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Introduction

The primary motivation of this paper is the one-dimensional wave equation

ψ tt ´αδψ t ´ψxx " 0 , (1.1) 
where t ą 0 and x P R are the time and space variables, respectively, δ is the Dirac delta function and α is a complex number. The distribution ´αδ models a highly localised damping: dissipation or supply of energy if α is negative or positive, respectively, while purely imaginary α admits a conservative, quantum-mechanical interpretation.

In the case of α real and the space variable x restricted to a bounded interval, say p´π 2 , π 2 q, the model (1.1) was introduced in [START_REF] Bamberger | A model for harmonics on stringed instruments[END_REF] in order to explain the playings of harmonics on stringed instruments. By a detailed spectral analysis, the authors argue that the optimal damping is α " ´2. The problem has been more recently analysed in [START_REF] Ammari | Optimal location of the actuator for the pointwise stabilization of a string[END_REF][START_REF] Ammari | Asymptotic behaviour of the solutions and optimal location of the actuator for the pointwise stabilization of a string[END_REF][START_REF] Cox | Eliciting harmonics on strings[END_REF] (see also [START_REF] Ammari | Stabilization of elastic systems by collocated feedback[END_REF]Sec. 4.1.1]). Qualitatively, spectral properties of (1.1) in the bounded case are the expected ones: the spectrum is composed of isolated eigenvalues of finite algebraic multiplicities. However, there is an abrupt change in basis properties depending on whether |α| " 2 or |α| " 2. While the root vectors form a Riesz basis in the former case, they are not even complete for the special values α " ˘2.

The objective of the present paper is to point out that the peculiar spectral transition is even more drastic in the unbounded situation considered here. Moreover, we allow for α being an arbitrary complex number). If α P Czt˘2u, the spectrum coincides with the imaginary axis iR, as in the damped-free case α " 0. However, the spectrum abruptly fills in the whole complex half-plane tz P C : ˘Repzq ě 0u as long as α " ˘2. This phenomenon was previously announced in [START_REF] Krejčiřík | From Lieb-Thirring inequalities to spectral enclosures for the damped wave equation[END_REF]Rem. 1], but no rigorous analysis was provided. Wild spectral properties for the damped wave equation with different unbounded dampings have been recently observed in [START_REF] Freitas | The damped wave equation with unbounded damping[END_REF][START_REF] Freitas | The damped wave equation with singular damping[END_REF].

What is more, we give an insight into the appearance of the "magical" values ˘2 by considering (1.1) in the more general situation of non-compact star graphs with N ě 1 edges. The real line R can be considered as the star graph with two edges, while the case N " 1 corresponds to the wave equation on the half-line with damping at the boundary. It turns out that the abrupt change in spectral properties happens precisely for α " ˘N .

The Laplacian on metric graphs with non-self-adjoint coupling conditions at the vertices has been recently analysed in [START_REF] Hussein | Non-self-adjoint graphs[END_REF][START_REF] Rivière | Spectrum of a non-selfadjoint quantum star graph[END_REF][START_REF] Hussein | Hidden symmetries in non-self-adjoint graphs[END_REF]. The damped wave equation on metric graphs is considered in [START_REF] Abdallah | Exponential stability of the wave equation on a star shaped network with indefinite sign damping[END_REF][START_REF] Freitas | Eigenvalue asymptotics for the damped wave equation on metric graphs[END_REF], however, just self-adjoint coupling conditions at the vertices (and finite edges) are considered. See also [START_REF] Assel | Optimal decay rate for the local energy of a unbounded network[END_REF] for an unbounded network with Dirichlet and Kirchhoff conditions. The present paper therefore opens a new direction of mathematically interesting and physically relevant research.

The organisation of this paper is as follows. In Section 2 we introduce our general model and formulate the main results. The preliminary Section 3 collects basic properties of the wave operator. In Section 4 we show that the Dirac damping can be realised as a limit of properly scaled regular dampings, in a norm-resolvent sense. The proofs of more involved spectral and evolution results are given in Sections 5 and 6, respectively. In the concluding Section 7, we provide a relationship between the damped wave equation and the Dirac equation in relativistic quantum mechanics, in order to motivate the present setting of unbounded geometries and non-real dampings.

Our model and main results

2.1. The damped wave equation and the wave operator. Let N P N ˚" t1, 2, . . . u. We set N " t1, . . . , N u. We consider a metric graph Γ given by N edges of infinite length linked together at a central vertex. Concretely, Γ consists of N copies of the open halfline R ˚"s0, `8r and the link between the edges will be encoded in the domain of our operator (see (2.5) below).

We set

L 2 pΓq " L 2 pR ˚qN .
It is endowed with its natural Hilbert structure. For k P N ˚we similarly define

9 H k pΓ ˚q " 9 H k pR ˚qN , H k pΓ ˚q " H k pR ˚qN ,
and for u " pu j q jPN P 9 H k pΓ ˚q we write u pkq for pu pkq j q jPN . In the sequel, when we consider a function u on Γ » pR ˚qN it will be implicitly understood that we denote by pu j q jPN its components.

We say that u P 9 H 1 pΓ ˚q is continuous at 0 if @j, k P N , u j p0q " u k p0q.

In this case we denote by up0q the common value of u j p0q, j P N . We set

9 H 1 pΓq " ! u P 9 H 1 pΓ ˚q : u is continuous at 0 ) .
To define the natural Hilbert structure, we have to take the quotient of 9 H 1 pΓq by constant functions. We denote by H1 pΓq this quotient. Then H1 pΓq is a Hilbert space for the inner product defined by

@u, v P H1 pΓq, xu, vy H1 pΓq " @ u 1 , v 1 D L 2 pΓq " N ÿ j"1 @ u 1 j , v 1 j D L 2 pR ˚q .
Throughout the paper we will identify a function in 9 H 1 pΓq and its equivalence class in H1 pΓq. This implicitly means that the results should be invariant by addition of a constant to the functions in 9 H 1 pΓq. We consider the damped wave equation on Γ with damping at the central vertex. Let I be an interval of R which contains 0. We introduce the problem B tt u j pt, xq ´Bxx u j pt, xq " 0, @j P N , @t P I, @x ě 0 (2.1)

with the continuity at the vertex u j pt, 0q " u k pt, 0q, @j, k P N , @t P I (2.2) (this also implies the continuity at the vertex for B t u) and the damping condition

N ÿ j"1
B x u j pt, 0q `αB t upt, 0q " 0, @t P I, (

where α P C. The Cauchy problem is completed by the initial conditions pu j , B t u j q| t"0 " pf j , g j q, @j P N ,

where f P 9 H 1 pΓq and g P L 2 pΓq. More precisely, a (strong) solution of (2.1)-(2.4) is a continuous function u : I Ñ H1 pΓq X 9

H 2 pΓ ˚q with continuous derivative B t u : I Ñ H 1 pΓq and continuous second derivative B tt u : I Ñ L 2 pΓq, such that (2.1) holds in L 2 pΓq for all t P I, with (2.2)-(2.3) for all t P I, and with (2.4) in H1 pΓq ˆL2 pΓq.

