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-Introduction

The motion of classical charged particles undergoing in time-varying magnetic field is of paramount interest to many areas of the modern Physics, for example in Plasma Physics. However, it seems it doesn't exist at this day analytical solutions to describes correctly these trajectories. Theories and Numerical simulations which are presented are generally based on the assumption that the magnetic moment is approximately conserved, or choosing an arbitrary choice of the expression of the potential vector.

Paper presents our contribution to this problem. As it is generally the case, the model we detail here is based on corpus of classical Physics and electrodynamics, but is obtained exploring a way which seems original. In particular paper provides coherent expressions of the potential vector and of the induced electric force, such these theoretical results can constitute significant progress in the topic.

Moreover, using these results, we present the establishment of the possible trajectories of a charged point particle under a classical time varying magnetic field, given with 𝐵 = 𝐵 0 + 𝐵 1 𝑒 𝑗𝑤𝑡 Indeed, solving the differential equations of motion we have obtained, we present a family of curves definite by combinations of Whittetaker and Lambert functions. In this part we draw certain of these original curves, and we highlight a phenomenon of resonance, between the frequency of Larmor linked to the constant part 𝐵 0 , and the pulsation 𝑤.

Note that, to simplify the problem, we have only considered the case where the varying magnetic field is applied perpendicular to the plane where the particle moves. Several possible later works are evoked in the discussion, in the field of applied and experimental Physics. Moreover, and to conclude this introduction, we should remind the reader that this work is entirely based on the laws of classical Physics and electromagnetism and that we have consequently not taken into consideration relativistic or quantum effects.

We introduce a Galilean and cylindrical system of coordinate definite with

(𝑂; 𝑒 𝑟 ⃗⃗⃗ ; 𝑒 𝜃 ⃗⃗⃗⃗ ; 𝑒 𝑧 ⃗⃗⃗ )
where 𝑂 is the origin of this system and 𝑟 the radial distance to the origin with the relation 𝐹𝑀 ⃗⃗⃗⃗⃗⃗ = 𝑟𝑒 𝑟 ⃗⃗⃗

A time varying magnetics field is applied, along the (𝑂; 𝑒 𝑧 ⃗⃗⃗ ) axis, such

𝐵(𝑡) ⃗⃗⃗⃗⃗⃗⃗⃗ = 𝐵𝑧

Under the above conditions the trajectory of the particle is planar. The induced electric field accompanying the time varying magnetic field is given by the equation of Faraday [START_REF] Jackson | Classical Electrodynamics[END_REF] 

∇ × 𝐸 ⃗ = - 𝑑 𝑑𝑡 𝐵 ⃗ ( 1 
)
Point particle is thus submitted to the force of Lorentz.

𝐹 = 𝑞𝐸 ⃗ + 𝑞𝑉 ⃗ × 𝐵 ⃗

To symplify the writing we decompose it as 𝐹 = 𝐹 𝐸 ⃗⃗⃗⃗ + 𝐹 𝑀 ⃗⃗⃗⃗⃗

Where 𝐹 𝑀 ⃗⃗⃗⃗⃗ is the magnetic force and 𝐹 𝐸 ⃗⃗⃗⃗ the electric. The potential vector 𝐴 is simply linked to 𝐸 ⃗ and to the electric potential 𝜑 with

𝐸 ⃗ = -∇φ - 𝛿 𝛿𝑡 𝐴 (2)
And to the magnetic field with ∇ × 𝐴 = 𝐵(𝑡) ⃗⃗⃗⃗⃗⃗⃗⃗

Moreover, as usual in this kind of problem [START_REF]Trajectory under harmonic potential and magnetic force -Archive ouverte HAL[END_REF], we assume that 𝐴 and 𝐸 ⃗ are functions of the time and the position vector 𝑟. Moreover, in our case electric force isn't the derivative of a potential, and we obtain thus the system of equations

{ 𝐴 = 𝐴(𝑟, 𝑡) ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ (4.1) 𝜑 = 0 (4.2) 𝐸 ⃗ = 𝐸(𝑟, 𝑡) ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ (4.3) }

-Law of motion

We know that in our system of coordinate the speeds and accelerations are given with

