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STABLE SUMS TO INFER HIGH RETURN LEVELS
OF MULTIVARIATE RAINFALL TIME SERIES

GLORIA BURITICÁ AND PHILIPPE NAVEAU

Abstract. Heavy rainfall distributional modeling is essential in
any impact studies linked to the water cycle, e.g. flood risks. Still,
statistical analyses that both take into account the temporal and
multivariate nature of extreme rainfall are rare, and often, a com-
plex de-clustering step is needed to make extreme rainfall tem-
porally independent. A natural question is how to bypass this
de-clustering in a multivariate context. To address this issue, we
introduce the stable sums method. Our goal is to incorporate time
and space extreme dependencies in the analysis of heavy tails. To
reach our goal, we build on large deviations of stationary regularly
varying time series. Numerical experiments demonstrate that our
novel approach enhances return levels inference in two ways. First,
it is robust concerning time dependencies. We implement it alike
on independent and dependent observations. In the univariate set-
ting, it improves the accuracy of confidence intervals compared to
the main estimators requiring temporal de-clustering. Second, it
thoughtfully integrates the spatial dependencies. In simulation, the
multivariate stable sums method has a smaller mean squared error
than its component-wise implementation. We apply our method
to infer high return levels of daily fall precipitation amounts from
a national network of weather stations in France.
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1. Introduction

Nowadays, extreme value theory [9] is frequently applied to meteoro-

logical time series to capture extremal climatological features in tem-

peratures, winds, precipitation and other atmospheric variables [see,

e.g. 35, 47, 48]. For example, due to its high societal impacts in terms

of flooding, heavy rainfall have been analyzed at various spatial and

temporal scales [see, e.g. 32]. In particular, storms/fronts duration and

spatial coverage can produce potential temporal and spatial dependen-

cies among recordings from nearby weather stations [see, e.g. 31]. In

this multivariate context, the analysis of consecutive extremes, even in

the stationary case, can be theoretically complex [see, e.g. 7, 3]. Al-

though marginal behaviors of heavy rainfall is today well modeled, the

temporal dynamic is rarely taken in account in applied studies, espe-

cially for multivariate time series [see, e.g. 21, 1, 10, 24]. To produce

accurate high return level estimates, we propose a novel approach to

jointly incorporate the temporal dependence and the multidimensional

structure among heavy rainfall. This joint modeling appears neces-

sary to perform a full risk assessment, as ignored correlations may lead

to erroneous confidence intervals. The latter is particularly important

when the practitioner has to provide them about extreme occurrences,

i.e. extrapolating beyond the largest observed value.

The practical goal of our study is to infer the 50 years return lev-

els of fall daily rainfall from a network of weather station in France,
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while taking in account the multivariate dependence and the tempo-

ral memories. The theoretical added value of our approach is that

we address the extremal multivariate structure without assuming tem-

poral independence. Moreover, our methodology does not require to

decluster the d-dimensional time series to make observations indepen-

dent in the upper tail. Declustering is particularly challenging in a

multivariate context [43]. In many cases, for precise high return levels

inference, declustering is unavoidable when implementing the Pareto-

based methods like block maxima and peaks over thresholds [see e.g.

9, 8]. To bypass these hurdles, we build on a stable sum method. This

new approach takes its roots in large deviation principles of sums and

central limit theory for weakly dependent stationary regularly varying

time series in [6].

