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Almost reducibility of quasiperiodic SL(2,R)-cocycles in

ultradifferentiable classes

Maxime Chatal∗

and

Claire Chavaudret†

May 24, 2022

Abstract: Given a quasiperiodic cocycle in sl(2,R) sufficiently close to a constant, we prove that it is almost-
reducible in ultradifferentiable class under an adapted arithmetic condition on the frequency vector. We also give
a corollary on the Hölder regularity of the Lyapunov exponent.

1 Introduction

1.1 Presentation of the result

Let d ≥ 1 and ω = (ω1, . . . , ωd) ∈ Rd a rationally independent vector (meaning that no non trivial integer
combination of the (ωi)i=1,...,d can vanish). We will assume that supi |ωi| ≤ 1. We will note Td := Rd/Zd and
2Td := Rd/2Zd. Let A : Td → sl(2,R) be in a certain class of continuous matrix-valued functions. We call
quasi-periodic cocycle the solution X : Td × R → SL(2,R) of the differential linear equation

{

d
dtX

t(θ) = A(θ + tω)Xt(θ)
X0(θ) = Id

(1)

One of the main motivations for studying quasi-periodic cocycles is the study of quasi-periodic Schrödinger
equations

−y′′(t) + q(θ + tω)y(t) = Ey(t)

where q : Td → R is called the potential, and E ∈ R the energy. It gives rise to a cocycle with values in SL(2,R).
The cocycle is said to be a constant cocycle if A is a constant matrix. A quasi-periodic cocycle as in (1) is said
reducible if it can be conjugated by a quasi-periodic change of variable Z : Td → SL(2,R) to a constant cocycle,
that is to say, if there exists B ∈ sl(2,R) such that, for all θ ∈ 2Td :

∂ωZ(θ) = A(θ)Z(θ) − Z(θ)B

In general, it is important to require the change of variables Z to be regular enough. Is this paper, we will be
interested in the perturbative setting, that is to say, in quasi-periodic cocycles close to a constant :

{

d
dtX

t(θ) = (A+ F (θ + tω))Xt(θ)
X0(θ) = Id

(2)

where A ∈ sl(2,R) and F : Td → sl(2,R) is of ultra-differentiable class and small enough, with a smallness condition
depending on ω.

Reducibility is a strong property because it implies that the dynamics will be easily described by the constant
equivalent of the system, in particular the Lyapunov exponents, the rotational properties of the solutions, the
invariant subbundles etc. On the counterpart, reducibility results generally require many assumptions. Here we
are interested in a weaker property which is almost reducibility. A cocycle like (2) is said almost-reducible if it can
be conjugated by a sequence of quasi-periodic changes of variables to a cocycle of the form

{

d
dtX

t(θ) = (Ān(θ + tω) + F̄n(θ + tω))Xt(θ)
X0(θ) = Id
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where Ān is reducible and F̄n is arbitrarily small.
A quantitative version of almost reducibility, that is, almost reducibility together with estimates on the changes of
variable, can have interesting corollaries such as approximate solutions, density of reducible cocycles, regularity of
Lyapunov exponents.

Ultra-differentiability : To quantify the regularity of F ∈ C∞(Td, sl(2,R)) and the size of the sequence
(F̄n) above, we introduce the weight function Λ : [0,+∞[→ [0,+∞[ which we will assume to be increasing and
differentiable. Expanding F in Fourier series F (θ) =

∑

k∈Zd F̂ (k)e2iπ〈k,θ〉, we will say that F is Λ-ultra-differentiable
if there exists r > 0 such that

|F |r = |F |Λ,r :=
∑

k∈Zd

‖F̂ (k)‖e2πΛ(|k|)r < ∞

where |k| is the sum of the absolute values of the components of k, and we will denote F ∈ Ur(T
d, sl(2,R)) =

UΛ,r(T
d, sl(2,R)). To make this space a Banach algebra, we will require Λ to be subadditive :

Λ(x+ y) ≤ Λ(x) + Λ(y), ∀x, y ≥ 0

If Λ ≡ id, it is the analytic case.

Remark 1.1. The standard definition of ultra-differentiable functions involves Denjoy-Carleman sequences, that is,
real sequences satisfying certain conditions which act as bounds on the successive derivatives of a given function.
However, the above definition, introduced by Braun-Meise-Taylor ([8]), can be linked to Denjoy-Carleman classes
(see [21], Theorem 11.6). Since Fourier series appear naturally in the problem considered here, we chose to use
Braun-Meise-Taylor classes as a starting point.

Non-resonance condition on the frequency: An often studied situation is the case where the frequency
vector ω if Diophantine (which we denote by ω ∈ DC(κ, τ)), for some 0 < κ < 1 and τ ≥ max(1, d− 1) :

|〈k, ω〉| ≥
κ

|k|τ
, ∀k ∈ Z

d\{0}

where 〈·, ·〉 is the standard Euclidean inner product. It was proved by Eliasson [13] that in the analytic case, if
ω ∈ DC(κ, τ), and F is sufficiently small, Equation (2) is almost reducible. This result was improved by Chavaudret
[11] who proved that the convergence occurs on analyticity strips of fixed width (whereas Eliasson’s theorem gave
the convergence on strips of width going to zero).

One of the aims of the present paper is to weaken this arithmetic condition by introducing the approximating
function

Ψ : [0,+∞[→ [0,+∞[

with Ψ ≥ id (which is not restrictive since it is satisfied by the diophantine condition). We will assume Ψ to be
increasing, differentiable and satisfying, for all x, y ∈ [1,+∞[,

Ψ(x+ y) ≥ Ψ(x) + Ψ(y)

thus for all n ∈ N, and for all x ≥ 1, Ψ(nx) ≥ nΨ(x). In our problem, ω will satisfy the following arithmetic
condition for some κ ∈]0, 1[ :

|〈k, ω〉| ≥
κ

Ψ(|k|)
, ∀k ∈ Z

d\{0}

(notice that the case Ψ(.) = |.|τ , is the Diophantine case).
We will require the following condition:

lim
t→+∞

log Ψ(t)

Λ(t)
= 0.

and
∫ ∞

0

Λ′(t) ln Ψ(t)

Λ(t)2
dt < +∞

This condition, known as the Λ-Brjuno-Rüssmann condition, will be denoted by ω ∈ BR(κ). This coincides
with the well-known Brjuno condition if Λ is the identity.

If A is elliptic, an almost reducibility theorem was given in [5].
The purpose of this article is to show the following theorem:
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Theorem 1.2. Let r0 > 0, A0 ∈ sl(2,R) and F0 ∈ Ur0(Td, sl(2,R)). Then, there exists ε0 depending only on
A0, κ,Λ,Ψ, r0 such that, if

|F0|r0 ≤ ε0

then for all ε ≤ ε0, there exist

• rε > 0, ζ ∈]0, 1
8 [,

• Zε ∈ Urε
(Td, SL(2,R)),

• Aε ∈ sl(2,R),
• Āε, F̄ε ∈ Urε

(Td, sl(2,R)),
• ψε ∈ Urε

(2Td, SL(2,R))

such that

1. Āε is reducible to Aε by ψε, with |ψε|rε
≤ ε− 1

2 ζ ,

2. |F̄ε|rε
≤ ε,

3. limε→0 rε > 0,

4. for all θ ∈ Td,
∂ωZε(θ) = (A0 + F0(θ))Zε(θ) − Zε(θ)(Āε(θ) + F̄ε(θ))

5.
|Z±1
ε − Id|rε

≤ ε
9

10
0

Moreover, either Ψǫ becomes constant as ǫ → 0, or there exist arbitrarily small ε such that ||Aε|| ≤ κεζ.

This theorem states almost reducibility in an ultradifferentiable class with the same weight function as that
of the initial system, but with a smaller parameter rε. Notice however that the parameter rε does not shrink to
0. In order to achieve this, the resonance cancellation technique is similar to the one in [11]. Notice that, for
topological reasons, a period doubling is necessary in order to preserve the real structure. This phenomenon was
already observed in [10].

1.2 Discussion

Almost reducibility in itself is an interesting property of quasi-periodic cocycles, in particular the quantitative
version. A perturbative almost reducibility result in arbitrary dimension of space was given in [13], in the analytic
framework, under a diophantine condition on the frequency vector. A quantitative version of perturbative almost
reducibility, in a similar framework, was then proved in [11]. Using a technique developed in [1], in [16], Hou and
You managed to remove the diophantine assumption on the frequency vector, in case it is 2-dimensional (d = 2);
thus the result became non perturbative if not global (see also [20] for a non perturbative reducibility result). It is
yet unknown whether arithmetical conditions can be removed in case d > 2. However in the analytic case, for any
number of frequencies, it is known that the diophantine condition is not optimal for reducibility results and can
be replaced by the Brjuno-Rüssmann condition (see [17], [12]). Here we give an almost reducibility result in which
the arithmetical condition coincides with the Brjuno-Rüssmann condition in the analytic case.

Concerning the functional framework, a few results were known in the Gevrey class. The reference [11] contains
almost reducibility in the Gevrey class as well, under a diophantine condition. The reference [15] gives a result on
rigidity of reducibility in the Gevrey class, under a diophantine condition (see also [18] on Gevrey flows). But a
simultaneous extension of Eliasson’s reducibility result in [14] to more general ultradifferentiable classes and to a
weaker arithmetical condition, which is linked to the considered class of functions, was given in [5] (see also [6] for
a result in a hamiltonian setting). Here, we obtain this generalization for almost reducibility, the proof of which is
more technical. The link between the arithmetical condition and the functional setting is similar to the one in [5],
and also coincides with the Brjuno-Rüssmann condition in the analytic case.
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1.3 Comments on the proof

The proof of the main result relies on the well-known KAM algorithm: a step of the algorithm will reduce the
size of the perturbation to a power of it, by means of a change of variables which might be far from identity (if
resonances have to be cancelled), but is still controlled by a small negative power of the size of the perturbation.
The order at which one removes resonances to avoid small divisors has to be suitably chosen in order to decrease
the perturbation sufficiently while having a sufficient control on the change of variables. One also has to shrink the
parameter of the ultradifferentiable class at every step, and in order to have a strong almost reducibility result (i.e
a sequence of parameters not shrinking to 0), the Λ-Brjuno-Rüssmann condition comes naturally.
If resonances are cancelled only finitely many times, then the change of variables remains close to identity at every
step afterwards, which gives reducibility. Otherwise, the constant part of the system itself becomes small.

The main theorem, which is Theorem 12.1 below, is proved by iterating arbitrarily many times the Lemma 11.1
below; Lemma 11.1 gives a conjugation between to systems Ā+ F̄ and Ā′ + F̄ ′, where both Ā and Ā′ are reducible
maps and F̄ ′ is smaller than F̄ , with a controlled loss of regularity.

The proof of Lemma 11.1 can be sketched by the following diagram:

Ā+ F̄
ψ

−→ A+ F
ψ−1Φ−1eX Φ

−→
Lemma 10.2

Ā1 + F̄1
Φψ
−→ A1 + F1

eX1

−→
Lemma 9.3

. . .
e

Xl−1

−→
Lemma 9.3

Al + Fl
ψ−1Φ−1

−→ Āl + F̄l = Ā′ + F̄ ′

where A,A1, . . . , Al are constant matrices, Ā, Ā1, . . . , Āl are reducible, and F̄ , F, F̄i, Fi are small.

No non resonance condition is required on A, making it necessary to construct the change of variables Φ which
will remove resonances, but may be far from the identity (Lemma 7.1). However, once this is done, the matrices
A1, . . . , Al−1 remain non resonant enough in order to reduce the perturbation a lot without having to remove
resonances again.

The superscripts on the arrows refer to the changes of variables. The changes of variables with an exponential
expression are close to the identity, therefore the total conjugation, from Ā + F̄ to Ā′ + F̄ ′, is close to identity,
which makes it possible to obtain the density of reducible systems in the neighbourhood of a constant.

2 Notations

The notation E(x) will refer to the integer part of a number x.
If F ∈ L2(2Td) and N ∈ N, the truncation of F at order N (denoted FN ) is the function we obtain by cutting

the Fourier series of F :
FN (θ) =

∑

|m|≤N

F̂ (m)e2iπ〈k,θ〉

In order to simplify the notation throughout this paper, we will write Ψ(·) for Ψ(| · |), and Λ(·) for Λ(| · |).
We will denote by || · || the norm of the greatest coefficient for matrices.

3 Decompositions, triviality

We take the following definitions from [11], describing decompositions of R2 and triviality, which will avoid to
double the period more than once.

