1) 3 devient y 11 j≤ l-11 2 b j y j 2 = i≤ l 2 a i y i i≤ l 2 a i y i 3 + j≤ l-11 2 b j y j 3
3 qui est une équation de degré l en y.

On trouve ainsi une famille de points de degré l

F 0 =                          - i≤ l 2 a i y i 3 j≤ l-11 2 b j y j 3
, y a 0 = 0, a l 2 = 0 si l est pair, b l-11 2 = 0 si l est impair et y racine de l'équation

y 11 j≤ l-11 2 b j y j 2 = i≤ l 2 a i y i i≤ l 2 a i y i 3 + j≤ l-11 2 b j y j 3 3                         
De la même manière on montre que pour m = k avec k ∈ {1, ..., 10}, la relation (1) donne [R 1 + ... + R l -lP ∞ ] = kj(P 0 ) = (k -11)j(P 0 ). Il existe alors une fonction rationnelle f telle que div(f On trouve ainsi une famille de points de degré l (11-k) 11-k≤i≤ l+11-k

) = R 1 + ... + R l + (11 -k)P 0 -(l + 11 -k)P ∞ , donc f ∈ L(l + 11 -k)P ∞ . D'après le Lemme 2, on a f = i≤ l+11-k 2 a i x 2 (x -1) 2 y 7 i + x j≤ l-k 2 b j x 2 (x -1) 2 y 7 j ; et comme ordf P0 = 11 -k, donc f = 11-k≤i≤ l+11-k 2 a i x 2 (x -1) 2 y 7 i + x j≤ l-k 2 b j x 2 (x -1) 2 y 7 j avec a l+11-k 2 = 0 si l est pair (sinon les R i seraient égaux à P ∞ ) et b l-k 2 = 0 si l est impair (sinon les R i seraient égaux à P ∞ ). Aux points R i on a 11-k≤i≤ l+11-k 2 a i x 2 (x -1) 2 y 7 i + x j≤ l-k 2 b j x 2 (x -1) 2 y 7 j = 0 d'où x = - 11-k≤i≤ l+11-k 2 a i x 2 (x -1) 2 y 7 i j≤ l-k 2 b j x 2 (x -1) 2 y 7 j et par suite x = - 11-k≤i≤ l+11-k 2 a i y i 3 j≤ l-k
F k =                          - 11-k≤i≤ l+11-k
2 a i y i 3 + j≤ l-k 2 b j y j 3 3                         

2

  Il est clair B est libre. Il reste à montrer que dim(B) = dim(L(lP ∞ )). D'après le théorème de Riemann-Roch, on a dim(L(lP ∞ )) = l -g + 1 dès que l ≥ 2g -1 avec g = 11-1Considérons les cas suivants : cas 1 : supposons que l est pair, et posons l = 2h. On a alors i ≤

2 b j y j 3 .

 3 Donc l'équation y 11 = x 3 (x -1) de degré l en y.