We explain our stable sums method in Section 2. Concerning its

implementation, Section 3 details the ingredients of our algorithm and

its assumptions. The important step of setting the inputs of our al-

gorithm is treated there. Our simulation study is described in Section

4. Univariate and multivariate models are investigated. Comparisons

with the main practical approaches in extreme value theory requiring

declustering are implemented and commented. In Section 5, we anal-

ize in depth a France rainfall dataset. The theoretical aspects of our

method are deferred to Section 6. Section 7 discusses future perspec-

tives.
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1.1. Motivation. For our case study, we analyze daily precipitation

from a national network in France from 1976 to 2015. To contrast differ-

ent climates, we choose three stations in three different regions: oceanic

in the northwest (Brest, Lanveoc, and Quimper), mediterranean in the

south (Hyeres, Bormes-les-Mimosas and Le Luc), and continental in

the northeast (Metz, Nancy, and Roville). Concerning seasonality, we

will focus on Fall (September, October, and November) as heavy rain-

fall has been the strongest in France during this season. Concerning

marginal behaviors, records within the same region reach similar pre-

cipitation intensity levels. For example, the south of France registers

higher precipitation amounts than the other two regions, but the south

attains high levels at a similar rate; see Figure 1. While it is reasonable

to assume independence between regions, the stations’ spatial proxim-

ity within a region imposes a tri-variate analysis by region. Figure 1

illustrates how high rainfall values often co-occur at two close stations

pointing to a spatial dependence of large values. We assume rainfall

margins are heavy-tailed [see e.g. 45], and within a region, we assume

margins are asymptotically equivalent up to a constant. This last is a

reasonable modeling assumption if we believe extreme episodes within

a region have the same driver, let’s say, a big storm.

Concerning the temporal ties, we see that at all nine stations, record-

ing high rainfall levels at one day is often followed by measures from

rainy days later since an extreme weather condition can last numer-

ous hours. This extremal dependence in time is well illustrated by the
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Figure 1. Scatter plots of fall daily rainfall in France
from 1976 to 2015. The top, middle, and bottom panels
refer to three climatological regions: continental (north-
west), oceanic (west), and mediterranean (south), re-
spectively. Simultaneous exceedances of the 95-th order
statistic of the daily maxima of a region are in black.

temporal extremogram1 introduced in [13] as can be seen in Figure 2.

Overall, we can explain the spatial and temporal links by the weather

dynamics. As mentioned, it is reasonable to think that the main cli-

matological event impacting an area often has the same source but is

manifested at different time lags and locations. Our goal is to improve

1The temporal extremogram is defined over time lags by t 7→ limx→+∞ P(Xt >
x |X0 > x).
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inference of its extremal features by a mindful aggregation of all mea-

surements collected of it in space and time. We do so by introducing

the stable sums method.
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Figure 2. Empirical temporal extremogram of the 95-
th order statistic of fall daily rainfall in France from 1976
to 2015. The first, middle and last correspond to three
climatological regions as in Figure 1. As a baseline, the
extremogram takes the value pointed by the dotted line
on independent time lags.

2. Asymptotics of the stable sums method

In terms of notations, (Xt)t∈Z will always represent a stationary time

series with tail index α > 0, where Xt = (Xt(1), · · · , Xt(d)) takes val-

ues in Rd, that we endow with a norm | · |. To model heavy-tailedness,

we assume all vectors (Xt)|t|=0,...,h are multivariate regularly varying,

h ≥ 0; see Equation (6) for a precise definition. For inference purposes,

we consider the multivariate observations (X1, . . . ,Xn), and we intro-

duce a sum length sequence (bn), such that n/bn → +∞, as n→ +∞.

For p > 0, we construct the sub-samples

S1,bn(p)︸ ︷︷ ︸
:=

∑bn
t=1 |Xt|p

, S2,bn(p)︸ ︷︷ ︸
:=

∑2 bn
t=bn+1 |Xt|p

, · · · , Sbn/bnc,bn(p)︸ ︷︷ ︸
:=

∑bn/bnc
t=bn/bnc−bn+1

|Xt|p

,(1)
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with the convention Sbn(p) := S1,bn(p). In this stationary regularly

varying setting, [7] proved that, for short-range memory time series,

the following large deviations approximation holds

P(X0(j) > xbn) ≈ m(j) (bn c(p))
−1 P

(
S1,bn(p) > xpbn

)
,(2)

as n → +∞, where (xn) corresponds to a suitable sequence satisfying

nP(|X0| > xn) → 0, as n → +∞, m(j) takes values in (0, 1], for

j = 1, . . . , d, and p 7→ c(p) is a decreasing function. Equation (2)

models the tail of X0(j), the j−th coordinate of X0.