Definition 3.1 (Decomposition). • If A ∈ sl(2,R) has distinct eigenvalues, we call A-decomposition a decom-
position of R2 as the direct sum of two eigenspaces of A. If L is an eigenspace of A, we write σ(A|L) the
spectrum of the restriction of A to the subspace L. We shall denote by LA the decomposition of R2 into two
distinct eigenspaces of A, if the related eigenvalues are distinct.

• If R2 = L1

⊕

L2, for all u ∈ R2, there exists a unique decomposition u = u1 + u2, u1 ∈ L1, u2 ∈ L2. For
i = 1, 2, we call projection on Li with respect to L = {L1, L2}, and we write PL

Li
the map defined by PL

Li
u = ui.

Recall the following lemma on estimate of the projection (see [13]) :
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Lemma 3.2 ([13]). Let κ′ > 0 and A ∈ sl(2,R) with κ′-separated eigenvalues. There exists a constant C0 ≥ 1
such that, for any subspace L ∈ L = LA,

‖PL
L ‖ ≤ C0

( 1

κ′

)6

Remark 3.3. The estimate given in [13] is more general since it also concerns matrices A with a nilpotent part.
Here the setting in sl(2,R) makes the estimate a little better.

Definition 3.4 (Triviality). Let L = {L1, L2} such that L1

⊕

L2 = R2. We say that a function ψ ∈ C0(2Td, SL(2R))
is trivial with respect to L if there exists m ∈ 1

2Z
d such that for all θ ∈ 2Td,

ψ(θ) = e2iπ〈m,θ〉PL
L1

+ e−2iπ〈m,θ〉PL
L2

If |m| ≤ N , we say that ψ is trivial of order N .

Remark 3.5. • If ψ1, ψ2 : 2Td → SL(2,R) are trivial with respect to L, then the product ψ1ψ2 is also trivial
with respect to L since, for all L 6= L′, PL

L P
L
L′ = 0.

• If ψ is trivial with respect to a a decomposition L of R2, then for all G ∈ C0(Td, sl(2,R)), we have ψGψ−1 ∈
C0(Td, sl(2,R)). Indeed, notice that if ψ = e2iπ〈m,·〉PL

L1
+ e−2iπ〈m,·〉PL

L2
for some m ∈ 1

2Z
d, then

ψ−1 = e−2iπ〈m,·〉PL
L1

+ e2iπ〈m,·〉PL
L2

(it’s a simple calculus to check that with this expression, ψψ−1 = ψ−1ψ ≡ I.) Then,

ψGψ−1 = (e2iπ〈m,·〉PL
L1

+ e−2iπ〈m,·〉PL
L2

)G(e−2iπ〈m,·〉PL
L1

+ e2iπ〈m,·〉PL
L2

)

= PL
L1
GPL

L1
+ PL

L2
GPL

L2
+ e2iπ〈2m,·〉PL

L1
GPL

L2
+ e−2iπ〈2m,·〉PL

L2
GPL

L1

which is well defined continuously on Td. Hence the function ψ will avoid a period doubling.

4 Choice of parameters

In this section, we define all the constants and parameters used in this paper.
{

δ = 100000
ζ = 1

1728

Let for all r, ε > 0,

N(r, ε) = Λ−1
(50| log ε|

πr

)

R(r, ε) =
1

3N(r, ε)
Ψ−1(ε−ζ)

κ′′(ε) = κεζ

r′(r, ε) = r −
50δ| log ε|

πΛ(R(r, ε)N(r, ε))

5 Smallness of the perturbation

Let r0 > 0, A0 ∈ sl(2,R), F0 ∈ Ur0(Td, sl(2,R)).

Assumption 1. The functions Λ,Ψ satisfy

lim
t→+∞

ln Ψ(t)

Λ(t)
= 0

and ε0 is small enough as to satisfy conditions of lemma 10.1 below and:

150δ| log ε0|

πΛ ◦ Ψ−1(ǫ−ζ
0 )

+
150δ

πζ log(2δ)

∫ +∞

Ψ−1(ε−ζ

0 )

Λ′(t) ln Ψ(t)

Λ(t)2
dt < r0
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These conditions depend on r0,Λ,Ψ.

We shall define the following sequences of parameters used throughout the iteration:

εk := ε
(2δ)k

0

Λ(Nk) := Λ(N(rk, εk)) =
50| log εk|

πrk

Rk := R(rk, εk) =
1

3N(rk, εk)
Ψ−1(ε−ζ

k )

and

rk := r0 −

k−1
∑

i=0

50δ| log εi|

πΛ(R(ri, εi)N(ri, εi))

Lemma 5.1. Under either the Assumption 1, the sequence rk converges to a positive limit.

Proof. Notice that, for all k, and since Λ is subadditive,

Λ(RkNk) ≥
1

3
Λ(3RkNk) ⇒

1

Λ(RkNk)
≤

3

Λ(3RkNk)

Then
∑

k≥0

50δ| log εk|

πΛ(RkNk)
≤

∑

k≥0

150δ| log εk|

πΛ(3RkNk)

≤
150δ

π

∑

k≥0

(2δ)k| log ε0|

Λ(3RkNk)

≤
150δ

π

∑

k≥0

(2δ)k| log ε0|

Λ(Ψ−1(ε−ζ
k ))

≤
150δ| log ε0|

πΛ ◦ Ψ−1(ǫ−ζ
0 )

+
150δ| log ε0|

π

∫ +∞

0

(2δ)x

Λ(Ψ−1(ε
−ζ(2δ)x

0 ))
dx

With the change of variable t := (2δ)x

≤
150δ| log ε0|

πΛ ◦ Ψ−1(ǫ−ζ
0 )

+
150δ| log ε0|

π

∫ +∞

1

t

Λ(Ψ−1(ε−ζt
0 ))

1

t log(2δ)
dt

≤
150δ| log ε0|

πΛ ◦ Ψ−1(ǫ−ζ
0 )

+
150δ| log ε0|

π log(2δ)

∫ +∞

1

1

Λ(Ψ−1(ε−ζt
0 ))

dt

With the change of variable v := Ψ−1(ε−ζt
0 )

≤
150δ| log ε0|

πΛ ◦ Ψ−1(ǫ−ζ
0 )

+
150δ| log ε0|

π log(2δ)

∫ +∞

Ψ−1(ε−ζ

0 )

1

Λ(v)
·

Ψ′(v)

−ζ log ε0Ψ(v)
dv

≤
150δ| log ε0|

πΛ ◦ Ψ−1(ǫ−ζ
0 )

+
150δ

πζ log(2δ)

∫ +∞

Ψ−1(ε−ζ

0 )

Ψ′(v)

Λ(v)Ψ(v)
dv

After integrating by parts,

∑

k≥0

50δ| log εk|

πΛ(RkNk)
≤

150δ| log ε0|

πΛ ◦ Ψ−1(ǫ−ζ
0 )

+
150δ

πζ log(2δ)
[−

log(ε−ζ
0 )

Λ(Ψ−1(ε−ζ
0 ))

+

∫ +∞

Ψ−1(ε−ζ

0 )

Λ′(v) log Ψ(v)

Λ(v)2
dv]

≤
150δ| log ε0|

πΛ ◦ Ψ−1(ǫ−ζ
0 )

+
150δ

πζ log(2δ)

∫ +∞

Ψ−1(ε−ζ

0 )

Λ′(v) log Ψ(v)

Λ(v)2
dv

(5.1)

provided lim
v→+∞

log Ψ(v)

Λ(v)
= 0, thus the assumption 1 implies that (rk) converges to a positive limit.
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Remark : We naturally find the Bruno-Rüssmann condition with respect to weight function Λ, which is the

convergence of

∫

Λ′(v) log Ψ(v)

Λ(v)2
dv.

6 Elimination of resonances

Given a matrix A, a useful technique in the KAM iteration will be to remove the resonances in the spectrum of the
matrix A. To characterize the non-resonance of z ∈ C (depending on ω, a constant κ′ > 0 and on an order N ∈ N)
we will write z ∈ BRNω (κ′) if and only if :

∀k ∈ Z
d\{0}, 0 < |k| ≤ N ⇒ |z − 2iπ〈k, ω〉| ≥

κ′

Ψ(k)

Definition 6.1. We will say that A has BRNω (κ′) spectrum if

σ(A) = {α, α′} ⇒ α− α′ ∈ BRNω (κ′)

In particular, if the eigenvalues of A are iα and −iα with α ∈ R, A has if BRNω (κ′) spectrum if

2iα ∈ BRNω (κ′)

Remark 6.2. If A has real eigenvalues α, α′, then for all N ∈ N, A has BRNω (κ)-spectrum because |α − α′ −
2iπ〈m,ω〉| ≥ |2iπ〈m,ω〉| ≥ κ

Ψ(m) .

Lemma 6.3. Let α ∈ R, Ñ ∈ N∗ and κ′ =
κ

Ψ(3Ñ)
. There exists m ∈ 1

2Z
d, |m| ≤ 1

2Ñ such that, if we denote

α′ = α− 2π〈m,ω〉, then 2iα′ ∈ BRÑω (κ′) and if m 6= 0 then |α′| ≤ κ′

2 .

Proof. We want to remove the resonances between iα and −iα. If 2iα ∈ BRÑω (κ′), let m = 0 and we are done.
Otherwise, if there exists m′ ∈ 1

2Z
d with |m′| ≤ Ñ such that

|2α− 2π〈m′, ω〉| <
κ

Ψ(m′)

then let m = m′

2 and 2α′ = α − 2π〈m,ω〉. It’s a simple calculus to check that, in this case, |2α′| ≤ κ′, hence

α′ ≤ κ′

2 . Now, for all k ∈ 1
2Z

d, k ≤ Ñ ,

|2iα′ − 2iπ〈k, ω〉| ≥
κ

Ψ(k)
− κ′ ≥

κ′

Ψ(k)

Then 2iα′ ∈ BRÑω (κ′).

Lemma 6.4. Let α ∈ R. For all R ∈ R, N ∈ N, N ≥ 1, R ≥ 2, there exists m ∈ 1
2Z

d, |m| ≤ 1
2N such that, if we

denote κ′′ =
κ

Ψ(3RN)
and α′ = α− 2π〈m,ω〉, then 2iα′ ∈ BRRNω (κ′′) and if m 6= 0 then |α′| ≤ κ′′

2 .

Proof. If α ∈ BRRNω (κ′′), then m = 0. Otherwise, apply the previous Lemma with Ñ = N and κ′ = κ′′ to obtain

|m| ≤ 1
2N such that |α− 〈m,ω〉| ≤ κ′′

2 . Therefore for all 0 ≤ |k| ≤ RN ,

|2α′ − 2π〈k, ω〉| ≥ |2π〈k, ω〉| − κ′′ ≥
κ

Ψ(k)
− κ′′ ≥

κ′′

Ψ(k)

and then 2iα′ = 2iα− 2π〈m,ω〉 ∈ BRRNω (κ′′).
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7 Renormalization

We want to define a map Φ which conjugates A to a matrix with BRRNω (κ′′) spectrum.

Lemma 7.1. Let A ∈ sl(2,R), R ≥ 2, N ∈ N \ {0}. If κ′′ =
κ

Ψ(3RN)
and A has κ′′-separated eigenvalues, then

there exists a map Φ ∈ C0(2Td, SL(2,R)) which is trivial with respect to LA (the decomposition into eigenspaces of
A), and a constant C0 ≥ 1 such that,

1. For all r′ > 0,

|Φ±1|r′ ≤ 2C0e
2πΛ( N

2 )r′( 1

κ′′

)6

2. If Ã is defined by the following condition: for all θ ∈ 2Td,

∂ωΦ(θ) = AΦ(θ) − Φ(θ)Ã

(note that Ã actually does not depend on θ), then ‖Ã−A‖ ≤ πN and Ã has BRRNω (κ′′) spectrum.

3. For any function G ∈ C0(Td, sl(2,R)), we have ΦGΦ−1 ∈ C0(Td, sl(2,R)).

4. If Ã 6= A then ‖Ã‖ ≤ 1
2κ

′′.

Proof. Let m given by Lemma 6.4 with α the imaginary part of an eigenvalue of matrix A. If the eigenvalues of A
are in R, then m = 0 and Φ ≡ I.

Otherwise, let L1 be the invariant subspace associated to iα, L2 associated to −iα and let for all θ ∈ 2Td,

Φ(θ) = e2iπ〈m,θ〉PLA

L1
+ e−2iπ〈m,θ〉PLA

L2

For all θ, since the eigenvalues of Φ(θ) are complex conjugate, we have Φ(θ) ∈ SL(2,R), and from Lemma
6.4, Ã has BRRNω (κ′′) spectrum (since the eigenvalues of Ã are ±iα̃ obtained from lemma 6.4 where ±iα are the
eigenvalues of A). Moreover, the spectrum of Ã−A is {±2iπ〈m,ω〉} and |2iπ〈m,ω〉| ≤ πN (remind that |m| ≤ 1

2N ,
and that we supposed |ω| ≤ 1) whence 2. Moreover, because |m| ≤ 1

2N , and from Lemma 3.2,

|Φ|r′ ≤ (‖PL1‖ + ‖PL2‖)e2πΛ( N
2 )r′

≤ 2C0

( 1

κ′′

)6
e2πΛ( N

2 )r′

whence 1. The property 3 follows from the triviality of Φ (see the remark 3.5).