{ 𝑉 ⃗ = 𝑟ė 𝑟 ⃗⃗⃗ + 𝑟𝜃 ̇𝑒𝜃 ⃗⃗⃗⃗ 𝑎 = (𝑟̈-𝑟𝜃 ̇2)𝑒 𝑟 ⃗⃗⃗ + (𝑟𝜃 ̈+ 2𝑟θ ̇)𝑒 𝜃 ⃗⃗⃗⃗ }
Which leads to obtain finally, using the principle of the dynamics a system of equations

{ 𝑚(𝑟̈-𝑟𝜃 ̇2) = 𝑞𝐵𝑟𝜃 ̇+ 𝐹 𝐸𝑟 (5.1) 𝑚(𝑟𝜃 ̈+ 2𝑟θ ̇) = -𝑞𝐵𝑟̇+ 𝐹 𝐸𝜃 (5.2) } Considering (5.
2) and rewriting it,

𝑚𝑟𝜃 ̈+ 2𝑚𝑟θ ̇+ 𝑞𝑟Ḃ(𝑡) = 𝐹 𝐸𝜃 And 𝑚𝑟𝜃 ̈+ 𝑟 𝑞𝐵 ̇(𝑡) 2 + 2𝑚𝑟θ ̇+ 𝑞𝑟Ḃ(𝑡) = 𝑟 𝑞𝐵 ̇(𝑡) 2 + 𝐹 𝐸𝜃 Consequently, 𝑟 2 (𝑚𝜃 ̈+ 𝑞𝐵 ̇(𝑡) 2 ) + 2𝑟𝑟̇(𝑚𝜃 ̇+ 𝑞𝐵(𝑡) 2 ) = 𝑟 2 𝑞𝐵 ̇(𝑡) 2 + 𝑟𝐹 𝐸𝜃
By integration with respect to the time, we obtain

𝑟 2 (𝑚𝜃 ̇+ 𝑞𝐵(𝑡) 2 ) = ∫(𝑟 2 𝑞 𝐵 ̇(𝑡) 2 + 𝑟𝐹 𝐸𝜃 ) 𝑑𝑡 (6) 
We have now to solve this equation. As usual in Physics we begin to have a look on the limiting cases:

-If magnetic field is null, we obtain 𝜃 ̇𝑟2 = 𝐶 Which indicates a law of central force if 𝐶 ≠ 0. We choose thus 𝐶 = 0.

-If magnetic field is constant we obtain

𝑟 2 (𝑚𝜃 ̇+ 𝑞𝐵 2 ) = 𝐶
Consequently, it exists a system of coordinate where we can write the law

𝜃 ̇= - 𝑞𝐵 2𝑚 (7) 
i.e. the frequency of Larmor [2].

-Considering now the case where the magnetic field is time depending. We add the relation (1) which becomes here

(∇ × 𝐸 ⃗ ). 𝑧 = 1 𝑟 [ 𝑑 𝑑𝑟 (𝑟𝐸 𝜃 ) - 𝑑 𝑑𝜃 𝐸 𝑟 ] = - 𝑑 𝑑𝑡 𝐵(𝑡) Using (4.3) 𝑑 𝑑𝜃 𝐹 𝐸𝑟 = 0 (8) Wich leads to 𝑑 𝑑𝑟 (𝑟𝐸 𝜃 ) = -𝑟𝐵 ̇(𝑡) Thus 𝐸 𝜃 = - 𝑟𝐵 ̇(𝑡) 2 (9)
And we obtain the system

{ 𝑟 2 (𝑚𝜃 ̇+ 𝑞𝐵(𝑡) 2 ) = ∫(𝑟 2 𝑞 𝐵 ̇(𝑡) 2 + 𝑟𝐹 𝜃 ) 𝑑𝑡 𝐹 𝐸𝜃 = -𝑞 𝑟𝐵 ̇(𝑡) 2 } Thus 𝜃 ̇= - 𝑞𝐵(𝑡) 2𝑚 ( 10 
)
It is this relation which allows to build the model, without adding particular assumption.