The practical key aspect of (2) is that, whenever m(j) and c(p) are

adequately estimated, all extremal marginal features of the multivariate

vector X0 can be easily deduced from the single univariate sum S1,bn(p).

For our case study, this means that any extreme quantile of a weather

station, say j, can be directly deduced from the sum S1,bn(p) computed

over the group of three neighbouring stations, albeit the knowledge

of the two constants m(j) and c(p) in (2). We recall [7] also showed

c(α) = 1, for short-range memory time series. Thus our goal is to

motivate the choice p = α in (2). This modelling strategy obviously

implies that the index of regular variation, α, needs to be estimated as

α̂n, a necessary step in any Pareto-based quantile estimation. Then,

albeit the knowledge of m(j), the main challenge now is to infer the

distribution

x 7→ P(S1,bn(α̂n) ≤ x),

from the the transformed dataset (St,bn(α̂n))t=1,...,bn/bnc.
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The natural question is then what is the appropriate model for

Sbn(p), for p > 0. As Sbn(p) is a sum of stationary regularly vary-

ing increments, then, assuming n/bn → +∞, as n → +∞, the central

limit theorem for weakly dependent stationary time series holds. There

exists positive and real sequences (an(p)), (dn(p)), such that

Sbn(p)− dbn(p))/abn(p)
d−→ ξα/p,(3)

where ξα/p is a stable distribution with stable parameter α/p, the se-

quence (an(p)) satisfies nP(|X0|p > an(p)) → 1, as n → +∞, and this

convergence in distribution holds as the sums length bn goes to infin-

ity. Two important elements can be highlighted from this convergence.

First, the family of α-stable distributions (see Section 3.1) appears as

the natural parametric family to fit the sequence (St,bn(p))t=1,...,bn/bnc.

Second, the aforementioned choice of taking p = α is reinforced as the

stable parameter α/p equals to one for this choice. This produces a

solid yardstick to select the right couple α̂n, bn. In other words, an

appropriate selection of α̂n, bn, corresponds to the case when the dis-

tribution of (St,bn(α̂n))t=1,...,bn/bnc follows a stable distribution with a

stable unit parameter. The algorithm behind this strategy will be ex-

plained in Section 3.3.

To interpret the two quantities m(j), c(p), in Equation (2), we write

them as follows

lim
n→+∞

P(X0(j) > xn)

P(|X0| > xn)
= m(j), lim

n→+∞

P((S1,n(p) )1/p > xn)

nP(|X0| > xn)
= c(p),

(4)
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such that nP(|X0| > xn) → 0, as n → +∞. The ratio between the

norm feature P(|X0| > xn) and the marginal feature P(X0(j) > xn)

does not depend on t (as t = 0), and consequently, the constants m(j)

trace back the d-dimensional structure of extremes, but not the tem-

poral dynamic. Recall for our case study, the three stations within a

region are assumed to have the same tail index and margins within

the same region are assumed to be asymptotically equivalent, up to

a constant. This is in compliance with the left-hand of (4). Practi-

cally, this is justified by the close proximity among the three stations

within each of our regions. Theoretically, the multivariate Breiman’s

theorem [28] tells us that tail equivalences can be obtained whenever

a multiplicative or linear lighter-tailed noise impacts the variables at

hand. In contrast, the constant c(p) captures, throughout the `p–norm,

the temporal clustering among extremes when compared to i.i.d. time

series. Indeed, for all p > 0, if (X′t)t∈Z are i.i.d. distributed as X0 then

the right-hand side of Equation (4) equals one [see e.g. 7].