We set H " H1 pΓq ˆL2 pΓq and

DompW α q " # U " pu, vq P `H 1 pΓq X 9 H 2 pΓ ˚q˘ˆH 1 pΓq : N ÿ j"1 u 1 j p0q `αvp0q " 0 + .
(2.5) Then we define the unbounded operator W α in the Hilbert space H by @U " pu, vq

P DompW α q, W α ˆu v ˙" ˆv u 2 ˙. (2.6) 
We endow DompW α q with the graph norm:

}U } 2 DompWαq " }W α U } 2 H `}U } 2 H , @U P DompW α q.
Then we see that u is a solution of (2.1)-(2.4) on I if and only if U " pu, B t uq belongs to C 1 pR `, H q X C 0 pR `, DompWqq and satisfies # U 1 ptq " WU ptq, @t P I, U p0q " pf, gq.

(2.7)

Our purpose in this paper is to describe the spectrum of the operator W α and the behaviour of the evolution problem (2.1)-(2.4) (or equivalently (2.7)). The first step is to check that W α is closed with non-empty resolvent set. In Section 3 we prove the following more precise result.

Theorem 2.1. The operator W α is maximal accretive (respectively maximal dissipative, respectively skew-adjoint) if Repαq ě 0 (respectively Repαq ď 0, respectively Repαq " 0).

An alternative approach, based on the dominant Schur complement, to introduce the wave operator with possibly highly irregular dampings (possibly distributions) has been recently developed by Gerhat [START_REF] Gerhat | Schur complement dominant operator matrices[END_REF].

2.2.

The Robin vertex condition. The definition of DompW α q contains continuity at 0 for u and v, and the additional condition will be referred to as the Robin condition.

Notice that for N " 1, the graph Γ reduces to the half-line s0, `8r and in this case we recover the usual Robin condition u 1 p0q `αvp0q " 0 at the boundary. When N " 2 we can identify the two edges with s0, `8r and s ´8, 0r (by considering the transformation x Þ Ñ u 2 p´xq on s´8, 0r), so Γ is identified with R and in this setting the Robin condition yields the usual jump condition u 1 p0 `q ´u1 p0 ´q " ´αvp0q.

Notice also that the two extreme situations α " 0 and α " 8 correspond, respectively, to Neumann (or Kirchhoff) and Dirichlet boundary conditions imposed at the central vertex.

The motivation for considering the vertex condition (2.3) for our wave equation is that it corresponds to a singular damping localised at the vertex. Formally, (2.1) and (2.3) mean B tt u ´Bxx u ´αδB t u " 0, where δ is a generalisation of the Dirac distribution on Γ. Similarly, for the corresponding wave operator we can formally write

W α ˆu v ˙" ˆv u 2 `αδ ˙.
This interpretation is supported by writing the quadratic form associated to the operator W α defined by (2.5)-(2.6). Indeed, for U " pu, vq P DompW α q we have

xW α U, U y H " xv 1 , u 1 y L 2 pΓq `xu 2 , vy L 2 pΓq " 2iImxv 1 , u 1 y L 2 pΓq `α |vp0q| 2 .
(2.8)

To go further, we compare our operator W α with an operator with a damping on the edges localised near the vertex.

For j P N we consider ρ j P L 1 pR ˚, R `q such that ş `8 0 ? xρ j pxq dx ă `8. We assume that ř N j"1 ş `8 0 ρ j pxq dx " 1. For n P N ˚and j P N we set ρ n j pxq " nρ j pxnq. Then we set ρ n " pρ n j q 1ďjďN . For n P N ˚we consider on H the operator

W α,n " ˆ0 1 B 2 αρ n ˙, defined on the domain DompW α,n q " # U " pu, vq P `H 1 pΓq X 9 H 2 pΓ ˚q˘ˆH 1 pΓq : N ÿ j"1 u 1 j p0q " 0 + .
A result similar to Theorem 2.1 holds for W α,n (see Proposition 3.7 below). In particular, setting C ˘" tz P C : ˘Repzq ą 0u , we deduce that if α P C ˘then for z P C ¯we have z P ρpW α q. In Section 4 we show that W α is the limit of W α,n in the sense of the norm of the resolvent.

Theorem 2.2. Let α P C ˘and z P C ¯. Then › › pW α ´zq ´1 ´pW α,n ´zq ´1› › LpH q ÝÝÝÝÑ nÑ`8 0.
2.3. Spectral properties of the wave operator. Having shown that W α is a well defined operator and a suitable model for the damped wave equation with damping at the central vertex, we can now turn to its spectral properties. We first notice that, as a consequence of Theorem 2.1, if α P C ˘then C ¯Ă ρpW α q and for z P

C ¯we have › › pW α ´zq ´1› › LpH q ď 1 ¯Repzq .
The main result of this paper is related to spectral properties on the other half-plane. There is no general theory for resolvent estimates inside the numerical range, but explicit computations provide a precise description of the spectrum and the resolvent for this particular problem.

Theorem 2.3. The spectrum of W α is $ ' & ' % iR if α P Czt˘N u, C `if α " N, C ´if α " ´N. Moreover,
(i) iR contains no eigenvalue nor residual spectrum of W α , (ii) if α " ˘N then any z P C ˘is an eigenvalue of W α of geometric multiplicity 1 and infinite algebraic multiplicity, (iii) there exist c 0 , C ą 0 such that for α P C ˘z t˘N u and z P C ˘we have

max ˆ1 |Repzq| , c 0 |z| |α ¯N | ˙ď › › pW α ´zq ´1› › LpH q ď C |Repzq| ˆ1 `1 |α ¯N | ˙.
2.4. The damped wave equation. Finally we go back to the time-dependant problem (2.1)-(2.4), or equivalently (2.7). If Repαq ď 0, the operator W α generates by Theorem 2.1 a contractions semigroup, so the problem (2.7) is well posed on R `. Moreover the energy Epu; tq

" }B t uptq} 2 L 2 pΓq `}B x uptq} 2 L 2 pΓq
of the solution u is non-increasing.