For the estimate in 4, notice that if A 6= Ã, that is to say if the spectrum of A was resonant, Φ 6≡ I conjugates A
to Ã. In particular, from lemma 6.4, the two eigenvalues iα̃ and −iα̃ of Ã (which are the eigenvalues of A translated
by 2iπ〈m,ω〉) satisfy |iα̃− (−iα̃)| ≤ κ′′ and then ‖Ã‖ ≤ 1

2κ
′′.

Definition 7.2. A function Φ satisfying conclusions of lemma 7.1 will be called renormalization of A of order
R,N . Here the resonance is removed up to order RN whereas the estimate involves an exponential of Λ(N2 ) and
Ψ(3RN).

8 Cohomological equation

In order to define a change of variables which will reduce the norm of the perturbation, we will first solve a linearized
equation, which has the form:

∀θ ∈ T
d, ∂ωX̃(θ) = [Ã, X̃(θ)] + F̃N − ˆ̃F (0), ˆ̃X(0) = 0 (8.1)

Here Ã ∈ sl(2,R), therefore either it has real non zero eigenvalues, or it is the zero matrix, or it is nilpotent, or
it has two eigenvalues iα,−iα, α ∈ R∗. Only in the latter case can Ã be resonant.

Assume the eigenvalues are different (so, either they are distinct reals or they are complex conjugates). Let
L1, L2 be the eigenspaces. For all L,L′ ∈ {L1, L2}, define the following operator:

AL,L′ : gl(2,R) → gl(2,R),M 7→ AL,L′M := ÃPLM −MPL′Ã

It will be necessary to compute the spectrum of every AL,L′ to estimate the solution of the linearized equation.
This is done in the following lemma:
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Lemma 8.1. Let L,L′ ∈ {L1, L2}, β the eigenvalue associated to L and γ the eigenvalue associated to L′. The
spectrum of AL,L′ is {β,−γ, β − γ, 0}. Moreover, the operator AL,L′ is diagonalizable.

Proof. Let P ∈ GL(2,C) such that P−1ÃP =

(

β̄ 0
0 γ̄

)

. Notice that {β, γ} ⊂ {β̄, γ̄}. Denote by Ei,j the

elementary matrix which has 1 as the coefficient situated on line i and column j, and 0 elsewhere.
Case 1: L 6= L′. Here {β, γ} = {β̄, γ̄}. Without loss of generality, assume β = β̄, γ = γ̄, that is to say,

L = L1, L
′ = L2. Then PL = PE1,1P

−1 and PL′ = PE2,2P
−1. Thus PE1,1P

−1 is an eigenvector associated to β̄
and PE2,2P

−1 is an eigenvector associated to −γ̄. The matrix PE1,2P
−1 is an eigenvector associated to β̄− γ̄ and

PE2,1P
−1is in the kernel.

Case 2: L = L′ = L1. Here β = γ = β̄. Then PE1,1P
−1 and PE2,2P

−1 are in the kernel and PE1,2P
−1, PE2,1P

−1

are eigenvectors associated to β̄ and −β̄ respectively.

Case 3: L = L′ = L2. This case is very similar to the previous one.

Now assume 0 is the only eigenvalue of Ã. If Ã is the zero matrix, then adÃ = 0. Otherwise Ã is nilpotent and
in this case one has the following lemma:

Lemma 8.2. Assume Ã is nilpotent. Then the operator adÃ has rank 2 and norm less than 1, and is nilpotent of
order 3.

Proof. Let P be such that P−1ÃP =

(

0 1
0 0

)

. Then PE12P
−1 and P (E11 +E22)P−1 are in the kernel. Moreover

adÃPE11P
−1 = −PE12P

−1 and adÃPE21P
−1 = P (E11 − E22)P−1, therefore adÃ has norm less than 1.

This also implies that ad2
Ã

(PE1,1P
−1) = 0 and ad3

Ã
(PE2,1P

−1) = 0. Finally adÃ is nilpotent of order 3.

Proposition 8.3. Let N ∈ N, κ′ ∈]0, κ], r ∈]0, r0[. Let Ã ∈ sl(2,R) with BRNω (κ′) spectrum. Let F̃ ∈ Ur(T
d, sl(2,R)).

Then there exists a solution X̃ ∈ Ur(T
d, sl(2,R)) of the equation

∀θ ∈ T
d, ∂ωX̃(θ) = [Ã, X̃(θ)] + F̃N − ˆ̃F (0), ˆ̃X(0) = 0 (8.2)

The truncation of X̃ at order N is unique.
Moreover,

1. if Ã is diagonalizable with distinct eigenvalues, let LÃ = {L1, L2} (the decomposition into eigenspaces of Ã)
and Φ = PL

L1
e2iπ〈m,·〉 + PL

L2
e−2iπ〈m,·〉 for some m ∈ 1

2Z
d, |m| ≤ N , such that for i ∈ {1, 2}, ‖PL

Li
‖ ≤ 2C0

κ′6 ,
then

|Φ−1X̃Φ|r ≤ 4C2
0

( 1

κ′

)13
Ψ(N)|Φ−1F̃Φ|r

2. if Ã is nilpotent,

|X̃|r ≤
3

κ3
Ψ(N)3|F̃ |r

3. if adÃ = 0, then

|X̃|r ≤
1

κ
Ψ(N)|F̃ |r

Proof. About existence, uniqueness and continuity of X̃ ∈ sl(2,R) on Td, the proof is the same as [11], proposition
3.2. We now have to show the estimate which also follows from [11] and we will adapt the proof to ultra-differentiable
setting.

Case 1: Ã has two κ′-separated eigenvalues. Let Φ = PL1e
2iπ〈m1,.〉 + PL2e

−2iπ〈m1,.〉 where L1 and L2 are the
eigenspaces of Ã, and |m1| ≤ N . For all L,L′ ∈ LÃ, let the linear operator AL,L′ : gl(2,R) → gl(2,R),M 7→
AL,L′M := ÃPLM −MPL′Ã. We decompose (8.2) into blocks, and we get for all L,L′ ∈ LÃ,

∂ω(PLX̃(θ)PL′) = AL,L′PLX̃(θ)PL′ + PL(F̃N − ˆ̃F (0))PL′
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Then for all m ∈ 1
2Z

d, 0 < |m| ≤ N ,

2iπ〈m,ω〉(PL
ˆ̃X(m)PL′) = AL,L′(PL

ˆ̃X(m)PL′) + PL
ˆ̃F (m)PL′

Let

AD := (2iπ〈m,ω〉I − AL,L′)

By Lemma 8.1, σ(AL,L′) = {α − α′, α,−α′, 0;α ∈ σ(Ã|L), α′ ∈ σ(Ã|L′)}, therefore σ(AL,L′ − 2iπ〈m,ω〉I) =

{α−α′ −2iπ〈m,ω〉, α−2iπ〈m,ω〉,−α′ −2iπ〈m,ω〉,−2iπ〈m,ω〉;α ∈ σ(Ã|L), α′ ∈ σ(Ã|L′)}. Moreover AL,L′ is diag-

onalizable, therefore AD as well, with non zero eigenvalues, and ‖A−1
D ‖ = max{|β|, β ∈ σ(A−1

D )} = max{|γ|−1, γ ∈
σ(AD)}.

Since ∀α ∈ σ(Ã|L), α′ ∈ σ(Ã|L′), |α− α′ − 2iπ〈m,ω〉| ≥ κ′

Ψ(m) (for m ∈ Zd if L = L′, m ∈ 1
2Z

d if L 6= L′), then

‖(2iπ〈m,ω〉 − AL,L′)−1‖ ≤
(Ψ(m)

κ′

)

Finally, for all 0 < |m| ≤ N ,

‖PL
ˆ̃X(m)PL′‖ = ‖(2iπ〈m,ω〉 − AL,L′)−1PL

ˆ̃F (m)PL′‖ ≤
(Ψ(m)

κ′

)

‖PL
ˆ̃F (m)PL′‖

Denoting by mL the vector appearing in Φ along the projection onto L, this estimate implies:

|PLX̃e
2iπ〈mL−mL′ ,.〉PL′ |r′ =

∑

|m−mL+mL′ |≤N

‖PL
ˆ̃X(m−mL +mL′)PL′‖e2πΛ(m)r′

≤
∑

|m−mL+mL′ |≤N

‖PL
ˆ̃F (m−mL +mL′)PL′‖e2πΛ(m)r′ Ψ(|m−mL +mL′ |)

κ′

≤
Ψ(N)

κ′
|PLF̃ e

2iπ〈mL−mL′ ,.〉PL′ |r′ (8.3)

We finally estimate |Φ−1X̃Φ|r′ .

|Φ−1X̃Φ|r′ = |
∑

L,L′∈L

PLΦ−1X̃ΦPL′ |r′ = |
∑

L,L′∈L

PLX̃e
2iπ〈mL−mL′ ,.〉PL′ |r′

therefore, from (8.3),

|Φ−1X̃Φ|r′ ≤
Ψ(N)

κ′

∑

L,L′∈L

|PLF̃ e
2iπ〈mL−mL′ ,.〉PL′ |r =

Ψ(N)

κ′

∑

L,L′∈L

|PLΦ−1F̃ΦPL′ |r

therefore, since ‖PL‖ ≤ 2C0

κ
′6 , we get the result

|Φ−1X̃Φ|r′ ≤ 4C2
0

( 1

κ′

)13
Ψ(N)|Φ−1F̃Φ|r.

Case 2: Ã is nilpotent. One has to estimate the inverse of the operator 2iπ〈m,ω〉I − adÃ. By Lemma 8.2,

(2iπ〈m,ω〉I − adÃ)−1 = (2iπ〈m,ω〉)−1[I + (2iπ〈m,ω〉)−1adÃ

+ (2iπ〈m,ω〉)−2ad2
Ã

]
(8.4)

Therefore

‖(2iπ〈m,ω〉I − adÃ)−1‖ ≤ 3|2iπ〈m,ω〉|−3

Finally, for all 0 < |m| ≤ N ,
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‖ ˆ̃X(m)‖ = ‖(2iπ〈m,ω〉 − AL,L′)−1 ˆ̃F (m)‖ ≤ 3
(Ψ(m)

κ

)3
‖ ˆ̃F (m)‖

Thus,

|X̃|r′ ≤
3

κ3
Ψ(N)3|F̃ |r

Case 3: The operator to invert is just 2iπ〈m,ω〉I, which makes the estimate much simpler.

9 Inductive lemma without renormalization

Before stating the inductive lemma, we will need this next result which will allow us to iterate the inductive lemma
without needing a new renormalization map at each step.

Lemma 9.1. Let κ′ ∈]0, 1[, F̃ ∈ sl(2,R), ε̃ = ‖F̃‖, Ñ ∈ N, Ã ∈ sl(2,R) with BRÑω (κ′) spectrum.
If

ε̃ ≤
( κ′

32(1 + ‖Ã‖)

)2 1

Ψ(Ñ)2
,

then Ã+ F̃ has BRÑω (3κ′

4 ) spectrum.

Proof. If α̃ ∈ σ(Ã+ F̃ ), there exists α ∈ σ(Ã) such that |α− α̃| ≤ 4(‖Ã‖ + 1)ε̃
1
2 (see [11], lemma 4.1). Since Ã has

BRÑω (κ′) spectrum, for all α, α′ ∈ σ(Ã+ F̃ ), for all m ∈ 1
2Z

d, 0 < |m| ≤ Ñ ,

|α− α′ − 2iπ〈m,ω〉| ≥
κ′

Ψ(m)
− 8(‖Ã‖ + 1)ε̃

1
2

We have to check that 8(‖Ã‖ + 1)ε̃
1
2 ≤ κ′

4Ψ(m) , which is satisfied by assumption.