Notice that in our methodology, the choice of p for c(p) in Equa-

tion (4) is up to the practitioner. The special case of p = ∞ is in-

terpreted as taking the block of maxima, and has a strong connection

with the so-called declustering techniques [see e.g. 27]. Typically, the

constant c(∞) equals the extremal index of the time series (|Xt|)t∈Z,

which has been understood as the reciprocate of the mean number of

consecutive high levels recorded in a short period; cf. [37, 38]. For uni-

variate time series the block of maxima can be modeled with classical

extreme value theory based on generalized extreme value distributions
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[9]. However, this brings the difficult problem of inferring the extremal

index. On the other hand, to decluster the exceedances approach built

on generalized Pareto distributions, applied studies typically base in-

ference only on the maxima of clusters [46]. However, if c(∞) < 1 es-

timates of marginal features are biased [20, 22, 23]. Instead, choosing

p = α completely bypasses the estimation of c(∞) or any declustering

strategy.

From a theoretical point of view, our method is motivated by equa-

tion (2) proven in [7]. We then use central limit theory to justify the

parametric model for the partial sums. Borrowing classical telescopic

sum arguments, we prove the limit with stable parameter one; see

Theorem 6.1, which interests us as we take p = α. This proof uses the

α-cluster process defined in [7]. It simplifies the assumptions in [2] and

[3] who might have overlooked the unit stable domain, usually receiving

less attention. Furthermore, (2) justifies inference of extreme quantiles

in the scope of the threshold sequence (xn). Its order of magnitude was

studied for classical examples as linear processes in [39], and for solu-

tions to recurrence equations in [5, 36]. For further references on large

deviation probabilities for weakly dependent processes with no long-

range dependence of extremes we refer to [12, 34, 33, 40]. Concerning

central limit theory for stationary weakly dependent sequences, it was

first addressed in [12] using weak convergence of point processes. Fur-

ther, [34, 33] show central limit theory using classical telescopic sum

arguments and large deviation limits. A modern treatment is conferred

to [2].
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3. Algorithm

3.1. Preliminaries. Let X be an Rd-valued random vector. For T >

0, the multivariate T–return level is zT = (zT (1), . . . , zT (d)), where

zT (j) is the T–return level associated to the j-th coordinate zT (j) =

inf{z(j) : P(X(j) > z(j)) ≤ 1/T}. We recall below the definition and

basic properties of stable distributions.

Definition 3.1. The random variable ξa := ξa(σ, β, µ) follows a stable

distribution with parameters (a, σ, β, µ) if and only if, for all u ∈ R,

E
[

exp{i u ξa}
]

=


exp{−σa|u|a(1− i β sign(u) tan πa

2
) + i µ u} if a 6= 1,

exp{−σ|u|(1− i β sign(u) 2
π

log |u|) + i µ u} if a = 1,

(5)

a ∈ (0, 2] is a stable parameter, σ ∈ [0,+∞) is a scale parameter,

β ∈ [−1, 1] is a skweness parameter, and µ ∈ R is a location parameter.

Classical examples of stable distributions are the Gaussian distribu-

tion with a = 2 and β = 0, the Cauchy distribution with a = 1 and

β = 0; and the Lévy distribution with a = 1/2 and β = 1. Stable dis-

tributions satisfy the reflection property: if ξa := ξa(1, β, 0) is a stable

random variable with parameters (a, 1, β, 0), then −ξa is a stable ran-

dom variables with parameters (a, 1,−β, 0). The stable distribution is

symmetric when β = 0, and has support in R when |β| 6= 1. If β = 1

there are three cases: if a < 1 then the support of its density admits

a finite lower bound. If a = 1 the density is supported in R but only
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the right tail is regularly varying. Otherwise, the stable distribution

admits two heavy tails. A full summary on stable distributions can be

found in [25, 42, 44].

