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Experimental nonlinear acoustic techniques for visualizing damage in materials and structures have been 

intensively developing for more than 30 years. It is of interest to supplement them by relevant modeling methods 

capable of imitating acoustic propagation in damaged materials. The associated gains include the availability of 

all calculated mechanical fields instead of restrained experimental data, the possibility to predict false detections 

and false alarms, and, in perspective, to reconstruct real parameters of defects by comparing measured data to 

synthetic ones. In this work, we model mechanical processes corresponding to laser vibrometry experiments in 

which nonlinear components of generated acoustic standing waves in a sample approximately reveal the position 

of damage. To do so, we apply a previously developed numerical method that combines a physical model of 

frictional contacts representing damage and the finite element formulation for acoustic waves. This physical 

model accounts for the Coulomb friction law governing mechanics of contacting rough surfaces by using the 

analogy between rough profiles and axisymmetric contacts of Cattaneo-Mindlin type. The latter ones are 

successfully described with the help of the original method of memory diagrams capable of calculating contact 

response to an arbitrary acoustic excitation. In our numerical experiments, we form standing waves in a domain 

containing a crack with known geometric properties. Depending on structure geometry, excitation type and 

strength, as well as on damage size, position and depth, we obtain widely different responses containing 

nonlinear spectral components. We qualitatively compare them to available experimental data and formulate 

conclusions on theoretical sensitivity of nonlinear resonant methods in various situations. 

1 Introduction 

This paper is concerned a new method of acoustic 

modeling in materials with frictional contacts aimed at 

nondestructive testing (NDT) applications. Frictional 

contacts are frequency related to damage (cracks, 

delaminations) in solid structures. Nowadays, contact 

acoustic nonlinearity is used for detecting positions and 

extent of damage, at least in laboratory context. It is 

important to emphasize that nonlinear acoustic NDT is a 

family of essentially experimental techniques. Numerical 

models for underlying physical processes exist only in 

particular cases and on the basis on simplified description 

of contact nonlinearity. Description of an arbitrary frictional 

contact excited by an arbitrary acoustic field requires huge 

computational expenses. The main reason for that is in the 

fact that the account for friction engenders implicit 

calculations. The basic approximate model for frictional 

interaction (Coulomb friction law of T=µ N type) does not 

produce the required boundary conditions as a direct link 

between stresses and displacements. It just says that 

particular contact fragment can be found in the state of slick 

or of slip, and defines conditions for that in terms of 

stresses. The displacements in this case should be adjusted 

altogether and multiple times in order to satisfy those 

conditions. In addition, friction makes the problem 

hysteretic i.e. a current response of a frictional system is not 

instantaneous but depends on loading history. 

Nevertheless, there exists a family of numerical contact 

mechanics methods [1,2] that successfully address those 

issues. However, they are typically applied to simple 

loading histories (e.g. loading-unloading-reloading) 

whereas acoustic signal contain large number of 

oscillations. There also exist numerical acoustic methods 

[3,4,5] applicable to ultrasound signals in the presence of 

inner frictional contacts but their use is associated with 

considerable computational expenses coming from an 

implicit nature of solution. 

In a series of publications [6,7,8] it is suggested an 

alternative approach based on the Cattaneo-Mindlin [9] 

(also called Hertz-Mindlin [10]) solution. This classical 

result links forces and displacements for contact of two 

spheres loaded by one of a certain set of particular 

protocols. More recently, two important advances have 

been suggested: account for non-spherical but axisymmetric 

shapes [14], and applicability to arbitrary loading 

histories/protocols [6,7,8]. These methods can be called 

semi-analytical since the solution remains cumbersome but 

analytical, and has coefficients determined by an algorithm. 

In addition, there exist arguments proving that fragments of 

isotropically rough surfaces in contact interact in the sense 

of load-displacement relationships in the same way as 

axisymmetric bodies of appropriate shapes. The semi-

analytical methods of this kind provide the sought-for load-

displacement relationship in an explicit form that 

dramatically reduces the calculation effort in comparison 

with implicit schemes. 