Lemma 9.2. Let N ≥ 1. If L = {L1, L2} is a decomposition of R2 into supplementary subspaces, and Φ is trivial
with respect to L of order N , then for all 0 < r′ < r and all G ∈ Ur(T

d, sl(2,R)),

|Φ−1(G−G3N )Φ|r′ ≤ e−2πΛ(N)(r−r′)|Φ−1GΦ|r

Proof. Write Φ = PL
L1
e2iπ〈m1,·〉 + PL

L2
e2iπ〈m1,·〉, m1 ∈ 1

2Z
d, then

|Φ−1(G−G3N )Φ|r′ = |
∑

L,L′∈L

PL
L (G−G3N )e2iπ〈mL−mL′ ,·〉PL

L′ |r′

=
∑

k∈Zd

‖
∑

L,L′

PL
L

̂(G−G3N )(k −mL +mL′)PL
L′‖e2πΛ(k)r′

=
∑

k∈Zd

‖
∑

L,L′

PL
L

̂(G−G3N )(k −mL +mL′)PL
L′‖e2πΛ(k)re2πΛ(k)(r′−r)

Now if |k| ≤ N , then for all L,L′ ∈ L, |k −mL + mL′ | ≤ 3N , and
∑

L,L′∈L P
L
L

̂(G−G3N )(k −mL +mL′)PL
L′ = 0,

therefore

|Φ−1(G−G3N )Φ|r′ ≤ e2πΛ(N)(r′−r)
∑

|k|>N

‖
∑

L,L′∈L

PL
L Ĝ(k −mL +mL′)PL

L′‖e2πΛ(k)r

≤ e2πΛ(N)(r′−r)|
∑

L,L′∈L

PL
LGe

2iπ〈mL−mL′ ,·〉PL
L′ |r = e2πΛ(N)(r′−r)|Φ−1GΦ|r

We can now state the first inductive lemma, which does not require a renormalization map.

Lemma 9.3. Let
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• ε̃ > 0, r̃ > 0, 0 < κ′ < 1, Ñ ∈ N∗, r̃′ < r̃,
• F̃ ∈ Ur̃(T

d, sl(2,R)), Ã ∈ sl(2,R).

If

1. Ã has BRÑω (κ′) spectrum,

2.

‖ ˆ̃F (0)‖ ≤ ε̃ ≤
( κ′

32(1 + ‖Ã‖)

)2 1

Ψ(Ñ)2

then there exist

• X ∈ Ur̃′(Td, sl(2,R)),
• A′ ∈ sl(2,R),

such that

1. A′ has BRÑω (3κ′

4 ) spectrum,

2. ‖A′ − Ã‖ ≤ ε̃,
If F ′ ∈ Ur̃′(Td, sl(2,R)) is defined by

∀θ ∈ T
d, ∂ωe

X(θ) = (Ã+ F̃ (θ))eX(θ) − eX(θ)(A′ + F ′(θ)), (9.1)

then we have the following estimates :

If Ã has two different eigenvalues, if Φ is of the form Φ = PL1e
2iπ〈m,·〉 + PL2e

−2iπ〈m,·〉 where L1, L2 are the
two eigenspaces of Ã, |m| ≤ Ñ and ‖PLi

‖ ≤ 2C0

κ
′6 ,

3.

|Φ−1XΦ|r̃′ ≤ 4C2
0

( 1

κ′

)13
Ψ(3Ñ)|Φ−1F̃Φ|r̃,

4.

|Φ−1F ′Φ|r̃′ ≤ 4C2
0e

|Φ−1XΦ|r̃′

( 1

κ′

)13
|Φ−1F̃Φ|r̃

[

e−2πΛ(Ñ)(r̃−r̃′)

+|Φ−1F̃Φ|r̃Ψ(3Ñ)(2e+ e|Φ−1XΦ|r̃′ )
]

.

If Ã is nilpotent:

5.

|X |r̃′ ≤
3

κ3
Ψ(3Ñ)3|F̃ |r̃,

6.

|F ′|r̃′ ≤
3

κ3
e|X|r̃′ |F̃ |r̃

[

e−2πΛ(Ñ)(r̃−r̃′)

+|F̃ |r̃Ψ(3Ñ)3(2e+ e|X|r̃′ )
]

.

If adÃ = 0:

7.

|X |r̃′ ≤
1

κ
Ψ(3Ñ)|F̃ |r̃,

8.

|F ′|r̃′ ≤
1

κ
e|X|r̃′ |F̃ |r̃

[

e−2πΛ(Ñ)(r̃−r̃′)

+|F̃ |r̃Ψ(3Ñ)(2e+ e|X|Λ,r̃′ )
]

.

In any case, there is the estimate
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9.
|∂ωX |r̃′ ≤ 2‖Ã‖ |X |r̃′ + |F̃ |r̃′ .

Proof. By assumption, Ã hasBRÑω (κ′) spectrum, so we apply Proposition 8.3 withN = 3Ñ . LetX ∈ Ur̃(T
d, sl(2,R))

a solution of
∀θ ∈ 2Td, ∂ωX(θ) = [Ã,X(θ)] + F̃ 3Ñ (θ) − ˆ̃F (0)

satisfying the conclusion of Proposition 8.3. This obviously implies the property 9.

Let A′ := Ã+ ˆ̃F (0). We have A′ ∈ sl(2,R) and ‖Ã−A′‖ = ‖ ˆ̃F (0)‖, and then property 2. With assumption (2)

we can apply lemma 9.1 to deduce that A′ has BRÑω (3κ′

4 ) spectrum, and then property 1.
If F ′ is defined in equation (9.1),

F ′ = e−X(F̃ − F̃ 3Ñ) + e−X F̃ (eX − Id) + (e−X − Id) ˆ̃F (0) − e−X
∑

k≥2

1

k!

k−1
∑

l=0

X l(F̃ 3Ñ − ˆ̃F (0))Xk−1−l (9.2)

• Case 1: Ã has two different eigenvalues : Let Φ be as required, then

|Φ−1F ′Φ|r̃′ ≤ e|Φ−1XΦ|r̃′ [|Φ−1(F̃ − F̃ 3Ñ )Φ|r̃′ + |Φ−1F̃Φ|r̃|Φ
−1XΦ|r̃′(2e+ e|Φ−1XΦ|r̃′ )]

From proposition 8.3, estimate 1,

|Φ−1XΦ|r̃′ ≤ |Φ−1XΦ|r̃ ≤ 4C2
0

( 1

κ′

)13
Ψ(3Ñ)|Φ−1F̃Φ|r̃

whence (3); and from lemma 9.2, since r̃′ < r̃,

|Φ−1(F̃ − F̃ 3Ñ )Φ|r̃′ ≤ e−2πΛ(Ñ)(r̃−r̃′)|Φ−1F̃Φ|r̃

which finally gives

|Φ−1F ′Φ|r̃′ ≤ e|Φ−1XΦ|r̃′ [e−2πΛ(Ñ)(r̃−r̃′)|Φ−1F̃Φ|r̃

+|Φ−1F̃Φ|r̃4C
2
0

( 1

κ′

)13
Ψ(3Ñ)|Φ−1F̃Φ|r̃(2e+ e|Φ−1XΦ|r̃′ )]

≤ 4C2
0e

|Φ−1XΦ|r̃′

( 1

κ′

)13
|Φ−1F̃Φ|r̃

[

e−2πΛ(Ñ)(r̃−r̃′) + |Φ−1F̃Φ|r̃Ψ(3Ñ)(2e+ e|Φ−1XΦ|r̃′ )
]

hence 4 holds.

• Case 2: Ã is nilpotent : (9.2) implies

|F ′|r̃′ ≤ e|X|r̃′ [|F̃ − F̃ 3Ñ |r̃′ + |F̃ |r̃|X |r̃′(2e+ e|X|r̃′ )]

From proposition 8.3, estimate 2,

|X |r̃′ ≤ |X |r̃ ≤
3

κ3
Ψ(3Ñ)3|F̃ |r̃

which is estimate 5. Moreover, from Lemma 9.2,

|F̃ − F̃ 3Ñ |r̃′ ≤ e−2πΛ(Ñ)(r̃−r̃′)|F̃ |r̃

Therefore, similarly to the previous case, we get

|F ′|r̃′ ≤
3

κ3
e|X|r̃′ |F̃ |r̃

[

e−2πΛ(Ñ)(r̃−r̃′)

+|F̃ |r̃Ψ(3Ñ)3(2e+ e|X|r̃′ )
]

which is estimate 6.

13



• Case 3: adÃ = 0 : From proposition 8.3, estimate 3

|X̃|r̃ ≤
1

κ
Ψ(3Ñ)|F̃ |r̃

which is estimate (7), and similarly to the two previous cases, we get the estimate (8):

|F ′|r̃′ ≤
1

κ
e|X|r̃′ |F̃ |r̃

[

e−2πΛ(Ñ)(r̃−r̃′)

+|F̃ |r̃Ψ(3Ñ)(2e+ e|X|r̃′ )
]

.

10 Inductive lemma with renormalization

The following Lemma is used to define the smallness assumption on ǫ0 mentioned in section 5. This smallness
assumption shall be sufficient for Lemmas 10.2 and 11.1.

Lemma 10.1. Let l = 56. There exists ε0 > 0 depending on C0, C′ κ, b0 and D5, such that, for all ε ∈]0, ε0], the
following inequalities hold for all 2 ≤ j ≤ l :
In lemma 10.2

1

2
κε

1
1728 + ε

845
864 ≤

3

4
κε

1
1728 (10.1)

4C2
0

κ13
ε−13ζε−3ζε1−2ζ ≤ ε

7
8 (10.2)

8C2
0ε

1−2ζ− 1
96 (ε100δ + 3ε1−6ζ) ≤ ε

3
2 −4ζ− 1

96 (10.3)

In lemma 11.1

ε1−576ζ ≤ (2C0)−96
( κ

32(ε− ζ

2 + 1)

)576
(10.4)

ε
5
4 − 1

48 ≤
(

3
4
κ
C0
εζ

32(1 + (1 + π)ε− ζ
2 + ε

23
24 )

)2
ε2ζ (10.5)

ε( 5
4 )j− 1

48 ≤
( (3

4 )j κ
C0
εζ

32(1 + ε
23
24 + (1 + π)ε− ζ

2 +
∑j−1
i=1 ε

( 5
4 )i− 1

96 )

)2
ε2ζ (10.6)

256C2
0ε

−14ζ
( 1

(3
4 )j−1 κ

C0

)13
ε( 5

4 )j−1

(ε
50δ

l + ε( 5
4 )j−1

) ≤ ε( 5
4 )j

(10.7)

ε
23
24 + πε− ζ

2 +

l
∑

i=1

ε( 5
4 )i− 1

48 ≤ ε−ζ (10.8)

1

2
κεζ + 2ε

5
4 − 1

48 ≤ κεζ (10.9)

ε− ζ

2 + ε
23
24 + πε−ζ ≤ ε−2ζ (10.10)

4ε−2ζ+ 59
48 + 2ε

5
4 − 1

48 ≤ ε (10.11)

2ε
1
2 + 2ε

7
8 ≤ ε

1
4 (10.12)
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Proof. Equations in lemma 10.2

Equation (10.1) holds for

ε ≤ (
1

4
κ)

1728
2123 .

Equation (10.2) holds for

ε ≤
(4C2

0

κ13

)− 96
11 .

Equation (10.3) holds if

8C2
0ε

427
432 (ε100δ + 3ε

287
288 ) ≤ ε

1285
864 ⇔ 8C2

0 (ε100δ + 3ε
287
288 ) ≤ ε

431
864

therefore, if we have
{

8C2
0ε

100δ ≤ 1
2ε

431
864

24C2
0ε

287
288 ≤ 1

2ε
431
864

which is satisfied if
ε ≤ (48C2

0 )− 432
215

then inequality (10.3) holds.
Equations in lemma 11.1

Equation (10.4) holds if

ε
1

1152 + ε
1

864 ≤ (2C0)− 1
6
κ

32

which is satisfied if
{

ε
1

1152 ≤ κ
64 (2C0)− 1

6

ε
1

864 ≤ κ
64 (2C0)− 1

6
⇔

{

ε ≤ ( κ64 )1152(2C0)−192

ε ≤ ( κ64 )864(2C0)−144

Equation (10.5) is satisfied if

ε
5
4 − 1

48 −4ζ(1 + ε
23
24 + (1 + π)ε− ζ

2 )2 ≤ (
3κ

128C0
)2.

For ε ≤ 1, we have

1 + ε
23
24 + (1 + π)ε− ζ

2 ≤ 4πε− ζ
2

then we need

16π2ε
5
4 − 1

48 −5ζ ≤ (
3κ

128C0
)2

which is satisfied if

ε ≤ (
3κ

512πC0
)

2119
1728

Equation (10.6) is satisfied if

ε( 5
4 )j−1− 1

96 −4ζ(1 + ε
23
24 + (1 + π)ε− ζ

2 + 2ε
5
4 − 1

48 )2 ≤ (
3

4
)2j(

κ

32C0
)2.