In this paragraph we address the question of well-posedness and growth of the energy for (2.7) (or equivalently for (2.1)-(2.4)) when Repαq ą 0. We have similar results for negative times when Repαq ă 0.

Theorem 2.4. Let α P C `and pf, gq P DompW α q.

(i) Assume that α ‰ N . The problem (2.1)-( 2.4) has a unique solution u on R `.

Moreover there exists C ą 0 independent of α and pf, gq such that for t ě 0 we have

Epu; tq ď C ˆ1 `1 |α ´N | 2 ˙Epu; 0q. (2.9) 
(ii) Assume that α " N . Let

t 0 " sup # t ě 0 : N ÿ j"1
`f 1 j psq `gj psq ˘" 0, @s P r0, ts + P r0, `8s.

If t 0 ą 0 then (2.1)-(2.4) has an infinite number of solutions on r0, t 0 r. In particular there exists a solution u such that

Epu; tq Ý ÝÝ Ñ tÑt 0 `8.
If t 0 is finite then for any ε ą 0 the problem (2.1)-(2.4) has no solution on r0, t 0 `εr.

General properties of the wave operator

In this section we prove some basic properties for the wave operator W α . In particular, we give an expression for its resolvent with the spectral parameter lying in the suitable half-place (depending on the sign of Repαq) and deduce that W α is maximal accretive and/or maximal dissipative (Theorem 2.1). Notice that our proofs are quite robust and could be applied for the wave equation on more general graphs.

To prepare the proof of Theorem 2.2 in the next section, we proceed with the same analysis for W α,n , n P N ˚.

We first record the following direct consequence of formula (2.8).

Proposition 3.1. The operator W α is accretive (respectively dissipative, respectively skew-symmetric) if Repαq ě 0 (respectively Repαq ď 0, respectively Repαq " 0). In particular, if α P C ˘and z P C ¯then pW α ´zq is injective with closed range. For n P N ˚the operator W α,n has the same properties.

Next we mention the following symmetry result. Proposition 3.2. For α P C we have W α " ´W´ᾱ .

Proof. For U P DompW a q and Ũ P DompW ´ᾱ q we can check by direct computation that

@ W α U, Ũ D H " ´@U, W ´ᾱ Ũ D
H . This proves that DompW ´ᾱ q Ă DompW αq and that W α " ´W´ᾱ on DompW ´ᾱ q. Now let Ũ " pũ, ṽq P DompW αq and F " pf, gq " W α Ũ P H . For all U " pu, vq P DompW α q we have

@ W α U, Ũ D H " xU, F y H , which gives @ v 1 , ũ1 D L 2 pΓq `@u 2 , ṽD L 2 pΓq " @ u 1 , f 1 D L 2 pΓq `xv, gy L 2 pΓq . (3.1)
Let j P N . Applied with u " 0, v j P C 8 0 pR ˚q and v k " 0 for k ‰ j, this proves that ũ1 j P H 1 pR ˚q and ũ2 j " ´gj . Applied with v " 0, u j P C 8 0 pR ˚q and u k " 0 for k ‰ j, we deduce that there exists a constant β j such that ṽ1 j " ´f 1 j `βj in the sense of distributions. Since f 1 j and ṽj are in L 2 pR ˚q, we necessarily have β j " 0, so ṽ1 j " f 1 j belongs to L 2 pR ˚q.

We can rewrite (3.1) as

@ u 1 , f 1 D L 2 pΓq `xv, gy L 2 pΓq " ´@v, ũ2 D L 2 pΓq ´vp0q N ÿ j"1 ũ1 j p0q ´@u 1 , ṽ1 D L 2 pΓq ´N ÿ j"1 u 1 j p0qṽp0q.
This gives

´vp0q N ÿ j"1 ũ1 j p0q `αvp0qṽp0q " 0,
which implies that ř N j"1 ũ1 j p0q ´ᾱṽp0q " 0. Then DompW α q Ă DompW ´ᾱ q, and the proof is complete.

In Proposition 3.6 below, we will give an expression for the resolvent of W α valid in H 1 pΓq ˆL2 pΓq. This is a dense subset of H by the following classical lemma.

Lemma 3.3. H 1 pΓq is dense in 9 H 1 pΓq.
Proof. Let u " pu j q jPN P 9 H 1 pΓq. Let j P N . Let χ P C 8 pR `, r0, 1sq be equal to 1 on r0, 1s and equal to 0 on r2, `8r. For R ě 1 and x ě 0 we set χ R pxq " χ `x R ˘. We have › › pp1 ´χR qu j q 1 › ›

L 2 pR ˚q ď › › p1 ´χR qu 1 j › › L 2 pR ˚q `› › χ 1 R u j › › L 2 pR ˚q .
The first term goes to 0 as R Ñ 8 by the dominated convergence theorem. We estimate the second term. Let ε ą 0. There exists C j ą 0 such that for all x ě 1 we have |u j pxq| ď C j ?

x. Let x 0 ą 0 be so large that 2 ? 2C j }u 1 } L 2 px 0 ,8q ď ε, and let R ě 1 be so large that |upx 0 q| 2 ď εR 2 . Then for x ě maxpx 0 , Rq we have

|u j pxq| 2 L 2 pR ˚q ď |u j px 0 q| 2 `2 ż x x 0 |u j psq| ˇˇu 1 j psq ˇˇds ď |u j px 0 q| 2 `?2C j x › › u 1 j › › L 2 px 0 ,8q ď εx, so › › χ 1 R u j › › 2 ď }χ 1 } 2 8 R 2 ż 2R R |u j pxq| 2 dx ď 2ε › › χ 1 › › 2 8 .
The conclusion follows.

We denote by H ´1pΓq the space of continuous semilinear forms on H 1 pΓq (we have pϕ 1 `βϕ 2 q " pϕ 1 q `β pϕ 2 q for P H ´1pΓq, ϕ 1 , ϕ 2 P H 1 pΓq and β P C). In particular, δ : φ Þ Ñ φp0q belongs to H ´1pΓq. We refer to [11, pp. 3-4] for a discussion about this choice. 