3.2. Model assumptions. In the remaining of the article we assume

(Xt)t∈Z to be a stationary regularly varying time series taking values

in (Rd, | · |), with index of regular variation α > 0; cf. [4]. This means

there exists an Rd-valued time series (Θt)t∈Z such that |Θ0| = 1 a.s.,

and

P((Xt)|t|=0,...,h ∈ · | |X0| > x)
d−→ P(Y (Θt)|t|=0,...,h ∈ ·), x→ +∞,

(6)

where Y is (α)–Pareto distributed, P(Y > y) = y−α, for all y > 1,

independent of (Θt)t∈Z. We fix | · | to be the supremum norm, i.e.

|X0| := maxj=1,...,d |X0(j)|, but any choice of norm is possible under

minor modifications. We call (Θt)t∈Z the spectral tail process.

For now, we suppose the approximation in (2) holds and the renor-

malized process of partial sums Sbn(p) converges to a stable distribution

with stable parameter a = α/p, as n → +∞. These assumptions are

satisfied for classical examples of weakly dependent regularly varying

time series. We postpone the asymptotic theory behind it to Section 6.

Motivated by Theorem 6.1, we also set the skweness parameter β = 1

to simplify computations.

3.3. Choice of the algorithm inputs. To construct the sub-sample

(St,bn(α))t=1,...,bn/bnc defined in (1), for p = α, we need to estimate the
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index of regular variation α, and determine the sum length bn. Also,

the indexes of spatial clustering m(j) are required to use (2).

We estimate α using the unbiased Hill-type estimator of [14], see

their Equation (4.2) of α̂n that varies in function of order statistics

k. Fixing the choice of k we obtain a point estimate2 α̂n = α̂n(k).

To select the temporal window bn, we recall the renormalized partial

sums, denoted (St,bn(p))t=1,...,bn/bnc, should follow, for p = α, a stable

distribution with unit stable parameter, i.e., a = 1. So, for a given bn,

we run a ratio likelihood test for the null hypothesis (H0) : a = 1 and

we only keep pairs α̂n, bn, such that the null hypothesis is not rejected

at the 0.05 level. This heuristic allows us to discard an unsuitable

choice for the couple α̂n, bn.

Concerning the inference of m(j), notice (4) and (6) yield m(j) =

P(YΘ0(j) > 1) = E[(Θ0(j))
α
+], where Y is (α)-Pareto distributed, inde-

pendent of the d–dimensional random variable Θ0, and |Θ0| = 1 a.s. In

this context, given α̂n, all m(j), for j = 1, . . . , d, are simply estimated

by the following empirical means

m̂n(j) :=
1

k

n∑
t=1

(Xt(j))
α̂n

+

|Xt|α̂n
11(|Xt| ≥ |X(k)|),(7)

where |X(k)| is the k–th order statistic from the norm sample that we fix

to be the 95–th empirical quantile for the remaining of this article. For

a review on inference of the spectral measure Θ0, we refer to [7, 11, 15].

2Equation (4.2) in [14] yields to an estimate α̂n(k), where k is a fixed number of
higher order statistics. We tune the second order parameter ρ̂ ≤ 0 to the median
value of kρ 7→ ρ̂(kρ), for 2 ≤ kρ ≤ k; see [30, 14]. We then choose point estimate
from a steady portion of the trajectory plot of k 7→ α̂n(k).
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3.4. Algorithm. We outline in Algorithm 1 the steps of the stable

blocks method.

Algorithm 1:Multivariate T–return level stable sums estimate
Input: (X1,X2, . . . ,Xn), bn, α̂

n, m̂n(1), . . . , m̂n(d); see Sections
3.2, 3.3;

1 compute (St,bn(α̂n))t=1,...,bn/bnc as in (1) with p = α̂n,
2 fit maximum likelihood stable parameters θ̂, θ̂a=1,
3 test the null hypothesis (H0) : a = 1 using ratio likelihood test,

if (H0) is not rejected: then
4 θ̂ = θ̂a=1,
5 for j = 1, . . . , d do
6 calculate qT (j) a θ̂–stable quantile at (1− 1/(T m̂n(j)))bn ,
7 return ẑnT :=

(
(qT (1))1/α̂

n
, . . . , (qT (d))1/α̂

n); see (2),
8 else
9 choose a different pair of parameters α̂n, bn.