If ε ≤ 1, then

1 + ε
23
24 + (1 + π)ε− ζ

2 + 2ε
5
4 − 1

96 ≤ 4πε− ζ

2

then it’s enough to have

16π2ε
5
4 − 1

48 −4ζ−ζ ≤ (
3

4
)2·104(

κ

32C0
)2

which is satisfied if

ε ≤
(

(
3

4
)208(

κ

128πC0
)2)

)
3456
2119

Equation (10.7) holds if

256C2
0(

4

3
)13(j−1)(

C0

κ
)13(ε

50δ
l + ε( 5

4 )j−1

) ≤ ε14ζ+ 1
4 ( 5

4 )j−1

.
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We will first show that, for all j ∈ J2, lK, and for ε small enough,

ε
50δ

l + ε( 5
4 )j−1

≤ ε
1
3 ( 5

4 )j−1

.

Since l = 56, this condition is satisfied if for all j ∈ J2, lK if
{

2 ≤ ε
1
3 ( 5

4 )j−1− 50δ
l

2 ≤ ε− 1
3 ( 5

4 )j−1

which holds if

{

ε ≤ 2
1

1
2

( 5
4

)55
−

50δ
56

ε ≤ 2− 12
25

then equation (10.7) is satisfied if

256C2
0(

4

3
)13(j−1)(

C0

κ
)13 ≤ ε14ζ− 1

12 ( 5
4 )j−1

⇔ ε ≤
(

256C15
0 (

4

3
)13(j−1)(

1

κ
)13

)

1

14ζ−
1

12
( 5

4
)j−1

.

Now, as C0 ≥ 1 and 0 < κ < 1, since ε ≤ 1,

(24C15
0

κ13

)

1

5ζ−
1

12
( 5

4
)j−1

≥
(24C15

0

κ13

)

1

14ζ−
1

12
( 5

4
) =

(24C15
0

κ13

)− 864
83

and

(
4

3
)

13(j−1)

14ζ−
1

12
( 5

4
)j−1

≥ (
4

3
)

13·4

14ζ−
1

12
( 5

4
)4

= (
4

3
)− 1437696

5401

Finally, equation (10.7) is satisfied with

ε ≤
(24C15

0

κ13

)− 1728
178 (

4

3
)− 1437696

5545

Equation (10.8) is satisfied if

ε
23
25 + πε− ζ

2 + 2ε
5
4 − 1

48 ≤ ε−ζ .

So if we have










ε
23
24 ≤ 1

10ε
−ζ

πε− ζ

2 ≤ 4
5ε

−ζ

2ε
59
48 ≤ 1

10ε
−ζ

⇔







ε ≤ ( 1
10 )

1728
1628

ε ≤ (4π
5 )3456

ε ≤ ( 1
20 )

1728
1837

then equation (10.8) holds.
Equation (10.9) holds for

ε ≤
(κ

4

)
1728
2141 .

Equation (10.10) holds if







ε− ζ

2 ≤ 1
3ε

−2ζ

ε
23
24 ≤ 1

3ε
−2ζ

πε−ζ ≤ 1
3ε

−2ζ

⇔







ε ≤ (1
3 )1152

ε ≤ (1
3 )

864
829

ε ≤ ( 1
3π )1728

Equation (10.11) holds if

{

4ε
1061
864 ≤ 1

2ε

2ε
59
48 ≤ 1

2ε
⇔

{

ε ≤ (1
8 )

864
197

ε ≤ (1
4 )

48
11

and then equation (10.11) holds.
Since, for ε ≤ 1 we have ε

7
8 ≤ ε

1
2 , equation (10.12) holds if

4ε
1
2 ≤ ε

1
4

that’s it to say, if

ε ≤
1

256
.

Now define ε0 in order to satisfy conditions (10.1) to (10.12).
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Lemma 10.2 (Inductive lemma with renormalization). Let

• A ∈ sl(2,R),
• r > 0,
• Ā, F̄ ∈ Ur(T

d, sl(2,R)), ψ ∈ Ur(2T
d, SL(2,R)),

• |F̄ |r = ε,
•

N = Λ−1
(50| log ε|

πr

)

•

R =
1

3N
Ψ−1(ε−ζ)

•

r′ = r −
50δ| log ε|

πΛ(RN)

Assume r′ > 0. Let κ′′ =
κ

Ψ(3RN)
= κεζ . Suppose that ε ≤ ε0 which was defined in Lemma 10.2 and

1.

ε ≤ (2C0)−96
( κ′′

32(‖A‖ + 1)

)576

2. Ā is reducible to A by ψ,

3. ‖A‖ ≤ ε− ζ

2 ,

4. for all G ∈ C0(Td, sl(2,R)), ψ−1Gψ ∈ C0(Td, sl(2,R)),

5. |ψ±1|r ≤ ε−ζ ,

then there exist

• Z ′ ∈ Ur′(Td, SL(2,R)),
• Ā′, F̄ ′ ∈ Ur′(Td, sl(2,R)),
• ψ′ ∈ Ur(2T

d, SL(2,R)),
• A′ ∈ sl(2,R)

satisfying the following properties :

1. Ā′ is reducible by ψ′ to A′,

2. for all G ∈ C0(Td, sl(2,R)), ψ′−1Gψ′ ∈ C0(Td, sl(2,R)),

3. A′ has BRRNω ( 3
4C0

κ′′) spectrum, where C0 was defined in Lemma 7.1,

4.
∂ωZ

′ = (Ā+ F̄ )Z ′ − Z ′(Ā′ + F̄ ′)

5. ‖A′‖ ≤ ‖A‖ + ε
23
24 + πN ,

6.
|Z ′±1 − Id|r′ ≤ ε

8
9

7. for all s′ > 0,

|ψ′−1ψ|s′ ≤ 2C0

( 1

κ′′

)6
e2πΛ( N

2 )s′

|ψ−1ψ′|s′ ≤ 2C0

( 1

κ′′

)6
e2πΛ( N

2 )s′

,

8. |ψ′±1|r ≤ ε−ζ− 1
96 e2πΛ( N

2 )r,

9. |ψ−1F̄ ′ψ|r′ ≤ ε
5
4 .
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10. If moreover the spectrum of A is not BRRNω (κ′′), then ‖A′‖ ≤ 3
4κ

′′,

11. If the spectrum of A is BRRNω (κ′′), we have Φ ≡ I, then ψ′ = ψ and Ã = A, and then

|ψ−1Z ′±1ψ|r′ ≤ eε
7
8 ,

|∂ω(ψ−1Z ′±1ψ)|r′ ≤ ε
1
2 ,

Proof. Algebraic aspects

If A has a double eigenvalue or κ′′-close eigenvalues, let Φ be defined on 2Td as constantly equal to I and let
Ã = A. Otherwise, let Φ a renormalization of A of order R,N given by lemma 7.1. Let Ã ∈ sl(2,R) such that

∀θ ∈ 2Td, ∂ωΦ(θ) = AΦ(θ) − Φ(θ)Ã

so ||A− Ã|| ≤ πN and Ã has BRRNω (κ′′) spectrum. Notice that in this case, Ã is not nilpotent. Let ψ′ = ψΦ, and

F̃ := ψ′−1F̄ψ′

Moreover, Φ is trivial with respect to LA :

Φ = PLA

L1
e2iπ〈m,·〉 + PLA

L2
e−2iπ〈m,·〉 (10.13)

with |m| ≤ N and ||PLi
|| ≤ C0

κ
′′6 . Since Φ is trivial with respect to LA, for all s′ ≥ 0, Lemma 7.1 implies

|Φ±1|s′ ≤ 2C0

( 1

κ′′

)6

e2πΛ( N
2 )s′

(10.14)

which gives property 7.
Let ψ′ = ψΦ. Let G ∈ C0(Td, sl(2,R)), then by triviality of Φ, Φ−1GΦ ∈ C0(Td, sl(2,R)), and by the assumption

4, ψ
′−1Gψ′ ∈ C0(Td, sl(2,R)). Therefore the property 2 on ψ′ holds.

Moreover,

‖ ˆ̃F (0)‖ ≤ |F̃ |0 ≤ |Φ|0|Φ−1|0|ψ|0|ψ−1|0|F̄ |0

Therefore by (10.14) and by assumption 5,

‖ ˆ̃F (0)‖ ≤ ε1−2ζ(2C0)2
( 1

κ′′

)12
.

Since ε ≤ (2C0)−96
(

κ′′

32(‖A‖+1)

)576
≤ (2C0)−96κ′′576, we get

‖ ˆ̃F (0)‖ ≤ ε1−2ζ− 1
48 .

Since Ã has a BRRNω (κ′′) spectrum, we want to apply lemma 9.3 with

ε̃ = ε1−2ζ− 1
48 , r̃ = r, r̃′ = r′, κ′ =

κ′′

C0
, Ñ = RN,

then we need

ε1−2ζ− 1
48 ≤

(

1

C0
·

κ′′

32(1 + ‖Ã‖)
εζ

)2

or sufficiently

ε1−2ζ− 1
48 ≤

(

1

C0
·

κ′′

32(1 + ‖A‖ + πN)
εζ

)2

which holds true if

ε1−2ζ− 1
48 ≤

(

1

C0
·

κ′′

32(2 + π)
ε2ζ

)2

(where we have used the assumption that Ψ ≥ id), which holds true by assumption 1. Therefore we can apply
lemma 9.3 to get the maps X ∈ Ur′(Td, sl(2,R)), F ′ ∈ Ur′(Td, sl(2,R)), and a matrix A′ ∈ sl(2,R) such that

18



• A′ has BRRNω (3κ′′

4C0
) spectrum,

• ‖A′ − Ã‖ ≤ ε̃ ≤ ε
23
24 (because 1 − 2ζ − 1

48 ≥ 23
24 ), which implies that

‖A′ −A‖ ≤ ‖A′ − Ã‖ + ‖A− Ã‖ ≤ ε
23
24 + πN

and thus
‖A′‖ ≤ ‖A‖ + ε

23
24 + πN

which is property 5,
• ∂ωe

X = (Ã+ F̃ )eX − eX(A′ + F ′).
Let F̄ ′ = ψ′F ′(ψ′)−1 ∈ C0(Td, sl(2,R)) and Ā′ ∈ Ur(2T

d, sl(2,R)) such that

∂ωψ
′ = Ā′ψ′ − ψ′A′

(which means that Ā′ is reducible to A′, hence Property 1 with ψ′ := ψΦ). Then the function Z ′ :=
ψ′eX(ψ′)−1 ∈ C0(Td, SL(2,R)) is solution of

∂ωZ
′ = (Ā+ F̄ )Z ′ − Z ′(Ā′ + F̄ ′)

hence Property 4. This conjugation also implies that Ā′ ∈ C0(Td, sl(2,R)).
• if Ã has two different eigenvalues, since Φ is trivial with respect to LA which is identical to LÃ, by Lemma

9.3 and the expression (10.13),

|ΦXΦ−1|r′ ≤
4C15

0

κ′′13
Ψ(3RN)|ΦF̃Φ−1|r

and

|ΦF ′Φ−1|r′ ≤
4C15

0

κ′′13
e|ΦXΦ−1|r′

(

|ΦF̃Φ−1|r
[

e−2πΛ(RN)(r−r′) + |ΦF̃Φ−1|rΨ(3RN)(2e+ e|ΦXΦ−1|r′ )
]

otherwise if Ã is nilpotent,

|X |r′ ≤
3

κ3
Ψ(3RN)3|F̃ |r

and

|F ′|r′ ≤
3

κ3
e|X|r′ |F̃ |r

[

e−2πΛ(RN)(r−r′)

+|F̃ |rΨ(3RN)3(2e+ e|X|r′ )
]

and if adÃ = 0,

|X |r′ ≤
1

κ
Ψ(3RN)|F̃ |r

and

|F ′|r′ ≤
1

κ
e|X|r′ |F̃ |r

[

e−2πΛ(RN)(r−r′)

+|F̃ |rΨ(3RN)(2e+ e|X|r′ )
]

.

Notice that in any case (since Φ ≡ I if Ã is nilpotent or adÃ = 0), we have

|ΦXΦ−1|r′ ≤
4C15

0

κ′′13
Ψ(3RN)3|ΦF̃Φ−1|r (10.15)

and

|ΦF ′Φ−1|r′ ≤
4C15

0

κ′′13
e|ΦXΦ−1|r′ |ΦF̃Φ−1|r

[

e−2πΛ(RN)(r−r′) + |ΦF̃Φ−1|rΨ(3RN)3(2e+ e|ΦXΦ−1|r′ )
]

(10.16)

19



Estimates

Estimate of Ψ′,Ψ
′−1, A′

With the assumption ε ≤ (2C0)−96
(

κ′′

‖A‖+1

)576
, we have

|Φ|r ≤ ε− 1
96 e2πΛ( N

2 )r

and similarly for Φ−1. Moreover since |ψ|r ≤ ε−ζ , we get property 8:

|ψ′|r = |ψΦ|r ≤ |ψ|r|Φ|r ≤ ε−ζ− 1
96 e2πΛ( N

2 )r

and similarly for ψ′−1. Notice that this inequality remains true if Φ ≡ id.