" cospθq › › w 1 › › 2 L 2 pΓq `cospηq |αz| xρ n w, wy L 2 pΓq `cospθq |z| 2 }w} 2 L 2 pΓq ě minp1, |z| 2 q cospθq }w} 2 H 1 pΓq .
By the Lax-Milgram Theorem, Q n,α pzq is invertible and

› › Q α,n pzq ´1› › LpH ´1pΓq,H 1 
pΓqq is uniformly bounded in n P N ˚. We proceed similarly for Q α pzq.

We set R α pzq " Q α pzq ´1 and R α,n pzq " Q α,n pzq ´1. (i) Let w " R α pzqph`κδq P H 1 pΓq. Then for j P N we have w 2 j " z 2 w j ´hj P L 2 pR ˚q, and moreover

N ÿ j"1 w 1 j p0q `αwp0q " ´κ. (3.2) 
(ii) Let w " R α,n pzqph `κρ n q P H 1 pΓq. Then ř jPN w 1 p0q " 0 and for j P N we have w 2 j " ´αzρ n w `z2 w j ´hj ´κρ n P L 2 pR ˚q.

Proof. Since h `κδ P H ´1pΓq, w is well defined as an element of H 1 pΓq by Proposition 3.4. For all φ P H 1 pΓq we have

@ w 1 , φ 1 D L 2 pΓq ´αzwp0qφp0q `z2 xw, φy L 2 pΓq " xh, φy L 2 pΓq `κφp0q. (3.3)
As in the proof of Proposition 3.2, by choosing φ supported away from the vertex we see that for all j P N we have in the sense of distributions w 2 j " z 2 w j ´hj . In particular w j P H 2 pR ˚q. Then, after integrations by parts in (3.3) we get ´N ÿ j"1 w 1 j p0qφp0q ´zαwp0qφp0q " κφp0q.

This gives (3.2). The second statement is similar.

We define B 2 P Lp 9 H 1 pΓq, H ´1pΓqq by @ B 2 ψ, ϕ D H ´1pΓq,H 1 pΓq " ´xψ 1 , ϕ 1 y L 2 pΓq for all ψ, ϕ P H 1 pΓq. In particular we have Q α pzq " ´B2 ´αzδ `z2 . Proposition 3.6. Let α P C ˘and z P C ¯. We have z P ρpW α q and

pW α ´zq ´1 " ˆ´z ´1`R α pzqB 2 `1˘´R α pzq ´Rα pzqB 2 ´zR α pzq ˙. (3.4)
Moreover, for F " H 1 pΓq ˆL2 pΓq we also have pW α ´zq ´1F " ˆRα pzqpαδ ´zq ´Rα pzq 1 `Rα pzqpzαδ ´z2 q ´zR α pzq ˙F.

(3.5)

For n P N ˚have the same results with W α , R α pzq and δ replaced by W α,n , R α,n pzq and ρ n .

Proof. For F P H 1 pΓq ˆL2 pΓq we denote by R α pzqF the right-hand side of (3.5). We set F " pf, gq and U " R α pzqF " pu, vq. We have u, v P H 1 pΓq. By Proposition 3.5, we have u 2 j P L 2 pR ˚q, u 2 j " z 2 u `zf `g and v j " f j `zu j for all j P N . On the other hand we have at the vertex:

N ÿ j"1 u 1 j p0q `αzup0q " ´αf p0q.
This gives the Robin condition. All this proves that U P DompW α q and pW α ´zqU " F .

In particular pW α ´zq has dense range. Since pW α ´zq is injective with closed range by Proposition 3.1, z belongs to ρpW α q and pW α ´zq ´1 " R α pzq on H 1 pΓq ˆL2 pΓq. Now we denote by Rα pzq the right-hand side of (3.4). From the properties of R α pzq we see that Rα pzq defines a bounded operator on H . Moreover, for F P H 1 pΓq ˆL2 pΓq we have Rα pzqF " R α pzqF " pW α ´zq ´1F . Since H 1 pΓq ˆL2 pΓq is dense in H , this proves that Rα pzq " pW α ´zq ´1.

The proof for W α,n is similar. We omit the details.

With Proposition 3.6 we can complete the statement of Proposition 3.1. This gives in particular Theorem 2.1.

Proposition 3.7. The operator W α is maximal accretive (respectively maximal dissipative, respectively skew-adjoint) if Repαq ě 0 (respectively Repαq ď 0, respectively Repαq " 0). For n P N ˚the operator W α,n has the same properties.

Damping at the vertex as a limit model for damping on the edges

In this section we establish Theorem 2.2. We first check that the sequence pρ n q nPN is an approximation of the Dirac distribution. 

Spectrum of the wave operator

In this section we prove Theorem 2.3. By Proposition 3.2 it is enough to consider the case Repαq ě 0. In this case, we already know by Proposition 3.6 that C ´Ă ρpW α q. We use explicit computation to describe the spectrum on the right half-plane. Then Theorem 2.3 follows from Propositions 5.1, 5.2, 5.3 and 5.5 below.

Given a closed operator W in a Hilbert space H , we denote its point spectrum (i.e. the set of eigenvalues W) by σ p pWq. One says that λ P σpWq belongs to the continuous spectrum σ c pWq (respectively, residual spectrum σ r pWq) of W if λ R σ p pWq and the closure of the range of the shifted operator W ´λ equals H (respectively, the closure is a proper subset of H ).

We first consider the spectrum on the imaginary axis.

Proposition 5.1. Let α P C. Then iR Ă σ c pW α q.

Proof. Let θ P R. Let φ P C 8 0 pR ˚q be supported in [START_REF] Abdallah | Exponential stability of the wave equation on a star shaped network with indefinite sign damping[END_REF][START_REF] Ammari | Asymptotic behaviour of the solutions and optimal location of the actuator for the pointwise stabilization of a string[END_REF] and such that }φ} L 2 pR ˚q " 1. For n P N ˚we define u n " pu n,j q jPN by u n,1 pxq " e iθx ? n φ ´x n ¯, u n,j pxq " 0, j P t2, . . . , N u, x ą 0.