The multivariate T–return level is estimated applying Algorithm 1

to (X1,X2, . . . ,Xn). To obtain confidence intervals, we sample para-

metric bootstrap stable replicates with parameters θ̂ as in line 4, and

repeat the steps in lines 5 - 7 of Algorithm 1. We use the percentile

bootstrap method. A component-wise estimator is calculated applying

Algorithm 1 to (X1(j), . . . , Xn(j)), for j = 1, . . . , d. Notice that for

non-negative univariate time series, m(1) = 1 from Equation (4), and

both estimates coincide.

Concerning the asymptotic properties of the maximum likelihood

estimator for stable distributed sequences, we refer to [16, 17, 18, 19] for

large-sample theory. Bounds for the derivatives of the density function

in terms of the parameters (x; a, σ, µ) have been computed therein; see



A STABLE SUMS APPROACH TO INFER HIGH RETURN LEVELS 15

also [41] for an overview on maximum likelihood methods for stable

distributions.

4. Simulation study

4.1. Models. We consider the following models in our simulation.

Burr model: Let (X1, . . . , Xn) be independent random variables dis-

tributed as F with

F (x; c, κ) = 1−
(
1 + xc

)−κ
, x > 0,(8)

c, κ > 0 are shape parameters thus X1 is univariate regularly varying

with index α = 1
cκ
> 0.

Fréchet model: Let (X1, . . . , Xn) be independent random variables

distributed as F with

F (x;α) = e−x
−α
, x > 0,(9)

then X1 is univariate regularly varying with tail index α > 0.

ARMAX model: Let (X1, . . . , Xn) be sampled from the time series

(Xt)t∈Z defined as the stationary solution to the equation

Xt = max
{
λXt−1,

(
1− λα

)1/α
Zt
}
, t ∈ Z,(10)

where λ ∈ [0, 1), and (Zt)t∈Z are independent identically distributed

Fréchet innovations with tail index of regular variation α > 0. Then

(Xt)t∈Z is regularly varying with same index of regular variation but

with extremal index equal to 1− λα.
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mARMAXτ model: Let (X1, . . . ,Xn) be sampled from the time

series (Xt)t∈Z defined as the stationary solution to the equation

Xt(j) := max
{
λ(j)Xt−1(j),

(
1− (λ(j))α

)1/α
Zt(j)

}
, t ∈ Z,(11)

for j = 1, . . . , d, where λ takes values in [0, 1)d and (Zt)t∈Z are in-

dependent identically distributed vectors from a Gumbel copula with

Fréchet marginals and index of regular variation α > 0. Moreover, Z1

is distributed as G defined by

G(x;α, τ) = e−
(
(x(1))−(α/τ)+(x(2))−(α/τ)+···+(x(d))−(α/τ)

)τ
,(12)

for x ∈ Rd, and τ ∈ [0, 1] that we refer as the coefficient of spatial

dependence. The stationary solution (Xt)t∈Z is multivariate regularly

varying with index of regular variation α > 0; cf. [26] for more details.

