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Current 'economies of scale' in global agribusiness -across space, time, genetics and organizational structure -constitute an insurmountable barrier to public health efforts at control of pandemic disease. A relatively elementary model of noise-induced stabilization suggests that sufficient and properly designed and monitored disruption of global agricartels -breakup -would act as a de-facto sterilizing temperature to prevent pathogen emergence.

Introduction

Much recent work has highlighted the role of agribusiness 'economies of scale' in grossly accelerating the rate of pathogenic challenge to human populations, a dynamic underlying repeated outbreaks of pandemic disease. See R.G. [START_REF] Wallace | Big Farms Make Big Flu: Dispatches on infectious disease, agribusiness and the nature of science[END_REF][START_REF] Wallace | Dead Epidemimiologists: On the origins of COVID-19[END_REF] for detailed expositions and comprehensive overviews of the literature. Similar matters are more abstractly studied in [START_REF] Wallace | Big Farms Make Big Flu: Dispatches on infectious disease, agribusiness and the nature of science[END_REF] and R. [START_REF] Wallace | Clear-Cutting Disease Control: Capital-led deforestation, public health austerity, and vector-borne infection[END_REF]. More recently, R. Wallace et al. (2022, Ch. 5) provide mathematical models showing how such 'economies', aimed at a draconian -Procrustean -smoothing of workflows in time, space, and genetic structure, are, from the perspectives of public health, actually diseconomies of scale, raising the probability of pandemic pathogen escape to virtual certainty.

Here, we reconsider these matters, focusing on interactions between such 'economies' and the failures of public health systems constrained by the rate at which disease control actions can be delivered in the face of rising rates of disease spread. The stochastic theory of differential equations (Appleby et al. 2008;[START_REF] Mao | Stochastic stabilisation and destabilisation[END_REF]) details how obviating those 'economies' -fragmenting and roughening them -can reimpose public health control of pandemic disease via a kind of sterilization. The argument -at least mathematically -is surprisingly straightforward.

We begin with a reconsideration of 'economies of scale', examine public health entities as control systems, and construct a simple mathematical model based on the Data Rate Theorem linking information and control theory illustrating how carefully-designed policies of 'stochasticization' can drive emerging pathogens to extinction.

'Economies of scale' redux

We suppose there are n basic inverse measures of corporate agribusiness 'economies of scale' as studied in Wallace et al. (2022, Ch.5). These are, in addition to temporal, spatial, and genetic, also across financial, organizational, and 'social' matters. Examples of the latter forms include 'simple' verticalization, illegal cartels suppressing competition and/or governmental regulation, or in some polities, private armies interfacing with local police to intimidate smallholders and indigenous organizations, and so on. The larger index, the 'smoother' the workflow, and the more concentrated the 'corporate socialism' privatizing profits and socializing costs.

In reality, these measures of such 'corporate efficiency' must interact, so that one is confronted with a square n × n matrix, say R, having elements R i,j . A square matrix of order n will have n scalar invariants, that is, n real numbers that remain constant under certain symmetry operations. The first invariant is usually taken as the trace, and the last as ± the determinant.

Given the complexity of modern agribusiness enterprises, n may not be small, particularly across powerful cartel/political networks.

The invariants can be expressed as the coefficients of the characteristic polynomial P(λ)

P(λ) = det(R -λI) = λ n + r 1 λ n-1 + ... + r n-1 λ + r n (1)
where λ is a parameter that is an element of a ring, det is the determinant, and I is the n × n identity matrix. λ may even be taken as the matrix R itself, since square matrices form a ring. We will assume it possible, as in Principal Component Analysis, to project most of the 'variance' -in some appropriate sense -down on to a single scalar function of the n matrix invariants, writing a scalar function as

ρ = ρ(r 1 , r 2 , ...r n ) (2)
Figure 1: A linearized control system near the nonequilbirium steady state. X t+1 is the system's response to the control signal U t and the earlier state X t . U t is the output of the control information source, and W t a 'noise' vector.

3 Public health as control of an inherently unstable system

As Wallace et al. (2022, Ch.5) note at some length, modern nation-states confronted by emerging infection are not simply natural populations of infective, susceptible and 'removed' individuals. Modern states are active cognitive entities that, when confronted by challenge or opportunity, must and do choose one or more actions from the much larger set of what is available to them. Such choice implies a reduction in uncertainty, and any reduction of uncertainty necessarily implies the existence of an information source 'dual' to the cognitive process studied. The argument is direct, unambiguous, and compelling across many modalities and scales (e.g., [START_REF] Wallace | Consciousness: A Mathematical Treatment of the Global Neuronal Workspace Model[END_REF][START_REF] Wallace | Consciousness, crosstalk, and the mereological fallacy: an evolutionary perspective[END_REF][START_REF] Wallace | Computational Psychiatry: A systems biology approach to the epigenetics of mental disorders[END_REF][START_REF] Wallace | Consciousness, Cognition and Crosstalk: The evolutionary exaptation of nonergodic groupoid symmetry-breaking[END_REF].