Then we set U n " pu n , iθu n q P DompW α q. For n P N ˚we have }u

1 n } L 2 pΓq " |θ| `Opn ´1q, }iθu n } L 2 pΓq " |θ| and › › u 2 n `θ2 u n › › L 2 pΓq " Opn ´1q, so }U n } 2 H " 2θ 2 `Opn ´1q and }pW α ´iθqU n } 2 H " › › u 2 n `θ2 u n › › 2 L 2
pRq " Opn ´2q. This proves that iθ P σpW α q. Now let U " pu, vq P DompW α q such that W α U " iθU . That is, v " iθu and u 2 j " ´θ2 u j on R `for all j P N . Since u j P 9 H 1 pR `q, this implies that u j " 0. Then U " 0, so iθ cannot be an eigenvalue of W α . Finally, assume that iθ P σ r pW α q. Then ´iθ P σ p pW αq. By Proposition 3.2, iθ P σ p pW ´ᾱ q. However, the existence of eigenvalues on the entire imaginary axis has been already excluded.

Next we show that in the particular case α " N the right-half plane is filled with eigenvalues.

Proposition 5.2. Any z P C `is an eigenvalue of W N with geometric multiplicity 1 and infinite algebraic multiplicity.

Proof. Let z P C `. Assume that U " pu, vq P DompW N q is such that W N U " zU . Then v " zu and u 2 " zv " z 2 u. Let j P N . Since u j P L 2 pR ˚q, there exists A j P C such that u j pxq " A j e ´zx . By continuity at 0, the coefficients A j for j P N are all equal. Thus U is proportional to the vector U 1 " pu 1 , v 1 q defined by # u 1,j pxq " e ´zx , v 1,j pxq " ze ´zx .

Notice in particular that U 1 is radial (the expressions above do not depend on j P N ). Conversely, we can check that the vector U 1 defined in this way belongs to DompW N q and is an eigenvector corresponding to the eigenvalue z. This proves that z is a geometrically simple eigenvalue of W N .

For n ě 2 we define u n by u n,j pxq " p´1q n´1 x n´1 pn ´1q! e ´zx , j P N , x ą 0.

At the same time, we define v n by v n " zu n `un´1 .

It is straightforward to check that for all n ě 2 we have U n " pu n , v n q P DompW N q and W N U n " zU n `Un´1 . This proves that z has algebraic multiplicity `8 as an eigenvalue of W N .

The precedent proposition establishes part (ii) of Theorem 2.3. The other part that for α P C `ztN u there is no spectrum in the right-half plane will be proved in a moment. First, however, let us argue that even if there is no spectrum, the pseudospectra are highly non-trivial there and actually explode as α Ñ N . This is quantified by obtaining the following resolvent estimate. Proposition 5.3. There exists c 0 ą 0 such that for α P C `ztN u and z P C `X ρpW α q we have

› › pW α ´zq ´1› › LpH q ě max ˆ1 Repzq , c 0 |z| |N ´α| ˙.
Proof. For j P N and x ą 0 we set ηpxq " e ´αzx N . Then we define U " pu, vq by u j " η and v j " zη for all j P N . We have

U P DompW α q, }U } 2 H " N ˜|α| 2 N 2 `1¸| z| 2 }η} 2 L 2 pR ˚q and }pW α ´zqU } 2 H " N ˇˇˇα 2 N 2 ´1ˇˇˇˇ2 |z| 4 }η} 2 L 2 pR ˚q , so }pW α ´zqU } 2 H ď |z| 2 |α ´N | 2 |α `N | 2 N 2 p|α| 2 `N 2 q }U } 2 H .
This proves that

› › pW α ´zq ´1› › LpH q ě c 0 |z| |α ´N | , with c 0 " inf αPC `N b |α| 2 `N 2 |α `N | ą 0.
On the other hand we also have

› › pW α ´zq ´1› › LpH q ě 1 distpz, σpW α qq ě 1 Repzq ,
and the conclusion follows.

To show that for α P C `ztN u there is no spectrum in the right-half plane, we compute explicitely the resolvent of W α . This will also give the upper bound for the norm of the resolvent.

For z P C `and y P R we set

ρ z pyq " ze ´z|y| 2 . ( 5.1) 
Notice that ρ z pyq " ´z2 G z pyq, where G z is the Green function for the Helmholtz equation in dimension 1. On a half-line (hence on a star graph), the solution of the Helmholtz equation is also given by convolution with G z or ρ z . Let h : r0, `8rÑ C and x ě 0. When this makes sense we set

pρ z ˚hqpxq " ż `8 0 ρ z px ´sqhpsq ds. (5.2) 
We will use the following properties on this convolution product.

Lemma 5.4. Let z P C `.

(i) The convolution pρ z ˚hqpxq is well defined for h in L 2 pR ˚q or h P 9 H 1 pR ˚q and any x ě 0. (ii) For h P L 2 pR ˚q we have pρ z ˚hq P L 2 pR ˚q and

}ρ z ˚h} L 2 pR ˚q ď |z| Repzq }h} L 2 pR ˚q . (5.3) 
(iii) For h in L 2 pR ˚q or 9 H 1 pR ˚q the convolution pρ z ˚hq belongs to 9 H 1 pR ˚q and for almost all x ą 0 we have pρ z ˚hq 1 pxq " zpρ z ˚hqpxq ´z2 ż x 0 e ´zpx´sq hpsq ds.

(5.4)

For h P 9 H 1 pR `q this also gives

pρ z ˚hqpxq " 1 z pρ z ˚h1 qpxq ´ż x 0
e ´zpx´sq h 1 psq ds `hpxq ´e´zx hp0q 2 and pρ z ˚hq 1 pxq " pρ ˚h1 qpxq `z 2 e ´zx hp0q.

(iv) For h P L 2 pR ˚q we have

|pρ z ˚hqp0q| ď |z| 2 a 2Repzq }h} L 2 pR ˚q .
Proof. Since ρ z decays exponentially, the integral (5.2) is well defined for h P L 2 pR ˚q or h P 9 H 1 pR `q (in this case hpsq grows at most like ? s), and for any x ě 0. If h P L 2 pR ˚q we extend h by 0 on s ´8, 0r to define a function h on R. Then pρ z ˚hq is the restriction to r0, `8r of the usual convolution pρ z ˚hq on R, and

}ρ z ˚h} L 2 pR ˚q ď }ρ z ˚h} L 2 pRq ď }ρ} L 1 pRq } h} L 2 pRq " |z| Repzq }h} L 2 pR ˚q .
The third statement is straightforward computation and the last property follows from the Cauchy-Schwarz inequality

|pρ z ˚hqp0q| " ˇˇˇż `8 0 ρ z p´sqhpsq ds ˇˇˇď }ρ z } L 2 pR ´q }h} L 2 pR ˚q " |z| 2 a 2Repzq }h} L 2 pR ˚q .
Now we are in a position to complete the proof of Theorem 2.3.