Our original method (Method of Memory Diagram, 

MMD [6,8]) belonging to this group uses internal memory 

functions or diagrams in which the coefficients of the 

analytical solutions are encoded. Further, based on those 

principles, we have developed a so called MMD-FEM 

numerical tool [11] that describes wave propagation in a 

material with frictional cracks including nonlinear effects 

coming from contact interactions. In this paper, we apply 

the corresponding code to solving a wave problem that 

underlies an existing nonlinear acoustic imaging technique 

that uses harmonic content in standing waves generated in a 

sample by a continuous sinewave excitation. Purely 

harmonic, the standing wave becomes slightly nonlinear if 

defects are present. Spatial distribution of the nonlinear 

wave component can approximately indicate positions and 

extents of hidden cracks. This technique, the nonlinear 

resonant laser vibrometry [12], is relatively easy to imitate 

numerically since it does not require sharp focusing of 

acoustic waves as other methods do. 

In this paper, we briefly explain how the MMD-FEM 

functions in the considered case and present a number of 

synthetic nonlinear acoustic images of hidden plane cracks 

of certain size. These images are shown in a variety of cases 

determined by geometric and physical parameters of the 

sample and of the excitation. In addition, the MMD 

algorithm has an important parameter related to roughness 
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of crack faces. The influence of these factors is illustrated 

by numerous examples. 

2 Method of memory diagrams 

As mentioned above, the MMD is analytical with 

coefficients “ciphered” in internal memory functions (or 

diagrams) that are continuously being updated following 

changes in the loading protocol. The details can be found in 

[6,8] and include the formulation of the method for partial 

slip of axisymmetric bodies in contact, and then the 

generalization of the method for the case of total sliding. As 

a result, for any sequence of contact states (partial slip, full 

sliding and contact loss), the solution is expressed in a 

closed form denoted here as 

( ) ( )( ) ( ), ,MMDT T b t a t N N a= = .          (1) 

Here a and b are normal and tangential contact 

displacements that depend on time, while N and T are 

normal and tangential forces. In the considerer 2D case the 

force and displacement vectors always stay in one plane. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Here the normal dependence N=N(a) is considered as 

known. Paper [13] explains why a model form 

( ) 2 2
N a C a=                          (2) 

is appropriate as an approximation arising from several 

assumption related to rough surface contact mechanics. The 

authors of [15] have arrived to the same conclusion on the 

basis of acoustic measurements of the load-force 

displacement. Their estimate for constant C obtained for 

two aluminum blocks is used here as an approximate value. 

Inner cracks can have roughness largely different from the 

available case, therefore in this work we consider other 

possible values as well. 

Figure 1 illustrates the MMD load-displacement 

response to an exemplar loading history in terms of the 

normal and tangential displacement. The automated 

calculations for hysteretic shapes of the similar kind 

provide boundary conditions for the wave propagation 

problem at each discretization point at crack faces (actually, 

pairs of points located at the opposite faces). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 ‒ Hysteretic tangential load-displacement response (a) plotted for exemplar loading 

history in terms of displacements (b). 
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Figure 2 ‒ Geometry of the problem, boundary conditions and excitation type. 
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3 Geometry of imitated laser 

vibrometry experiment 

It is important to note that numerical acoustics remains 

time consuming as far as the wave equation itself is 

concerned. In our examples, several milliseconds of 

modeled acoustic experiment correspond to hours of 

calculations. To keep this ratio reasonable, we had to accept 

two principal simplifications: restrained geometry 

consisting in a 2D rectangle containing crack, and high 

values of viscous losses in the material, realistic for 

composite materials but highly exaggerated for metals or 

ceramics. The increased viscosity considerably shortens 

time needed for formation of a stationary solution in the 

form of a standing wave those amplitude and shape do not 

depend on time anymore. In addition, the bulk and shear 

viscosities are considered equal, since their values have an 

approximate character anyway. 