Notice that if Φ 6≡ I (that is to say if the spectrum of A is resonant), then from lemma 7.1 we get ‖Ã‖ ≤ 1
2κ

′′

and then for ε ≤ ε0 defined in lemma 10.1 (see equation (10.1)),

‖A′‖ ≤ ‖Ã‖ + ‖ ˆ̃F (0)‖

≤
1

2
κεζ + ε1−2ζ− 1

48

≤
1

2
κε

1
1728 + ε

845
864

≤
3

4
κε

1
1728 =

3

4
κ′′

and property 10 is satisfied.

Estimate of Z
′±1 − I, ψ−1(Z

′±1)ψ and its derivative

Since F̃ = (ψΦ)−1F̄ψΦ, then

|ΦF̃Φ−1|r = |ψ−1F̄ψ|r′ ≤ |F̄ |r′ε−2ζ = ε1−2ζ (10.17)

Recall the estimate (10.15):

|ΦXΦ−1|r′ ≤
4C15

0

κ′′13
Ψ(3RN)3|ΦF̃Φ−1|r (10.18)

therefore by (10.17), and for ε ≤ ε0 defined in lemma 10.1 ((see equation (10.2)),

|ΦXΦ−1|r′ ≤
4C15

0

κ13
ε−16ζε1−2ζ ≤ ε

7
8 (10.19)

then

e|ΦXΦ−1|r′ ≤ eε
7
8 ≤ 2

We now estimate |Z ′ − I|r′ = |ψΦ(eX − I)(ψΦ)−1|r′ . From (10.19),

|ΦeXΦ−1 − Id|r′ ≤ e|ΦXΦ−1|r′ ≤ eε
7
8

Then
|Z ′ − I|r′ = |ψΦeX(ψΦ)−1 − Id|r′ ≤ |ψ|r′ |ΦeXΦ−1 − Id|r′ |ψ−1|r′ ≤ eε

7
8 −2ζ

hence property 6 is satisfied. If Φ ≡ I, we have

ψ−1Z ′ψ = ψ−1ψΦeX(ψΦ)−1ψ = eX ,

therefore

|ψ−1Z ′ψ|r′ ≤ |eX |r′ ≤ eε
7
8
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which is the first part of the property 11. Now Lemma 9.3 also states that if Φ ≡ I (that is, Ã = A),

|∂ωX |r′ ≤ 2‖A‖ |X |r′ + |F̃ |r′

which implies that

|∂ωX |r′ ≤ 2‖A‖ε
7
8 + ε1−2ζ ≤ ε

7
8 (2‖A‖ + 1)

and by the assumption 1,
|∂ωX |r′ ≤ ε

4
5 .

Therefore,

|∂ω(ψ−1Z ′ψ)|r′ = |∂ω(X)eX |r′ ≤ eε
7
8 ε

4
5 ≤ ε

1
2

hence property 11.

Estimate of ψ−1F̄ ′ψ = ΦF ′Φ−1

From Equation (10.16),

|ΦF ′Φ−1|r′ ≤ 4C2
0e

|ΦXΦ−1|r′

(C0

κ′′

)13
|ΦF̃Φ−1|r

[

e−2πΛ(RN)(r−r′)

+|ΦF̃Φ−1|rΨ(3RN)3(2e+ e|ΦXΦ−1|r′ )
]

Moreover, by definition, we have Λ(RN) = 50δ| log ε|
π(r−r′) , thus

e−2πΛ(RN)(r−r′) = ε100δ

and then, because we assumed ε ≤ (2C0)−96
(

κ′′

‖A‖+1

)576
and Ψ(3RN) = ε−ζ,

|ΦF ′Φ−1|r′ ≤ 8C2
0ε

− 1
96 ε1−2ζ(ε100δ + 8Ψ(3RN)3ε1−2ζ).

Thus
|ΦF ′Φ−1|r′ ≤ 8C2

0ε
1−2ζ− 1

96 (ε100δ + ε1−6ζ) ≤ ε
3
2 .

Hence property 9 holds for ε ≤ ε0 as defined in lemma 10.1 (see equation (10.3)).

11 Inductive step

Let’s define the following functions which will be used for the complete iterative step :



































κ′′(ε) = κεζ

N(r, ε) = Λ−1
(50| log ε|

πr

)

R(r, ε) =
1

3N(r, ε)
Ψ−1(ε−ζ)

r′′(r, ε) = r −
50δ| log ε|

πΛ(R(r, ε)N(r, ε))

(P)

Note that these definitions match with lemma 10.2.

Lemma 11.1. Let

• A ∈ sl(2,R),
• r > 0,
• Ā, F̄ ∈ Ur(T

d, sl(2,R)), ψ ∈ Ur(2T
d, SL(2,R)),

• |F̄ |r = ε.

Suppose that
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1. ε ≤ ε0, where ε0 is defined in Lemma 10.1,

2. r′′ > 0,

3. Ā is reducible to A by ψ,

4. for all G ∈ C0(Td, sl(2,R)), ψ−1Gψ ∈ C0(Td, sl(2,R)),

5. |ψ±1|r ≤ ε−ζ ,

6. ‖A‖ ≤ ε− ζ
2 ,

then, there exist

• Z ′ ∈ Ur′′(Td, SL(2,R)),
• Ā′, F̄ ′ ∈ Ur′′(Td, sl(2,R)),
• ψ′ ∈ Ur(2T

d, SL(2,R)),
• A′ ∈ sl(2,R)

satisfying the following properties:

1. Ā′ is reducible to A′ by ψ′,

2. for all G ∈ C0(Td, sl(2,R)), ψ−1Gψ ∈ C0(Td, sl(2,R)),

3. |F̄ ′|r′′ ≤ ε2δ,

4. |ψ′±1|r′′ ≤ ε−2δζ ,

5. ‖A′‖ ≤ ‖A‖ + ε−ζ ≤ ε−(2δ) ζ
2 ,

6.
∂ωZ

′ = (Ā+ F̄ )Z ′ − Z ′(Ā′ + F̄ ′),

7.
|Z ′±1 − Id|r′′ ≤ ε

9
10 .

8. If moreover the spectrum of A was not BR
R(r,ε)N(r,ε)
ω (κ′′(ε)), we actually have ‖A′‖ ≤ κ′′(ε);

9. If the spectrum of A was BR
R(r,ε)N(r,ε)
ω (κ′′(ε)), we actually have ψ′ = ψ and then

|ψ−1Z ′±1ψ|r′′ ≤ (1 + 2ε)e2ε (11.1)

and
|∂ω(ψ−1Z ′±1ψ)|r′′ ≤ ε

1
4 .

Proof. Removing the resonances and first step

Let R = R(r, ε), N = N(r, ε), κ′′ = κ′′(r, ε), r′′ = r′′(r, ε). Since κ′′ = κεζ , ‖A‖ ≤ ε− ζ
2 and ε ≤ ε0 as defined in

Lemma 10.1 (see equation (10.4)),

ε1−576ζ ≤ (2C0)−96
( κ

32(‖A‖ + 1)

)576

therefore

ε ≤ (2C0)−96
( κ′′

32(‖A‖ + 1)

)576

and the assumption of lemma 10.2 is satisfied. We can apply lemma 10.2 to get:

• Z1 ∈ U r+r′′

2

(Td, SL(2,R)),

• ψ′ ∈ U r+r′′

2

(2Td, SL(2,R)),

• A1 ∈ sl(2,R),
• Ā1 ∈ U r+r′′

2

(Td, sl(2,R)),
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• and F1 = (ψ′)−1F̄1ψ
′, with F̄1 ∈ U r+r′′

2

(Td, sl(2,R))

such that

1. Ā1 is reducible to A1 by ψ′,

2. for all G ∈ C0(Td, sl(2,R)), ψ′−1Gψ′ ∈ C0(Td, sl(2,R)), which implies that F1 ∈ C0(Td, sl(2,R)),

3. A1 has BRRNω (3
4
κ′′

C0
) spectrum,

4.
∂ωZ1 = (Ā+ F̄ )Z1 − Z1(Ā1 + F̄1),

5.
‖A1‖ ≤ ‖A‖ + ε

23
24 + πN, (11.2)

6.
|Z±1

1 − Id|r′′ ≤ ε
8
9 , (11.3)

7. for all s′ > 0,

|ψ′−1ψ|s′ ≤ 2C0

( 1

κ′′

)6
e2πΛ( N

2 )s′

|ψ−1ψ′|s′ ≤ 2C0

( 1

κ′′

)6
e2πΛ( N

2 )s′

8. |ψ′±1|r′′ ≤ ε−ζ− 1
96 e2πΛ( N

2 )r,

9.
|ψ−1F̄1ψ|r′′ ≤ ε

5
4 ,

10. If the spectrum of A was not BRRNω (κ′′), ‖A1‖ ≤ 1
2κ

′′;

11. If the spectrum of A was BRRNω (κ′′), we actually have ψ′ = ψ and then

|ψ−1Z±1
1 ψ|r′′ ≤ eε

7
8

|∂ω(ψ−1Z±1
1 ψ)|r′′ ≤ ε

1
2 . (11.4)

Second step : iteration without resonances

We will now iterate lemma 9.3 a certain number of times, without renormalization.

Let l = E( log(100δ)

log( 4
3 )

) = 56 which satisfies

ε( 4
3 )l+1

≤ e−2πΛ(RN)(r−r′′) = ε100δ ≤ ε( 4
3 )l

.

Define for all j ≥ 0, the sequences ε′
j = ε( 5

4 )j

ε− 1
48 and r′

j = r+r′′

2 − j r−r′′

2l . Thus r′
0 = r+r′′

2 and r′
l = r′′ < r.

We want to iterate l− 1 times lemma 9.3, from j = 2, with

• ε̃ = ε′
j−1,

• r̃ = r′
j−2,

• r̃′ = r′
j−1,

• κ′ = (3
4 )j−1 κ′′

C0
,

• Ñ = RN ,
• F̃ = Fj−1,
• Ã = Aj−1,
• Φ = ψ−1ψ′,
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First iterate of lemma 9.3: From
|ψ−1F̄1ψ|0 ≤ ε

5
4

and

|ψ′−1ψ|0 ≤ 2C0

( 1

κ′′

)6
≤ ε− 1

96 , |ψ−1ψ′|0 ≤ 2C0

( 1

κ′′

)6
≤ ε− 1

96 ,

then
‖F̂1(0)‖ ≤ |ψ′−1ψ|0|ψ−1ψ′|0|ψ−1F̄1ψ|0 ≤ ε

5
4 − 1

48 .

As A1 has BRRNω (3
4
κ′′

C0
) spectrum, to apply lemma 9.3 we need

ε
5
4 − 1

48 ≤
( (3

4 )κ
′′

C0

32(1 + ‖A1‖)

)2 1

Ψ(RN)2

and since
‖A1‖ ≤ ‖A‖ + ε

23
24 + πN ≤ ε− ζ

2 + ε
23
24 + πε−ζ

(this last inequality comes from the fact that Ψ ≥ id, which implies that N = 1
3RΨ−1(ε−ζ) ≤ ε−ζ), this remains

true if

ε
5
4 − 1

48 ≤
( (3

4 )κ
′′

C0

32(1 + (π + 1)ε−ζ + ε
23
24 )

)2 1

Ψ(RN)2

which holds for ε ≤ ε0 as in lemma 10.1 (see equation (10.5)).

Iteration of lemma 9.3
If for some j ≥ 2

ε( 5
4 )j− 1

48 ≤
( (3

4 )j κ
′′

C0

32(1 + ε
23
24 + (1 + π)ε−ζ + 2ε

5
4 − 1

48 )

)2 1

Ψ(RN)2
,

which holds true for ε ≤ ε0 as in lemma 10.1 (see equation (10.6)), then

ε′
j ≤

( (3
4 )j κ

′′

C0

32(1 + ‖A1‖ +
∑j−1

i=1 εi)

)2 1

Ψ(RN)2
.

Let j ≥ 2 and assume that Aj−1 has BRRNω ((3
4 )j−1 κ′′

C0
) spectrum, Fj−1 ∈ Ur′

j−2
(Td, sl(2,R)), and

‖F̂j−1(0)‖ ≤ ε′
j−1; |Ψ−1Ψ′Fj−1Ψ

′−1Ψ|r′

j−2
≤ ε( 5

4 )j−1

.