Proposition 5.5. Assume that α P C `ztN u. Then C `Ă ρpW α q and there exists C ą 0 independent of α such that for all z P C `we have

› › pW α ´zq ´1› › LpH q ď C Repzq ˆ1 `1 |α ´N | ˙.
Proof. Let z P C `. Let F " pf, gq P H . We prove that the equation

pW α ´zqU " F (5.5) 
has a unique solution U " pu, vq P DompW α q. This will prove that z P ρpW α q, and the explicit expression for U will provide the estimates on pW α ´zq ´1. We identify f P H1 pΓq with any representative in 9 H 1 pΓq. We can check all along the proof that if we add a constant to f , then it only changes u by a constant and hence does not change its equivalence class in H1 pΓq. We could directly fix that f p0q " 0, but then the independence with respect to an additive constant would be less explicit. For clarity of the exposition, we divide the proof into several steps distinguished by the bullet mark. ' Assume that U " pu, vq P DompW α q satisfies (5.5). Let j P N . Then u j P H 2 loc pR ˚q and in the sense of distributions on R ˚we have u 2 j ´z2 u j " g j `zf j .

(

We identify u j with its continuous representative. Then there exist A j , B j P C such that, for all x ą 0, u j pxq " A j e ´zx `Bj e zx ´1 z 2 pρ z ˚gj qpxq ´1 z pρ z ˚fj qpxq, (

with ρ z defined by (5.1). Since u j , pρ z ˚gj q and pρ z ˚fj q belong to 9 H 1 pR ˚q we necessarily have B j " 0. If we set

Ãj " A j `f p0q 2z , (5.8) 
then we have by Lemma 5.4 u 1 j pxq " ´z Ãj e ´zx ´1 z `ρz ˚pf 1 j `gj q ˘pxq `ż x 0 e ´zpx´sq g j psq ds (5.9) and v j pxq " zu j pxq `fj pxq " z Ãj e ´zx ´1 z `ρz ˚pf 1 j `gj q ˘pxq `ż x 0 e ´zpx´sq f 1 j psq ds.

(5.10)

By continuity of u at 0 we have for all j P N Ãj " up0q `f p0q z `1 z 2 `ρz ˚pf 1 j `gj q ˘p0q, (5.11) so the Robin condition in (2.5) reads N ÿ j"1 ˆ´zup0q ´f p0q ´2 z `ρz ˚pf 1 j `gj q ˘p0q ˙`αzup0q `αf p0q " 0.

This gives

up0q `f p0q z " 2 z 2 pα ´N q N ÿ "1
`ρz ˚pf 1 `g q ˘p0q.

(5.12)

Thus (5.11) gives an explicit expression for Ãj and, by (5.9)-(5.10), U is uniquely determined by F . This proves the injectivity of pW α ´zq : DompW a ´zq Ñ H . ' Conversely, let U " pu, vq be defined by (5.7) and (5.10), with B j " 0 and A j given by (5.8), (5.11) and (5.12). Let j P N . Then u j is a solution of (5.6). By Lemma 5.4 we have v j P H 1 pR ˚q and u 1 j P L 2 pR ˚q. Moreover, by (5.6), u 2 j " zv j `gj P L 2 pR ˚q. By construction, u is continuous at 0, then so is v, and the Robin condition in (2.5) holds. This proves that U P DompW α q and then that z P ρpW α q. ' It remains to prove that

}U } H À }F } H Repzq ˆ1 `1 |α ´N | ˙,
where the symbol À means that we have inequality up to a multiplicative constant which does not depend on F , α or z. For this we apply Lemma 5.4. By (5.12) we have

ˇˇˇu p0q `f p0q z ˇˇˇÀ }F } H |z| |α ´N | a Repzq .
Then (5.11) gives for all j P N

| Ãj | À }F } H |z| a Repzq ˆ1 `1 |α ´N | ˙.
Finally, with (5.9) and (5.10),

}U } H À N ÿ j"1 `}u 1 j } L 2 pR ˚q `}v j } L 2 pR ˚q˘À }F } H Repzq ˆ1 `1 |α ´N | ˙,
and the proof is complete.

Damped wave equation

In this section we prove Theorem 2.4 about the time-dependant problem (2.1)-(2.4).

Proof of Theorem 2.4. ' Assume that u is a solution of (2.1)-(2.4) on r0, τ r for some τ ą 0. For t P r0, τ r and j P N we identify u j ptq with its representative of class C 1 on R `. For j P N there exist ϕ j P C 1 p´τ, `8q X 9 H 1 p´τ, `8q X 9 H 2 p´τ, `8q and ψ j P C 1 pR `q X 9 H 1 pR `q X 9 H 2 pR `q such that ϕp0q " ψp0q " 0 and for all t P r0, τ r and x ą 0 we have u j pt, xq " up0, 0q `ϕj px ´tq `ψj px `tq. (6.1)

The initial condition gives for x ą 0 # ϕ 1 j pxq `ψ1 j pxq " B x up0, xq " f 1 j pxq, ´ϕ1 j pxq `ψ1 j pxq " B t up0, xq " g j pxq, so @x ą 0, ψ 1 j pxq "

f 1 j pxq `gj pxq 2 , ϕ 1 j pxq " f 1 j pxq ´gj pxq 2 . (6.2)
On the other hand, the continuity at the central vertex gives for j, k P N and t ą 0, after differentiation, @j, k P N , @t P r0, τ r, ϕ 1 j p´tq ´ϕ1 k p´tq " ψ 1 j ptq ´ψ1 k ptq. (6.3)

Finally, the damping condition yields

@t P r0, τ r, ´α N ´1¯N ÿ j"1 ϕ 1 j p´tq " ´α N `1¯N ÿ j"1 ψ 1 j ptq. (6.4) 
In particular, we see that if α " N then we necessarily have ř N j"1 ψ 1 j ptq " 0 for all t P r0, τ r, so τ ď t 0 . On the other hand, if α ‰ N then u is uniquely determined. ' Conversely, we assume that α ‰ N and prove that (2.1)-(2.4) indeed has a solution on R `. For j P N and x ě 0 we set ϕ j pxq " 1 2 ż x 0 `f 1 j psq ´gj psq ˘ds, ψ j pxq "