In the context of an emerging pathogen, a public health entity attempts to impose control on an inherently unstable system -an explosively growing infection. Such matters are the purview of the Data Rate Theorem linking control and information theories [START_REF] Nair | Feedback control under data rate constraints: an overview[END_REF].

Figure 1 outlines a polity's public health system in the context of an emerging pathogen. At time t, the system receives a multidimensional state vector X t representing both disease and institutional crossectional data.

It then produces an output vector at time t + 1 as X t+1 . At time t the system is also affected by a 'noise' vector W t including uncontrolled inputs and a control vector U t representing the cognitive activities of the state. The standard approach [START_REF] Nair | Feedback control under data rate constraints: an overview[END_REF]) examines the dynamics of a linear approximation at the nonequilibrium steady state (nss) written as

X t+1 = AX t + BU t + W t (3) 
A and B are fixed matrices characteristic of the system at nss. In the first period of an emerging infection, this system must be seen as inherently -indeed, explosively -unstable. The matrix A can be factored by a similarity transformation into two diagonal submatrices A U and A S , with two zero off-diagonal matrices. A U has eigenvalues ≥ 1 and A S has eigenvalues < 1. The portion of the system under A U is growing explosively, and must be brought under control by the imposition of the control signal vector U t . The Data Rate Theorem states that the rate at which control information is provided, H, must be greater than the rate at which the system generates its own 'topological information' according to the relation

H > log || det(A U )|| ≡ H 0 ( 4 
)
where det is the determinant of the unstable subcomponent of A.

In the context of a public health system under siege from concentrated agribusiness actions, this relation becomes more general, and we write it as

H(ρ) > f (ρ)H 0 (5) 
H 0 now represents the basic topology of the contact patterns at national, municipal, and social network scales and levels of organization, i.e., the basic backcloth on which infection spreads. What are H(ρ) can, somewhat surprisingly, be approximated using a standard Black-Scholes treatment abducted from financial engineering [START_REF] Black | The pricing of options and corporate liabilities[END_REF], as described in the Mathematical Appendix. In first order

H ≈ κ 1 ρ + κ 2 (6)
Making the same level of approximation for f (ρ) lead to the condition

T ≡ κ 1 ρ + κ 2 κ 3 ρ + κ 4 > H 0 (7) 
T will be characterized as the 'control temperature' of the system. At low values of ρ the stability condition is κ 2 /κ 4 > H 0 , and at high values it is κ 1 /κ 3 > H 0 . If κ 2 /κ 4 > κ 1 /κ 3 , then, at some intermediate value of agribusiness 'smoothing' ρ, the stability criterion is violated, triggering uncontrolled pandemic spread, as in figure 2,where κ 

1 = 1/4, κ 2 = 8, κ 3 = κ 4 = 1¿

Stochastic stabilization

As Appleby et al. (2008) and [START_REF] Mao | Stochastic stabilisation and destabilisation[END_REF] show at great length, stochastic differential equations of the form Figure 2: The horizontal line is the critical value H 0 . If κ 2 /κ 4 > κ 1 /κ 3 , then at some value of the 'environmental insult' ρ, the system falls below the critical control level H 0 from Eq.( 7) and agribusiness-driven pandemic disease cannot be controlled. Here,

κ 1 = 1/4, κ 2 = 8, κ 3 = κ 4 = 1. dX t = f (X t )dt + g(X t )dB t (8)
where dB t is Brownian white noise, have a peculiar characteristic, namely that any stable/unstable relation dX/dt = f (X(t)) can be destabilized/stabilized by proper choice of g(X t ) in Eq.( 8).

In a fundamental sense, this is the whole ballgame, but it interesting to carry out a more detailed example using Eq.( 7). That is, we will now explore the stochastic stability of Eq.( 7) originally set in the unstable mode as a function of applied 'noise' using the basic model

dρ t = f (ρ t )dt + σh(ρ t )dB t (9)
taking dρ/dt = f (ρ). In the examples below, we will assume an exponential model, i.e., f (ρ) = β -αρ, but proceed here in general.

We calculate the expression for dT t from Eq.( 7) via the Ito Chain Rule (Protter 2005), and then evaluate < dT t >= 0 for the nonequilibrium steady state.