Geometry of the problem and boundary conditions are 

shown in Figure 2 together with information about 

excitation. Low reflecting boundaries at the left and right 

correspond to the case of a fragment of a realistic plate with 

high geometric aspect ratio. In addition, acoustic energy can 

effectively go away from the edges acting as additional 

damping that also shortens the standing wave formation 

time. Further, to comply with vibrometric experiments, the 

top surface is considered free; the corresponding 

displacements are measured by laser beam in reality and are 

used for the harmonic analysis. In contrast, the bottom 

surface is fixed. This is important since some boundary 

conditions should be of the first type (known displacement), 

otherwise an acoustic action will generate an unlimited 

motion of the entire plate in free space. Besides, fixing the 

bottom instead of the left and/or right edges helps prevent 

bending or cantilever motions that can be excited by low 

frequencies but are out of interest here. In real laboratory 

experiments, a plate can be suspended by elastic strings 

which are difficult to model here since we consider a small 

fragment only. 

The sample is excited by a sinusoidal vertical 

displacement as shown in the figure. The excitation zone 

corresponds to an attached transducer and is limited by a 

supergaussian window. 

The crack is located in top left corner. Since it 

represents a critical element of geometry, mesh is refined 

around it. 

4 Results and discussion 

The MMD-FEM code allows one to compute acoustic 

fields in the sample depicted in Figure 2. The following 

characteristics are of special interest: wave displacements ux 

and uy at the top boundary that are measured by scanning 

laser in real experiments, and values of the first strain 

invariant εxx+εyy at points close to the transducer and to the 

crack. The magnitude close to the transducer characterizes 

the input level signal; generally, values of about 10
-7

 are 

considered as weak, 10
-6

 typical, and 10
-5

 very strong. Here 

it is appropriate to cite a known result [16] for the critical 

tensile stress at which crack starts growing:  

( )
2

0 22 1

EG

R

πσ
ν

=
−

,                     (3) 

where G is the surface energy, and E andν are respectively 

Young's modulus and Poisson's ratio of the material. Simple 

estimations show that for a 3 cm diameter crack in 

aluminum this critical stress corresponds to strain of about 

3.4·10
-5

. To comply with the spirit of nondestructive testing, 

the strain in material should be less than that value with a 

margin. 

However, the strain invariant is weaker near the crack 

since the transducer is located at some distance. The ratio 

between strain invariants close to the crack and close to the 

transducer depends on excitation frequency f and ranges 

between a few percents to about 40%. Certainly, this 

penetration ratio should be high enough to generate a 

nonlinear signal of substantial level. 

The nonlinear signal or criterion we are talking about is 

introduced as 
2

,

, ,

1

x y

n
x y x y

n

A
I

A

 
=  

 
                       (4) 

where 
,x y

n
A  denotes the n-th harmonic in the spectrum of ux 

and uy displacements at the top surface. These nonlinear 

criterions as functions of x-coordinate at the top boundary 

represent images of the crack. The definition Eq. (4) 

corresponds to the one introduced in experimental work 

[12] in which its typical level is reported to be about 10
-3

. It 

is important to note that the fundamental harmonics 
,

1

x y
A  

added in Eq. (4) as a denominator to compensate for the 

limited penetration effect can be close to zero at some 

points, as it frequently occur with a standing wave in 

general. Zeros in the first harmonics will produce huge 

parasite peaks in the images. To get rig of this, we applied 

running averaging to 
,

1

x y
A  in Eq. (4). 

In Figure 3 we present results for a large crack of 3 cm 

size excited with the same randomly chosen frequency 

f=240 kHz and other parameters varied. Generally, even for 

weak excitation level in the vicinity of the crack its location 

and size are clearly visible in images. The signal level at the 

crack and in the excitation zone is characterized by εcra and 

εexc that represent the amplitudes of the first strain invariant 

εxx+εyy. This figure also illustrates the influence of 

parameter C of the normal force-displacement relationship 

Eq. (2). Its value measured in [15] is 10 1/ 2 16 10C Pa m
−= ⋅ . 