1 2 ż x 0 `f 1 j psq `gj psq ˘ds. (6.5) 
and then ϕpxq " pϕ j pxqq jPN and ψpxq " pψ j pxqq jPN , seen as column vectors. Then for s P R ˚we set ϕp´sq " ´M ´1 ´M`ψ psq, where 

M ˘" ¨1 ´1 . . . . . . 1 ´1 α N ˘1 . . . α N ˘1 α N ˘1‹ ‹ ‹ ' . ( 6 
α q ϕ 1 p´sq " M ´1 ´M`ψ 1 psq Ý ÝÝ Ñ sÑ0 M ´1 ´M`ψ 1 p0q " ϕ 1 p0 `q.
Thus ϕ P C 1 pRq X 9 H 1 pRq X 9 H 2 pRq. Then for t ě 0 and x ą 0 we define u by (6.1) (the choice of up0, 0q is not important since u is defined up to an additive constant). We have u P C 1 pR `, H 1 pΓqq X C 0 pR `, 9

H 2 pΓ ˚qq. On the other hand in the sense of distributions we have

B tt u " B xx u.
In particular, B tt u P C 0 pR `, L 2 pΓqq, so u P C 2 pR `, L 2 pΓqq. All this proves that u is a solution of (2.1)-(2.4) on R `. Moreover for t ě 0 we have

Epu; tq " }B t uptq} 2 L 2 pΓq `}B x uptq} 2 L 2 pΓq " 2 ż `8 0 `ˇϕ 1 px ´tq ˇˇ2 C N `ˇψ 1 px `tq ˇˇ2 C N ˘dx " 2 ż `8 ´t ˇˇϕ 1 psq ˇˇ2 C N ds `2 ż `8 t ˇˇψ 1 psq ˇˇ2 C N ds.
We have

ż t ´t ˇˇϕ 1 psq ˇˇ2 C N ds ď ż t 0 `ˇϕ 1 psq ˇˇ2 C N `› › M ´1 ´M`› › 2 ˇˇψ 1 psq ˇˇ2 C N ˘ds À ˆ1 `1 |α ´N | 2 ˙ż t 0 `ˇϕ 1 psq ˇˇ2 C N `ˇψ 1 psq ˇˇ2 C N ˘ds À ˆ1 `1 |α ´N | 2 ˙ż t 0 `ˇf 1 psq ˇˇ2 C N `|gpsq| 2 C N ˘ds. Since 2 ż `8 t `ˇϕ 1 psq ˇˇ2 C N `ˇψ 1 psq ˇˇ2 C N ˘ds " ż `8 t `ˇf 1 psq ˇˇ2 C N `ˇg 1 psq ˇˇ2 C N ˘ds,
the desired inequality (2.9) follows.

' Now assume that α " N and that t 0 ą 0. Let τ Ps0, t 0 s. On R `we define ϕ j and ψ j by (6.5). Let θ P C 8 pr0, τ r, Rq such that θp0q " 0 and θ 1 p0q " ϕ 1 1 p0q. For j P N and s Ps0, t 0 r we set ϕ j p´sq " θp´sq `ψj psq ´ψ1 psq.

In particular ϕ P C 1 ps ´τ, `8r; C N q and ϕ P 9 H 1 ps ´τ1 , `8r; C N q X 9 H 2 ps ´τ1 , `8r; C N q for all τ 1 Ps0, τ r. Finally we define u by (6.1). Then u is a solution of (2.1)-(2.4) on r0, τ r. Moreover for t P r0, τ r we have

Epu, tq ě ż `8 0 `ˇϕ 1 1 px ´tq ˇˇ2 `ˇψ 1 1 px `tq ˇˇ2 ˘dx ě ż 0 ´t ˇˇϕ 1 1 psq ˇˇ2 ds ě ż t 0 ˇˇθ 1 psq ˇˇds.
In particular we can choose θ in such a way that Epu; tq goes to `8 as t goes to τ .

Relationship with relativistic quantum mechanics

If the space variable x is restricted to a bounded interval and α is real, the classical interpretation of the wave equation (1.1) is that of a vibrating string, subject to a highly localised damping [START_REF] Bamberger | A model for harmonics on stringed instruments[END_REF] . Strictly speaking, the genuine damping (or friction) corresponds to negative α, while positive α models a supply of energy into the system. However, we use the word "damping" even in the more general situation whenever α has a non-zero real part, so that the physical system is not conservative.

The goal of this last section is to provide a physical motivation in the unconventional setting of unbounded geometries and/or non-real α. To this purpose, we recall a more or less well known relationship between the damped wave equation and the Dirac equation in relativistic quantum mechanics (see, e.g., [START_REF] Gesztesy | The damped string problem revisited[END_REF][START_REF] Gesztesy | Abstract wave equations and associated diractype operators[END_REF][START_REF] Cuenin | Eigenvalues of one-dimensional non-selfadjoint Dirac operators and applications[END_REF]). (Here the word relativistic stands for the original usage of the equation, recent years have brought motivations to consider the same mathematical problem for non-relativistic systems like graphene.)

For simplicity, let us restrict to the simplest graph N " 2, which can be identified with the real axis R. Instead of substituting pu, vq " pψ, B t ψq as above (2.7), let us write pξ, ηq " pB t ψ, B x ψ). Then the wave equation (1.1) is formally transferred to the first-order system B t ˆξ η ˙" iD α ˆξ η ˙with D α " ˆ´iαδ ´iB x ´iB x 0 ˙. (7.1)

Here D α is a Dirac-type operator considered in the Hilbert space L 2 pRq ˆL2 pRq. More specifically, D 0 with domain H 1 pRq ˆH1 pRq is the (self-adjoint) Dirac Hamiltonian modelling the propagation of relativistic (quasi-)particles in quantum mechanics. The perturbation `´iαδ 0 0 0 ˘(properly introduced via the jump condition ηp0 `q ´ηp0 ´q " ´αξp0q together with the continuity ξp0 `q " ξp0 ´q " ξp0q) represents neither a purely electric nor scalar potential, but it is self-adjoint (and therefore quantum-mechanically relevant) whenever α is purely imaginary. Moreover, the real part of α is potentially eligible in quasi-Hermitian quantum mechanics [START_REF] Krejčiřík | Pseudospectra in non-Hermitian quantum mechanics[END_REF].