This procedure produces a surprisingly simple result, The first relation can be solved for ρ t in terms of σ, and then plugged in to the expression for T from Eq.( 7), giving T (σ) at nss. The second and third relations illustrate the results of Appleby et al. (2008) and [START_REF] Mao | Stochastic stabilisation and destabilisation[END_REF] in that proper choice of the function h(ρ) will always make ρ = V -1 (σ 2 ) a monotonic decreasing function of σ.

h(ρ t ) 2 - f (ρ t ) σ 2 (ρ t + κ 4 /κ 3 ) = 0 σ 2 = f (ρ t ) h(ρ t ) 2 (ρ t + κ 4 /κ 3 ) ≡ V (ρ t ) ρ t = V -1 (σ 2 ) (10)
As an example, we again assume an exponential model for f (ρ t ) = β -αρ t , and T as in figure 2, with β = 2, α = 1. For h(ρ) = ρ, T (σ) is shown in figure 3, where increasing 'noise' eventually stabilizes the system, raising T above the critical level H 0 .

For h(ρ) = 1, a more complicated pattern emerges in figure 4: above σ = 3/2 the system assumes a non-zero imaginary component, implying a phase transition to instability. Clearly, just how stochasticity is imposed -the precise nature of g(X) in Eq.( 8) -is indeed critical to system dynamics. Some exploration of Eq.( 10) suggests that if, in the second term in Eq.( 9), h(ρ) is positive and monotonic increasing, the system will follow the pattern of figure 3 rather than figure 4. That is, the 'noise' level should be linked to the observed stress index ρ to avoid disruptive phase transitions.

Discussion

Although, from an epidemiological modeling perspective, Eq.( 8) most cleanly encompasses the canonical intervention -use 'noise' as a temperature analog to Figure 4: T (ρ(σ)) for h(ρ) = 1, again based on the Ito Chain Rule expression for < dT t >= 0 as in figure 3. Above σ = 3/2, however, the system assumes a nonzero imaginary component, implying a phase transition to instability. Evidently -and consonant with the arguments surrounding Eq.( 8) -just how stochasticity is imposed is critical to system dynamics under rising stress. carefully disperse and 'sterilize' current agribusiness cartels -Eqs.( 9) and ( 10) and figures 3 and 4 provide an interesting detailed example. Our approach is based on a Data Rate Theorem perspective on public health as an infectious disease control system. That is, as have many others, we argue that prevention and control of mass-fatal pandemic disease is predicated on the imposition of a sterilizing dispersal across current large-scale agribusiness enterprise. Dispersal and reconfiguration of large-scale global agribusiness in time, space, and genetic structure -along with escape from the excesses of 'vertical integration' and associated agricartel political corruption and violence -will be required to avert repeated pandemic outbreaks likely to rapidly reduce human populations to a 'global carrying capacity' of perhaps 500 million stunned survivors.

Figures 3 and4, however, also suggest that the breakup of current agricartels, even beyond the obvious political difficulties, is likely to be a subtle matter, and that the exact form in which sterilizing stochasticity is imposed can be of singular importance. The critical transition shown in figure 4 implies that policies of agricartel dispersal must be carefully designed, continuously monitored and revised as data indicate to ensure proper public health outcomes.

Mathematical Appendix

A Black-Scholes model

We look at H(ρ) as the control information rate 'cost' of stability at the integrated environmental insult ρ. To determine the mathematical form of H(ρ) under conditions of volatility i.e., variability proportional to a signal, we must first model the variability of ρ, most simply taken as

dρ t = g(t, ρ t )dt + bρ t dB t (11)
Here, dB t is white noise and -counterintuitively -the function g(t, ρ) will fall out of the calculation on the assumption of certain regularities.

H(ρ t , t) is the minimum needed incoming rate of control information under the Data Rate Theorem. Expand H in ρ using the Ito chain rule [START_REF] Protter | Stochastic Integration and Differential Equations[END_REF]: It is now possible to define a Legendre transform, L, of the rate H, by convention having the form

dH t =
L = -H + ρ∂H/∂ρ (13) 
H is an information index, a free energy measure in the sense of Feynman (2000), so that L is a classic entropy measure.

We make an approximation, replacing dX with ∆X and applying Eq.( 12), so that ∆L = (-∂H/∂t -1 2 b 2 ρ 2 ∂ 2 H/∂ρ 2 )∆t ( 14)

According to the classical Black-Scholes model [START_REF] Black | The pricing of options and corporate liabilities[END_REF], the terms in g and dB t 'cancel out', and white noise has been subsumed into the Ito correction factor, a regularity assumption making this an exactly solvable but highly approximate model.

The conventional Black-Scholes calculation takes ∆L/∆T ∝ L. At nonequilibrium steady state, by some contrast, we can assume ∆L/∆t = ∂H/∂t = 0, giving

- 1 2 b 2 ρ 2 ∂ 2 H/∂ρ 2 = 0 (15) so that H = κ 1 ρ + κ 2 (16) 
The κ i will be nonnegative constants.
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 3 Figure 3: T (ρ(σ)) for h(ρ) = ρ, based on the relation < dT t >= 0 via application of the Ito Chain Rule from Eq.(10), using the κ-values of figure 2, taking β = 2, α = 1. At low σ the stability criterion is violated, but becomes enabled at sufficiently high 'noise' σ, a classic example of noise-induced stabilization.
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