Higher levels of C correspond to higher levels of 

nonlinearity as the nonlinear response is directly related to 

Eq. (2) and on the hysteretic tangential force also linked 

with the normal one [6,7]. However, this increase or finally 

image contrast is not directly proportional to C
2
 since 

apparently for rapidly increasing N(a) the actual 

displacement a becomes smaller. 

The nonlinear response Eq (4) also depends on damping 

(highly exaggerated here); this dependence has to be 

clarified additionally. 
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Figure 3 ‒ Nonlinear indicators Ix and Iy calculated for a 

sample with a crack of 3 cm width excited by a continuous 

wave of 240 kHz frequency.  

The next series of figures (Figure 4) illustrates the effect 

of frequency on image quality. The nonlinear responses Ix,y 

are calculated for 10 1/ 2 1100 , 10Pa s C Pa mη −= ⋅ =  and for a 

crack size of 2 cm. In all these cases, the excitation 

displacement amplitude A (see Figure 2) was kept the same.  
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Figure 4 ‒ Nonlinear indicators Ix and Iy calculated for a 

sample with a crack of 2 cm width excited by a continuous 

waves of frequencies ranging from 120 to 330 kHz. 

First of all, it can be noted that damage is not 

necessarily seen in all figures. The higher harmonics are not 

always located near the crack; they have their own standing 

wave pattern. Certainly, for successful detection it is 

required to have strong amplitude in the vicinity of crack. It 

is expected that the idea of local defect resonance [12] can 

help which consists in finding a specific frequency in the 

amplitude-frequency response of the sample which exists 

then damage is present and does not exist otherwise. But 

even without use of this concept, the choice of frequency is 

very important since the “penetration ratio” /cra excε ε  greatly 

depends on frequency. 

In fact, tendencies that show up in these assorted figures 

(and in those that remain unpublished) suggest the 

following strategy of obtaining quality images in which 

damage is clearly detected. 

1. Consider intact sample and examine its amplitude-

frequency response by making a series of time-

domain calculations or (better) by reconsidering the 

problem in frequency domain. 

2. Select frequencies maximizing the penetration ratio. 

3. Choose C less then the value 10 1/ 2 16 10C Pa m
−= ⋅  

from [15] since those measurements are done for 

globally plane aluminum blocks, and real crack 

faces are rougher. Rough surfaces correspond to 

smaller C. 

4. Make MMD-FEM computations for a cracked 

sample with selected parameters. 

Unfortunately, the problem of damping remains 

unsolved. Its highly exaggerated value essentially 

contributes in the nonlinear response. Decreasing damping 

to smaller and realistic for metals values results in higher 

times of standing wave formation, whereas the code is now 

exploited at maximum performance of modern PC. 

Certainly, some factors are still not taken into account. 

For instance, faces of real cracks are typically prestressed. 

Indeed, once separated during cracking, the faces will not 

match each other anymore with the atomic precision. 

At the same time, we hope that the implementation of 

the above strategy can help approach real experiments and 

then validate the entire nonlinear model experimentally. 

The validated MMD-FEM numerical tool can be an 

important advance towards modeling-based reconstruction 

of damage parameters in a better way than pure 

experimentation can do. 

5 Conclusions 

In this paper we present the results of numerical 

modeling for nonlinear laser vibrometry experiments. Using 

the previously developed MMD-FEM method, we have 

computed the nonlinear response (sum of higher harmonics 

amplitudes normalized by the first one) of a sample 

containing crack with friction. In some cases, damage is 

clearly seen in the obtained images and in the others it is 

not. Our preliminary results allowed one to formulate a 

possibly strategy for achieving robust damage detection. At 

the nest stage, comparison with experiments is envisaged. 
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