Verification

Using the laws of classical mechanics, we verify if the solutions we obtained are coherent. A method is to use the power theorem. Indeed, we know that magnetic force doesn't 𝐸 𝜃 = 𝑚𝑟 𝜃 q (12.2) }

Potential vector

As presented we use the system given with (2) , (3) and (4.2). We rewrite it 

{ 𝐸 ⃗ = - 𝛿 𝛿𝑡 𝐴 ∇ × 𝐴 =
{ ∇ × 𝐴 = 𝐵(𝑡) ⃗⃗⃗⃗⃗⃗⃗⃗ ∇ × 𝐸 ⃗ = - 𝑑 𝑑𝑡 𝐵 ⃗ 𝐸 ⃗ = - 𝛿 𝛿𝑡 𝐴 }
And with the 2 nde law of Dynamics. The force of Lorentz can thus here be rewritten

𝐹 = 𝑞𝐸 ⃗ + 𝑞𝑉 ⃗ × 𝐵 ⃗ = -𝑞𝑟 𝐵 2 𝑒 𝜃 ⃗⃗⃗⃗ + 𝑞𝑉 ⃗ × 𝐵 ⃗ (17)

Equations of motion

They are given by equations of Dynamics (5.1), which becomes

𝑚(𝑟̈-𝑟𝜃 ̇2) = 𝑞𝐵𝑟𝜃 ̇
And, with (10)

𝑟̈= - 𝑞 2 𝐵 2 4𝑚 2 𝑟
Thus a differential equation depending on the time

𝑑 2 𝑑𝑡 2 𝑟(𝑡) = - 𝑞 2 𝐵 2 (𝑡) 4𝑚 2 𝑟(𝑡) ( 18 
)
Considering firstly the limiting case where the magnetic field is constant, we obtain an equation under the form

𝑑 2 𝑑𝑡 2 𝑟(𝑡) = -𝐶𝑟(𝑡)
Where 𝐶 is constant and whose solution is

𝑟(𝑡) = 𝐶 1 sin(√𝐶𝑡) + 𝐶 2 𝑐𝑜𝑠(√𝐶𝑡)
But 𝑡 and 𝜃 are here linked with a relation of proportionality, such

𝑟(𝑡) = 𝐶 1 sin(𝐶′𝜃) + 𝐶 2 𝑐𝑜𝑠(𝐶′𝜃)

Trajectory is thus a circle which passes through the origin of the system of coordinate, for example And speed of the point particle is constant. We reobtain thus a classical result of electrodynamics, but in other manner, and as a limiting case. We can now use the model for time varying magnetic fields.

-Simulations

As we introduced it we consider the magnetic field

𝐵 = 𝐵 0 + 𝐵 1 𝑒 𝑗𝑤𝑡𝑡 Thus 𝜃 = - 𝑞 2𝑚 [𝐵 0 𝑡 + 𝐵 1 𝑗𝑤 𝑒 𝑗𝑤𝑡 ] ( 19 
)
Equation ( 18) becomes

𝑑 2 𝑑𝑡 2 𝑟(𝑡) = - 𝑞 2 [𝐵 0 + 𝐵 1 𝑒 𝑗𝑤𝑡 ] 2 4𝑚 2 𝑟(𝑡)
A solution is obtained using the functions of Whittaker

𝑟(𝑡) = 𝐶 1 𝑊ℎ𝑖𝑡𝑡𝑎𝑘𝑒𝑟𝑀 [- 𝛼 𝑤 , 𝛼 𝑤 , 𝛽] + 𝐶 2 𝑊ℎ𝑖𝑡𝑡𝑎𝑘𝑒𝑟𝑊 [- 𝛼 𝑤 , 𝛼 𝑤 , 𝛽] √𝑒 𝑗𝑤𝑡 with { 𝛼 = 1 2 𝑞𝐵 0 𝑚 𝛽 = 𝑞𝐵 1 𝑒 𝑗𝑤𝑡 𝑤𝑚 }
Where 𝛼 is the frequency of Larmor corresponding on 𝐵 0 . We study two cases:

6.1 𝐵 0 = 0
We obtain here

{ 𝜃 = - 𝑞𝑒 𝑗𝑤𝑡 2𝑗𝑚𝑤 𝛼 = 0 𝛽 = -2𝑗𝐵 1 𝜃}
To do a simulation we choose constants as follows : 𝑚 = 𝑞 = 𝑤 = 𝐵 1 = 𝐶 1 = 1 and 𝐶 2 = 0

Trajectory is this time a spiral, which passes again through the origin of the system of coordinate.