We obtain via lemma 9.3 functions Fj , Xj ∈ Urj−1 (Td, sl(2,R)) and a matrix Aj ∈ sl(2,R) such that

1. Aj has BRRNω ((3
4 )j κ

′′

C0
) spectrum,

2. ‖Aj‖ ≤ ‖Aj−1‖ + ε′
j−1,

3.
∂ωe

Xj = (Aj−1 + Fj−1)eXj − eXj (Aj + Fj),

4. the following estimates hold:

• if Aj−1 has two different eigenvalues:

|ψ−1ψ′Xjψ
′−1ψ|r′

j−1
≤ 4C2

0

( 1

(3
4 )j−1 κ′′

C0

)13
Ψ(3RN)|ψ−1ψ′Fjψ

′−1ψ|r′

j−1
,

|ψ−1ψ′Fjψ
′−1ψ|r′

j−1
≤ 4C2

0

( 1

(3
4 )j−1 κ′′

C0

)13
e

|ψ−1ψ′Xj−1ψ
′−1ψ|r′

j−1 |ψ−1ψ′Fj−1ψ
′−1ψ|r′

j−2

[

e−2πΛ(RN)(r′

j−2−r′

j−1) + |ψ−1ψ′Fj−1ψ
′−1ψ|r′

j−2
Ψ(3RN)(2e+ e

|ψ−1ψ′Xj−1ψ
′−1ψ|r′

j−1 )
]

;
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• if Aj−1 is nilpotent:

|Xj |r′

j−1
≤

3

κ3
Ψ(3RN)3|Fj−1|r′

j−1
,

|Fj |r′

j−1
≤

3

κ3
e

|Xj−1|r′

j−1 |Fj−1|r′

j−2

[

e−2πΛ(RN)(r′

j−2−r′

j−1) + |Fj−1|r′

j−2
Ψ(3RN)3(2e+ e

|Xj−1|r′

j−1 )
]

.

• if adAj−1 = 0:

|Xj |r′

j−1
≤

1

κ
Ψ(3RN)|Fj−1|r′

j−1
,

|Fj |r′

j−1
≤

1

κ
e

|Xj−1|r′

j−1 |Fj−1|r′

j−2

[

e−2πΛ(RN)(r′

j−2−r′

j−1) + |Fj−1|r′

j−2
Ψ(3RN)(2e+ e

|Xj−1|r′

j−1 )
]

.

Notice that in any case we have

|ψ−1ψ′Xjψ
′−1ψ|r′

j−1
≤ 4C2

0

( 1

(3
4 )j−1 κ′′

C0

)13
Ψ(3RN)|ψ−1ψ′Fjψ

′−1ψ|r′

j−1
, (11.5)

|ψ−1ψ′Fjψ
′−1ψ|r′

j−1
≤ 4C2

0

( 1

(3
4 )j−1 κ′′

C0

)13
e

|ψ−1ψ′Xj−1ψ
′−1ψ|r′

j−1 |ψ−1ψ′Fj−1ψ
′−1ψ|r′

j−2

[

e−2πΛ(RN)(r′

j−2−r′

j−1) + 8|ψ−1ψ′Fj−1ψ
′−1ψ|r′

j−2
Ψ(3RN)

]

,

(11.6)

so we will use these estimates to iterate lemma 9.3.

Estimates ε ≤ (2C0)−96
(

κ′′

32(‖A‖+1)

)576

and |ψ−1ψ′Fj−1ψ
′−1ψ|rj−2 ≤ ε( 5

4 )j−1

give

e
|ψ−1ψ′Xj−1ψ

′−1ψ|r′

j−2 ≤ 2

Hence from (11.6)

|ψ−1ψ′Fjψ
′−1ψ|r′

j−1
≤ 64 · 4C2

0 Ψ(3RN)
( Ψ(3RN)

(3
4 )j−1 κ

C0

)13
|ψ−1ψ′Fj−1ψ

′−1ψ|r′

j−2

[

e−2πΛ(RN)(r′

j−2−r′

j−1)

+|ψ−1ψ′Fj−1ψ
′−1ψ|r′

j−2

]

≤ 256C2
0Ψ(3RN)14

( 1

(3
4 )j−1 κ

C0

)13
ε( 5

4 )j−1

(ε
50δ

l + ε( 5
4 )j−1

)

Since Ψ(3RN) = ε−ζ and ε ≤ ε0 defined in lemma 10.1 ((see equation (10.7)),

|ψ−1ψ′Fjψ
′−1ψ|r′

j−1
≤ ε( 5

4 )j

(11.7)

We will now estimate ‖F̂j(0)‖ to iterate lemma 9.3:

‖F̂j(0)‖ ≤ |Fj |0 = |(ψ′−1ψ)ψ−1ψ′Fjψ
′−1ψ(ψ−1ψ′)|0 ≤ |ψ−1ψ′|0|ψ′−1ψ|0|ψ−1ψ′Fjψ

′−1ψ|rj−1 ,

therefore
‖F̂j(0)‖ ≤ |ψ−1ψ′|0|ψ′−1ψ|0ε

( 5
4 )j

≤ ε( 5
4 )j

ε− 1
48 = ε′

j,

and we can iterate lemma 9.3, l − 1 times.
Equations (11.7) and (11.5) imply that

|ψ−1ψ′Xjψ
′−1ψ|rj−1 ≤ ε′

j (11.8)

and

e|ψ−1ψ′Xjψ
′−1ψ|rj−1 ≤ 2 .

Conclusion :
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Let Z = eX2 ...eXl+1 ∈ Ur′′(Td, SL(2,R)).
Let Z ′ = Z1ψ

′Zψ′−1, A′ = Al+1, F ′ = Fl+1, F̄ ′ = ψ′F ′ψ
′−1 (hence Property 2) and Ā′ such that

∂ωψ
′ = Ā′ψ′ − ψ′A′,

then
∂ωZ

′ = (Ā+ F̄ )Z ′ − Z ′(Ā′ + F̄ ′),

hence the properties 1 and 6 hold.

We have
∂ωZ = (A1 + F1)Z − Z(Al+1 + Fl+1)

and since for all j ≥ 2, we have

‖Aj‖ ≤ ‖Aj−1‖ + ε( 5
4 )j−1

ε− 1
48 ≤ ‖A1‖ +

j−1
∑

i=1

ε( 5
4 )i

ε− 1
48 = ‖A1‖ +

j−1
∑

i=1

ε′
i, (11.9)

then

‖A′‖ ≤ ‖A1‖ +
l

∑

i=1

εi ≤ ‖A‖ + ε
23
24 + πN +

l
∑

i=1

ε( 5
4 )i− 1

48 .

Remind that Ψ ≥ id implies

N ≤ ε− ζ

2

and then, since ‖A‖ ≤ ε
−ζ
2 ,

‖A′‖ ≤ ‖A‖ + ε−ζ ≤ 2ε−ζ ≤ ε−δζ

thus the property 5 holds if ε ≤ ε0 as defined in lemma 10.1 (see equation (10.8)).

Moreover,

|ψ−1ψ′Fl+1ψ
′−1ψ|r′

l
≤ ε( 5

4 )l+1

(11.10)

and since l = 56, one has

|ψ′Fl+1ψ
′−1|r′

l
≤ |ψ|r′

l
|ψ−1|r′

l
ε( 5

4 )l+1

≤ ε( 5
4 )57−2ζ ≤ ε2δ

thus the property 3 holds. In the case the spectrum of A was resonant, the function Φ used in lemma 10.2 is not
the identity and we have

‖A′‖ ≤ ‖A1‖ +
l

∑

i=1

ε′
i ≤

1

2
κ′′(r, ε) + 2ε′

1 ≤
1

2
κεζ + 2ε

5
4 − 1

48 ≤ κεζ = κ′′(r, ε)

since ε ≤ ε0 as defined in lemma 10.1 (see equation (10.9)), whence the property 8.

Estimates

Now we will show property 4 : |ψ′±1|r′′ ≤ ε−2δζ .

We know that |ψ′±1|r′′ ≤ ε−ζ− 1
96 e2πΛ( N

2 )r. But, by definition of Λ(N) = 50| log ε|
πr

,

e2πΛ( N
2 )r ≤ e2πΛ(N)r ≤ e100| log ε| = ε−100

therefore

|ψ′±1|r′′ ≤ ε−ζ− 1
96 −100 ≤ ε−2ζδ.

which is Property 4. Now we will show the property 3. One has

|F̄ ′|r′′ = |ψ′F ′ψ′−1|r′′ = |ψψ−1ψ′F ′ψ′−1ψψ−1|r′′ ≤ |ψ|r|ψ
−1|r|ψ

−1ψ′F ′ψ′−1ψ|r′′ ≤ ε−2ζε( 5
4 )l

≤ ε2δ
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where the last inequality uses equation (11.10), which gives property 3.

According to the estimate
|Z±1

1 − Id|r′′ ≤ ε
8
9

obtained in (11.3), we get

|Z ′ − Id|r′′ ≤ |Z1 − Id|r′

1
+ |Z1|r′

1
|ψ|r|ψ

−1|r

l+1
∑

j=2

|ψ−1ψ′Xjψ
′−1ψ|r′

j

≤ ε
8
9 + (ε

8
9 + 1)ε−2ζ

l+1
∑

j=2

|ψ−1ψ′Xjψ
′−1ψ|r′

j

Therefore, by the estimate (11.8) and by definition of l = E( log(100δ)
log( 7

6 )
),

|Z ′ − Id|r′′ ≤ ε
8
9 + (ε

8
9 + 1)2ε′

1ε
−2ζ ≤ ε

9
10

hence 7.

Proof of the property 9

We now have to estimate ψ−1Z ′ψ and its directional derivative in the case A has a BR
R(r,ε)N(r,ε)
ω (κ′′(ε))

spectrum. In this case Φ ≡ I and ψ = ψ′, therefore ψ−1Z ′ψ = ψ−1Z1ψZ. Therefore

|ψ−1Z ′ψ|r′′ ≤ |ψ−1Z1ψ|r′′ |Z|r′′ ≤ (1 + 2ε)|Z|r′′ .

(where the last inequality comes from (11.3)). Moreover,

|Z|r′′ = |Πl+1
k=2e

Xk |r′′ .

Now for all k ∈ J2, lK, we have seen in (11.8) that |Xk|r′′ ≤ ε′
k.

Therefore

|Z|r′′ ≤ |Πl+1
k=2e

Xk |r′′ ≤ e
∑

l+1

k=2
ε′

k ≤ e2ε

and finally,
|ψ−1Z ′ψ|r′′ ≤ (1 + 2ε)e2ε.

The estimate of ψ−1Z ′−1ψ is obtained in a similar way. This gives the property (11.1).
Moreover,

|∂ω(ψ−1Z ′ψ)|r′′ ≤ |∂ω(ψ−1Z1ψ)Z|r′′ + |ψ−1Z1ψ∂ω(Z)|r′′ ≤ ε
1
2 |Z|r′′ + (1 + 2ε)|∂ω(Z)|r′′

where the last inequality comes from (11.4). Now

|∂ω(Z)|r′′ ≤

l+1
∑

k=2

|∂ωXk|r′′

l+1
∏

j=2

e|Xj|r′′ .

For all k ∈ J2, l+ 1K, by construction of Xk,

|∂ωXk|r′′ ≤ 2‖Ak‖|Xk|r′′ + |Fk|r′′ ≤ 2‖Ak‖|Xk|r′′ + ε( 5
4 )k− 1

48 .

Now for all k ∈ J2, l + 1K, by the estimate (11.9), the estimate (11.2) and condition 3 of this lemma, for ε ≤ ε0

given by lemma 10.1 (see equation (10.10)),

‖Ak‖ ≤ ε− ζ

2 + ε
23
24 + πε−ζ ≤ ε−2ζ

therefore for ε ≤ ε0 given by lemma 10.1 (see equation (10.11)),
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l=1
∑

k=2

|∂ωXk|r′′ ≤ 2
l+1
∑

k=2

‖Ak‖|Xk|r′′ +
l+1
∑

k=2

|Fk|r′′

≤ 2

l+1
∑

k=2

ε−2ζε′
k +

l+1
∑

k=2

ε′
k

≤ ε

and finally, for ε ≤ ε0 like in lemma 10.1 (see equation (10.12)),

|∂ω(ψ−1Z ′ψ)|r′′ ≤ 2ε
1
2 + 2ε

7
8 ≤ ε

1
4 .

The estimate of ∂ω(ψ−1Z
′−1ψ) is similar, which gives property 9.

12 Almost reducibility

Here we complete the proof of the main theorem.