It is interesting to compare the present model (7.1) with the δ-shell interaction Hamiltonian Dτ " ˆτ δ ´iB x ´iB x τ δ ˙(7.2)

intensively studied for real τ during the last decade (see [START_REF] Arrizibalaga | Shell interactions for Dirac operators[END_REF][START_REF] Ourmières-Bonafos | A strategy for self-adjointness of Dirac operators: Applications to the MIT bag model and delta-shell interactions[END_REF][START_REF] Holzmann | Dirac operators with Lorentz scalar shell interactions[END_REF][START_REF] Behrndt | On Dirac operators with electrostatic δ-shell interactions of critical strength[END_REF] for counterparts of (7.2) in R 3 and its variants). Here Dτ is properly introduced via the transmission condition ˆτ {2 ´i ´i τ {2 ˙ˆξp0 `q ηp0 `q˙`ˆτ {2 i i τ {2 ˙ˆξp0 ´q ηp0

´q˙" ˆ0 0 ṫhat the functions from the operator domain of Dτ must satisfy. This definition makes sense even for complex τ . If τ is real, the operator Dτ is self-adjoint and its (purely continuous) spectrum coincides with the real axis R. In fact, the same spectral picture extends to be true for any τ P Czt˘2iu. However, if τ " 2i (respectively, τ " ´2i), then the whole upper (respectively, lower) complex plane belongs to the spectrum of Dτ . So we again see the presence of the not-any-more-magical number 2. Email address: david.krejcirik@fjfi.cvut.cz (J. Royer) Institut de mathématiques de Toulouse, Université Toulouse 3, 118 route de Narbonne, F-31062 Toulouse cedex 9, France Email address: julien.royer@math.univ-toulouse.fr
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 35 Let α P C ˘, z P C ¯and n P N ˚. Let h P L 2 pΩq and κ P C.

Lemma

  

(D. Krejčiřík )

 Krejčiřík Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 120 00, Prague, Czech Republic

  For α P C, z P C and n P N ˚we define bounded operators Q α pzq and Q α,n pzq in LpH 1 pΓq, H ´1pΓqq by xQ α pzqψ, ϕy H ´1pΓq,H 1 pΓq " @ ψ 1 , ϕ 1 D L 2 pΓq ´αzψp0qϕp0q `z2 xψ, ϕy L 2 pΓq and xQ α,n pzqψ, ϕy H ´1pΓq,H 1 pΓq " @ ψ 1 , ϕ 1 D L 2 pΓq ´αz xρ n ψ, ϕy L 2 pΓq `z2 xψ, ϕy L 2 pΓq , for all ψ, ϕ P H 1 pΓq (the scalar products are linear on the left and semilinear on the right). Proposition 3.4. Let α P C ˘, z P C ¯and n P N ˚. Then Q α pzq and Q α,n pzq are invertible. Moreover, the norm › › Q α,n pzq LpH ´1pΓq,H 1 pΓqq is bounded uniformly in n P N We consider the case Repαq ě 0 and Repzq ă 0 (the case Repαq ď 0 and Repzq ą 0 is similar). Let θ " argpzq ´π P ‰ ´π 2 , π Re `e´iθ xQ α,n pzqw, wy H ´1pΓq,H 1 pΓq

	˚.					
	Proof. 2	"	and η " argpαq P	"	´π 2 , π 2	‰ . For w P H 1 pΓq
	we have					

´1›

›

  4.1. We have }ρ n ´δ} LpH 1 pΓq,H ´1pΓqq ÝÝÝÝÑ Let u, w P H 1 pΓq. For n P N ˚we have xpρ n ´δqu, wy H ´1pΓq,H 1 pΓq " Then there exists c ą 0 such that for all n P N ˚and u, w P H 1 pΓq we have ˇˇxpρ n ´δqu, wy H ´1pΓq,H 1 pΓq ˇˇď c ? n }u} H 1 pΓq }w} H 1 pΓq . Let α P C ˘and z P C ¯. We have }R α pzq ´Rα,n pzq} LpH ´1pΓq,H 1 pΓq ÝÝÝÝÑ The resolvent identity gives R α pzq ´Rα,n pzq " zR α pzq `αδ ´αρ n ˘Rα,n pzq. Since the size of R α,n pzq in LpH ´1pΓq, H 1 pΓqq does not depend on n P N ˚(recall Proposition 3.5), we conclude with help of Lemma 4.1.

	This concludes the proof of the lemma.				
	Proposition 4.2. nÑ`8	0.
	Proof. Now we are in a position to establish Theorem 2.2.
	Proof of Theorem 2.2. For F P H 1 pΓq ˆL2 pΓq we have
	› › `pW α ´zq ´1 ´pW α,n ´zq ´1˘F › ›			
					nÑ`8	0.
	Proof. N ÿ	ż `8	ρ n j pxq `uj pxqw j pxq ´up0qwp0q ˘dx.
		j"0	0			
	For j P N we have				
	ż `8	ρ n j pxq |pu j w j qpxq ´puwqp0q| dx ď	ż `8	ρ n j pxq ˇˇˇż	x	pu j w j q 1 psq ds ˇˇˇd x
	0				0		0
			ď	ż `8 0	ρ n j pxq	? x	› › pu j w j q 1 › › L 2 pR

˚q dx ď }pu j w j q 1 } L 2 pR ˚q ? n ż `8 0 ρ j pyq ? y dy. H À }R α,n pzq ´Rα pzq} LpH ´1pΓq,H 1 pΓqq `› › f 2 › › H ´1pΓq `}g} L 2 pΓq À }R α,n pzq ´Rα pzq} LpH ´1pΓq,H 1 pΓqq }F } H . Here the relation f À g means that there exists a constant C (independent of n) such that f ď Cg. By density of H 1 pΓq ˆL2 pΓq in H we get › › pW α ´zq ´1 ´pW α,n ´zq ´1› › LpH q À }R α,n pzq ´Rα pzq} LpH ´1pΓq,H 1 pΓqq , and we conclude with Proposition 4.2.

  .6) This is possible since detpM ´q " α ´N ‰ 0. We have ϕ P C 1 pR ˚q X 9H 1 pR ˚q X 9 H 2 pR ˚q.

	For s ą 0 we have	
	ϕp´sq " ´M ´1 ´M`ψ psq Ý ÝÝ Ñ sÑ0	´M ´1 ´M`ψ p0q " 0 " ϕp0q,

and since pf, gq P DompW
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