Moreover, straightforward computations from (12) yield

m(j) = lim
x→+∞

P(X0(j) > x)

P(|X0| > x)
= lim

x→+∞

1− e−1/xα

1− e−d τ/xα
=

1

d τ
< 1,(13)

for all j = 1, . . . , d. Then, from (13) we recover the symmetric proper-

ties of the Gumbel copula as m(1) = · · · = m(d) = 1/dτ . We can also

see from (13) that the coefficient of spatial dependence τ ∈ [0, 1] plays

a key role while measuring the spatial dependence of extremes. In-

deed, similar calculations allow one to compute the spatial dependence

parameter between any two marginals, say j, as

lim
x→+∞

P(X0(j) > x |X0(j
′) > x) = 2− 2τ ,(14)
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thus τ = 1 points to asymptotic independence of extremes, whereas

τ = 0 indicates complete dependence of extremes.

4.2. Numerical experiment. We perform a Monte Carlo simulation

study with two main purposes. We aim to compare the stable sums

method with the most common methods in applied studies based on

declustering, see Section 4.4. We also aim to evaluate the stable sums

multivariate approach compared to its component-wise implementa-

tion.

We estimate return levels zT for periods T = 20, 50, 100 years of fall

observations. This corresponds to the 99.95-th, 99.98-th and 99.99-th

quantiles. We simulate 1000 trajectories of length n = 4000 from the

models presented in Section 4.1 with parameters:

• Burr(c, κ) with (c, κ) = (2, 2) in (8).

• Fréchet(α) with α = 4 in (9).

• ARMAX(λ) with α = 4, for both λ = 0.7 and λ = 0.8 in (10).

• mARMAXτ (λ) taking values in [0,+∞)3 with α = 4 and λ =

(0.7, 0.7, 0.7) in (11), and for τ = 0.1, 0.2, . . . , 0.9, in (12).

Notice α = 4 in all the models above. This corresponds to a typical

rainfall tail index.

4.3. Implementation of stable sums method. We fix the index

of regular variation to be α̂n = α̂n(k) (see Section 3.3 for details)

with k = n0.7, for the Burr model, and k = n0.9, for the Fréchet,

ARMAX and mARMAX models. Now notice that plugging in the

estimates α̂n, m̂n in Algorithm 1 we can run the stable sums method as
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a function of the sum lengths bn. In this way, we implement our method

for the sum lengths bl = 2i, with i = 4, 5, 6, 7. We sample R = 100

parametric bootstrap replicates to compute confidence intervals for the

estimated return levels. For the multivariate models, we compute both

the multivariate and component-wise stable sums estimator.

4.4. Implementation of classical methods. For the univariate mod-

els, we also run the peaks over threshold and block maxima methods

using the most popular declustering approaches [see e.g. 9]. A brief

description of both implementation procedures is given below.

The peaks over threshold method models exceeded amounts over a

high threshold with a generalized Pareto distribution; see chapters 4

and 5 in [9] for an overview. In our case, we fix the threshold level

to be the 95–th empirical quantile. For detecting clusters with various

exceedances, we follow the ideas in [27]. We keep only the largest peak

from each cluster to correct confidence intervals, and fit a Pareto model

to the exceeded amounts of this sub-sample. We use the code in the R-

package extRemes 2.0.12, and our implementation follows the guide in

[29]. We compute delta-method confidence intervals on the declustered

sample.

The block maxima method models the largest records form consec-

utive observations with a generalized extreme value distribution; see

chapters 3 and 5 in [9] for an introduction. We implement it over dis-

joint blocks of length blBM = 20. We estimate the extremal index using
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the interval’s estimator in Ferro et al. [27], tuned with the 95–th em-

pirical quantile. We first fit a generalized extreme value distribution,

then perform the extremal index estimation, and finally extrapolate

high return levels using the R-package extRemes 2.0.12; see also the

guide [29] for details. We compute delta-method confidence intervals.

4.5. Simulation study in the univariate case. Estimation of the

index of regular variation, as detailed in Section 4.3, yields unbiased

estimates for the univariate models (plots can be available upon re-

quest).

We can see from Figure 3 that our method gives unbiased results

and, as expected, the choice of the sum length can be seen as a trade-off

between bias and variance. The median estimate of the 50 years return

level with the peaks over threshold method underestimates the real

value when implemented at the dependent models and this underrates

the risk. This bias was already observed in [23, 23], which avert us

from inferring marginal features from the maxima of clusters; see [20].