Considering now the general case. Solving (19) we obtain the expression of the time

𝑡 = - 𝜃 𝛼 + 𝑗 𝑤 𝐿𝑎𝑚𝑏𝑒𝑟𝑡𝑊 [ 𝐵 1 𝐵 0 𝑒 -𝑗 𝜃𝑤 𝛼 ⁄ ]
We obtain a family of curves, that we can again draw in a polar system of coordinate. To present briefly this family, we can note that the general form is linked to the ratio

𝑛 = 𝑤 𝛼
When this ratio is integer, the corresponding trajectories are closed, which isn't necessary the case for arbitrary values. Consider for example the following real parts of the solutions, drawn with

𝑚 = 𝑞 = 𝐵 1 = 𝐵 0 = 𝐶 1 = 𝐶 2 = 1 𝑅𝑒(𝑟(𝜃)) for 𝑛 = 1 𝑛 = 2 𝑛 = 3 𝑛 = 4 𝑛 = 5 𝑛 = 6
So we obtain a remarkable family of curves, which seems not have been studied before, and which present, as visible, interesting geometrical properties. Note their exhaustive and mathematical study won't be done in this paper, but we can present certain interesting imaginaries parts of the curves, such, for example, 𝐼𝑚(𝑟(𝜃)) for 𝑛 = 4 𝑛 = 6

-The mono dimensional harmonic oscillator case

Mono dimensional harmonic oscillator describes a straight. For this reason constant of area 𝐶 evoked in part 3 of the paper is again null. Consequently, the corresponding equation of motion is simply given with

𝑑 2 𝑑𝑡 2 𝑟(𝑡) = -𝑘𝑟(𝑡) - 𝑞 2 𝐵 2 (𝑡) 4𝑚 2 𝑟(𝑡)
Where 𝑘 is the coefficient of the attractive restoring force. As previously, we solve it in the case where magnetic field is constant. Solution is 

-Discussion

Two points seems in favor of the validity of the model: Firstly, the good agreement between the expected behavior of the charged particle and the external magnetic field. Secondly, the fact the limiting cases can be reobtained using the equations of motion. However, if proximate works have already been published, [START_REF] De Jesus | Classical and quantum mechanics of a charged particle in oscillating electric and magnetic fields[END_REF], it seems difficult to compare results. Indeed, we notice important differences between our model and these works. One reason is they generally chose a potential vector ( [START_REF] De Jesus | Classical and quantum mechanics of a charged particle in oscillating electric and magnetic fields[END_REF], [START_REF] Kosmas | Charged Particle in an Electromagnetic Field using variational integrators[END_REF]), given with

𝐴 = - 1 2 𝑟 × 𝐵 ⃗
Because it satisfies relation (3). But, having now a look on our own expression, this time obtained from a demonstration, and given with ( 16)

𝐴 = - 1 2 [𝑟𝑒 𝑟 ⃗⃗⃗ + 𝑑𝑟 𝑑𝜃 𝑒 𝜃 ⃗⃗⃗⃗ ] × 𝐵 ⃗
We note the addition of a term between the expressions. Consequence is naturally a modification of equations of motion.

Future work

The question of the extension of the study of trajectories and their physical properties (speeds, energies, etc..) will naturally be an important way of possible later works. It seems us especially interesting to explore the phenomenon of resonance we have noted between the frequencies of Larmor and of variable magnetic field, and to predict possible measurable effects, able to be used in applied Physics. A purely mathematical approach can be to study the properties of the curves we obtained. At end, another works can extend the results to a quantum approach, using expression (16) to obtain the Lagrangian of the system.

Summary and conclusion

We have presented a model to describe the trajectories of a charged particle in an oscillating magnetic field, from the point of view of classical physics and electromagnetism. The equations of motions lead to original trajectories, which are closed when the ratio between frequencies of Larmor and of magnetic field is a rational number. Furthers works should compare these results with experimental data, and extend them to others theoretical approaches, in particular to quantum mechanics.

)

  Which is corresponding on the family of Roses curves, (i.e. a part of the Centered Trochoïde curves [3] as we obtained it elsewhere in any other way [4]. See for example a possible solution (𝑘 = 3.75).Consider now the general case. Solving equation of motion, part of this solution leads again to an original family of curves, depending on the choice of coefficients. See for example, for 𝐵 1 = 0.5 and 𝑘 = 1.25, the simulation