Theorem 12.1. Let r0 > 0, A ∈ sl(2,R) and F ∈ Ur0(Td, sl(2,R)). Then, if

|F |r ≤ ε0

where ε0 satisfies the assumptions above, and

‖A‖ ≤ ε
− ζ

2
0 ,

then for all ε ≤ ε0, there exist

• rε > 0, kε ∈ N,
• Zε ∈ Urε

(Td, SL(2,R)),
• Aε ∈ sl(2,R),
• Āε, F̄ε ∈ Urε

(Td, sl(2,R)),
• ψε ∈ Urε

(2Td, SL(2,R)),

such that

1. Āε is reducible to Aε by ψε, with |ψkε
|rε

≤ ε−ζ ,

2. |F̄ε|rε
≤ ε,

3. for all θ ∈ Td,
∂ωZε(θ) = (A+ F (θ))Zε(θ) − Zε(θ)(Āε(θ) + F̄ε(θ))

4.

|Z±1
ε − Id|rε

≤ ε
9

10
0 .

Moreover, either |∂ωZε|rε
is bounded as ε → 0 and A + F is a reducible cocycle in Ur∞

(Td, sl(2,R)) for some
r∞ > 0, or for all ε ≤ ε0 there exists ε′ ≤ ε such that

‖Aε′‖ ≤ κε′ζ.

Proof. Remind parameters (P) defined in section 11 and define, for all k ∈ N, k ≥ 1,

εk := ε
(2δ)k

0 ; rk := r0 −
k−1
∑

i=0

50δ| log εi|

πΛ(R(ri, εi)N(ri, εi))
.

Notice that, by Lemma 5.1, under assumption 1, for all k ∈ N, rk > 0.
We can apply a first time lemma 11.1. There exist

• Z1 ∈ Ur1(Td, SL(2,R)),
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• Ā1, F̄1 ∈ Ur1(Td, sl(2,R)),
• A1 ∈ sl(2,R),
• ψ0 ∈ Ur1(2Td, SL(2,R)),

such that

• Ā1 is reducible to A1 by ψ0,
• for all G ∈ C0(Td, sl(2,R)), ψ−1

0 Gψ0 ∈ C0(Td, sl(2,R)),
• |F̄1|r1 ≤ ε1,

• |ψ±1
0 |r1 ≤ ε−ζ

1 ,

• ‖A1‖ ≤ ε
− ζ

2
1 ,

• for all θ ∈ Td

∂ωZ1(θ) = (A+ F (θ))Z1(θ) − Z1(θ)(Ā1(θ) + F̄1(θ)),

•
|Z±1

1 − Id|r1 ≤ ε
9

10
0 ,

• if moreover A had a BR
R(r0,ε0)N(r0,ε0)
ω (κ′′(ε0)) spectrum,

|ψ−1
0 Z1ψ0|r1 ≤ (1 + 2ε0)e2ε0 (12.1)

and if not,
‖A1‖ ≤ κ′′(ε0)

and
|∂ω(ψ−1

0 Z1ψ0)|r1 ≤ ε
1
4
0 . (12.2)

Iterative step : let k ≥ 1 and

• Āk, F̄k ∈ Urk
(Td, sl(2,R)),

• Ak ∈ sl(2,R),
• ψk−1 ∈ Urk

(2Td, SL(2,R)),

such that

• Āk is reducible to Ak by ψk−1,
• for all G ∈ C0(Td, sl(2,R)), ψ−1

k−1Gψk−1 ∈ C0(Td, sl(2,R)),

• |F̄k|rk
≤ εk,

• |ψ±1
k−1|rk

≤ ε−ζ
k ,

• ‖Ak‖ ≤ ε
− ζ

2

k .

We can one again apply lemma 11.1 to get

• Zk+1 ∈ Urk+1
(Td, SL(2,R)),

• Āk+1, F̄k+1 ∈ Urk+1
(Td, sl(2,R)),

• Ak+1 ∈ sl(2,R),
• ψk ∈ Urk+1

(2Td, SL(2,R)),

such that

• Āk+1 is reducible to Ak+1 by ψk,
• for all G ∈ C0(Td, sl(2,R)), ψ−1

k Gψk ∈ C0(Td, sl(2,R)),
• |F̄k+1|rk+1

≤ εk+1,

• |ψ±1
k |rk+1

≤ ε−ζ
k+1 ,

• ‖Ak+1‖ ≤ ε
− ζ

2

k+1,

• for all θ ∈ Td,
∂ωZk+1(θ) = (Āk(θ) + F̄k(θ))Z1(θ) − Zk+1(θ)(Āk+1(θ) + F̄k+1(θ)),
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•
|Z±1
k+1 − Id|rk+1

≤ ε
9

10

k

• if moreover Ak had a BR
R(rk,εk)N(rk,εk)
ω (κ′′(εk)) spectrum,

|ψ−1
k+1Zk+1ψk+1|rk+1

≤ (1 + 2εk)e
2εk (12.3)

and if not,

||Ak+1|| ≤ κ′′(εk)

and

|∂ω(ψ−1
k+1Zk+1ψk+1)|rk+1

≤ ε
1
4

k . (12.4)

Result: Let ε ≤ ε0 and kε ∈ N such that |F |
(2δ)kε

r ≤ ε. Let























Zε = Z1 · · ·Zkε

Āε = Ākε

F̄ε = F̄kε

ψε = ψkε

rε = rkε

then the properties 1 and 2 hold. Moreover for all θ ∈ Td,

∂ωZε(θ) = (A+ F (θ))Zε(θ) − Zε(θ)(Āε(θ) + F̄ε(θ))

and the property 3 holds. Notice that, for all k′ > κε, if ‖Akε
‖ ≤ κεζ (which is satisfied if, for example, the matrix

Akε−1 was resonant), then

‖Ak′‖ ≤ ‖Akε
‖ +

k′

∑

i=kε+1

εi ≤ κ′′(ε) + 2ε ≤ 2κ′′(ε).

We also have
|Z±1

1 − Id|rε
≤ ε

9
10
0 ⇒ |Z1|rε

≤ 1 + ε
9

10
0

Let k ∈ N and suppose that for all j ≤ k − 1,

|Z1 . . . Zj|rε
≤ 2

then
ck := |Z1 . . . Zk − Id|rε

≤ |Zk−1 − Id|rε
|Z1 . . . Zk−1|rε

+ |Z1 . . . Zk−1 − Id|rε

≤ 2ε
9

10

k−2 + ck−1

which implies

ck ≤ 2

k−2
∑

i=0

ε
9

10
i v ≤ 4ε

9
10
0 .

Finally

|(Z1 . . . Zk)±1 − I|rε
≤ ε

9
10
0

hence the property 4 holds. Reducible case

Suppose that there exists k̄ such that for all k′ ≥ k̄, ψk′ ≡ ψk̄ (which means that for all k′ ≥ k̄, Ak′ has a

BR
N(rk′ ,εk′ )R(rk′ ,εk′ )
ω (κ′′(εk′ )) spectrum). Then
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∂ωZε = ∂ω(

kε
∏

i=1

Zi)

= ∂ω(

k̄−1
∏

i=1

Zi)(

kε
∏

j=k̄

Zj) + (

k̄−1
∏

i=1

Zi)∂ω(

kε
∏

j=k̄

Zj)

= ∂ω(

k̄−1
∏

i=1

Zi)(

kε
∏

j=k̄

Zj) + (

k̄−1
∏

i=1

Zi)∂ω(

kε
∏

j=k̄

ψk̄ψ
−1
j Zjψjψ

−1
k̄

)

= ∂ω(

k̄−1
∏

i=1

Zi)(

kε
∏

j=k̄

Zj) + (

k̄−1
∏

i=1

Zi)[∂ω(ψk̄)

kε
∏

j=k̄−1

ψ−1
j Zjψjψ

−1
k̄

+

ψk̄∂ω(

kε
∏

j=k̄

ψ−1
j Zjψj)ψ

−1
k̄

+ ψk̄

kε
∏

j=k̄

(ψ−1
j Zjψj)∂ω(ψ−1

k̄
)],

(12.5)

thus

|∂ωZε|rε
≤ |∂ω(

k̄−1
∏

i=1

Zi)|rε
|

kε
∏

j=k̄

Zj |rε
+ |

k̄−1
∏

i=1

Zi|rε
|ψk̄|rε

|∂ω(

kε
∏

j=k̄

ψ−1
j Zjψj)|rε

|ψ−1
k̄

|rε

+ |

k̄−1
∏

i=1

Zi|rε
|(

kε
∏

j=k̄

ψ−1
j Zjψj)|rε

|ψ−1
k̄

|rε
|∂ωψk̄|rε

+ |

k̄−1
∏

i=1

Zi|rε
|(

kε
∏

j=k̄

ψ−1
j Zjψj)|rε

|∂ωψ
−1
k̄

|rε
|ψk̄|rε

.

Since the factors |
∏k̄−1
i=1 Zi|rε

, |∂ω
∏k̄−1
i=1 Zi|rε

, |(
∏kε

j=k̄
Zj)|rε

, |ψk̄|rε
, |ψ−1

k̄
|rε
, |∂ωψk̄|rε

, |∂ωψ
−1
k̄

|rε
are bounded uni-

formly in ε (here we use (12.3)), there exist K1,K2 ≥ 0 independent of ε such that

|∂ωZε|rε
≤ K1 +K2|∂ω(

kε
∏

j=k̄

ψ−1
j Zjψj)|rε

.

Moreover, by (12.4) and (12.3),

|∂ω(

kε
∏

j=k̄

ψ−1
j Zjψj)|rε

≤

kε
∑

j=k̄

|∂ω(ψ−1
j Zjψj)|rε

∏

k̄≤i≤kε

i6=j

|ψ−1
i Ziψi|rε

≤

kε
∑

j=k̄

ε
1
4

j

∏

k̄≤i≤kε

i6=j

(1 + 2eεi)e2εi

therefore

|∂ω(

kε
∏

j=k̄

ψ−1
j Zjψj)|rε

≤ 2

kε
∑

j=k̄

ε
1
4

j e
2εk̄

≤ 8ε
1
4

k̄
e2εk̄

≤ 16ε
1
4

k̄

and finally, |∂ωZε|rε
is bounded as ε → 0. In this case, Zε and ∂ωZε have adherent values; let Z∞ be an adherent

value of Zε. Since
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∂ω(Zεψk̄) = (A+ F )Zεψk̄ − Zεψk̄(Aε + ψ−1
k̄
F̄εψk̄)

(where Aε ∈ sl(2,R)), and since all factors except Aε are known to converge in a subsequence, then there exists a
constant A∞ ∈ sl(2,R) such that

∂ω(Z∞ψk̄) = (A+ F )Z∞ψk̄ − Z∞ψk̄A∞

and thus A+ F is actually is a reducible cocycle in Ur∞
(Td, sl(2,R)) for some r∞ > 0.

Non reducible case

If the system A + F is not reducible, then for all k ≥ 1, there exists k′ ≥ k such that Ak′ does not have a

BR
Rk′Nk′

ω (κ′′(εk′)) spectrum. In this case, ||Ak′+1|| ≤ κ′′(εk′) = κεζk′ .

We will now show a density corollary.

Corollary 12.1 (Density of reducible cocycles close to a constant cocycle). Let r0 > 0, A ∈ sl(2,R), and G ∈

Ur0(2Td, sl(2,R)) such that |G − A|r0 ≤ ε0 and ‖A‖ ≤ ε
− ζ

2
0 with ε0 as in 10.1, and satisfying the assumption 1.

Denote

ρ = r0 −
150δ| log ε0|

πΛ ◦ Ψ−1(ǫ−ζ
0 )

−
150δ

πζ log(2δ)

∫ +∞

Ψ−1(ε−ζ

0 )

Λ′(t) ln Ψ(t)

Λ(t)2
dt.

Then for all ε > 0 there exists H ∈ Uρ(2T
d, sl(2,R)) such that |G−H |ρ ≤ ε and H is reducible.

Proof. Apply theorem 12.1 with F = G−A. Since ρ ≤ rε, we in particular get matrices Zε ∈ Uρ(T
d, SL(2,R)), Āε, F̄ε ∈

Uρ(T
d, sl(2,R)) and Aε ∈ sl(2,R) such that

• Āε is reducible to Aε,
• ∂ωZε = (A+ (G−A))Zε − Zε(Āε + F̄ε) = GZε − Zε(Āε + F̄ε),

• |Z±1
ε |ρ ≤ 1 + ε

9
10
0 ≤ 2,

• |F̄ε|ρ ≤ ε
4

Let H := G− ZεF̄εZ
−1
ε . We have

∂ωZε = HZε − ZεĀε

and then H is reducible to Aε (as Āε is). Moreover, H satisfies

|H −G|ρ = |Z−1
ε F̄εZε|ρ ≤ 4|F̄ε|ρ ≤ ε.
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