In comparison, our block maxima implementation gives satisfactory

results for all four models regarding bias. However, it has a larger

spread compared to the stable sums methods. We conclude that for

all models Algorithm 1 works fine coupled with a good estimate of the

index of regular variation as the one detailed in Section 3.3.

To evaluate the accuracy of confidence intervals from all methods,

we compute the number of times they capture the correct value. One

must keep in mind that for the stable sums method, Algorithm 1 only
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Figure 3. Boxplots of estimates of ẑnT with different
methods where stable 16 refers to the stable sums method
with sum length bl = 24 = 16. Dotted lines indicate the
true values.

returns an estimate if the test of the stable parameter equal to one is

accepted. In this case, we also compute the proportion of acceptance of

the ratio test among the 1000 simulated trajectories from each model.

We summarize the sample coverage probabilities in Table 1. The cov-

erage results are not reliable when the proportion of test acceptance is

small, however, it increases as the sum length increases. As a result,

we notice from Table 1 that we automatically discard the very small

sum lengths.

To sum up, we read from Table 1 that the stable sums method out-

performs the block maxima and peaks over threshold methods for sum

lengths between 32 and 64, where acceptance of the ratio likelihood

test is significant. Instead, coverage probabilities are unsatisfactory for

the peaks over threshold method, specially for the models with time
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Table 1. Table of coverage probabilities. The value in
parenthesis is the ratio test (H0) : a = 1 acceptance
proportion. In bold we highlight the optimal choice of
sum length for the stable sums method. In our study, a
precise coverage should be at 0.95.

Years 20 50 100 20 50 100
Burr(2,2) Fréchet(4)

block maxima .91 .89 .87 .93 .93 .92
peaks o. threshold .87 .85 .83 .89 .87 .86

stable 16 (.06) .89 .85 .80 (.53) .94 .95 .95
stable 32 (.51) .93 .94 .95 (.83) .96 .96 .96
stable 64 (.85) .95 .95 .97 (.90) .96 .99 .99
stable 128 (.94) .87 .98 .98 (.91) .82 .99 .99

Armax(0.7) Armax(0.8)

block maxima .93 .93 .92 .92 .91 .91
peaks o. threshold .78 .79 .79 .66 .72 .74

stable 16 (.21) .92 .94 .93 (.12) .80 .82 .84
stable 32 (.66) .90 .90 .91 (.55) .87 .89 .90
stable 64 (.89) .93 .96 .96 (.85) .90 .93 .93
stable 128 (.94) .85 .97 .98 (.92) .83 .95 .96

dependence of extremes. The coverage for the block maxima method

is not well calibrated and gives poor results for the Burr model which

is the only model with a marginal distribution that does not belong to

the family of generalized extreme value distributions. In this manner,

we aim to point at the deficiency of the classical methods on small

sample sizes.

4.6. Simulation study in the multivariate case. In this section, we

aim to evaluate the pertinence of assessing extremal spatial dependen-

cies. We inquiry now the performance of the multivariate, as opposed
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to the component-wise, stable sums estimator. We compute both esti-

mates for the mARMAXτ model samples with λ = (0.7, 0.7, 0.7) as in

(11); see Section 4.2 for details. We compare the performance of both

estimators at each coordinate, j = 1, 2, 3, in terms of the mean squared

errors relative percentage change. More precisely, for each coordinate,

we compute mean squared errors of the multivariate and component-

wise estimates denotedMSEMV andMSECW , respectively, and relate

them by

MSE relative percentage change =
MSECW −MSEMV

MSECW
× 100.

(15)

We also compute the relative percentage change of the squared vari-

ance, and of the absolute bias, from equations similar to (15). Large

positive values point to an improvement of the multivariate estimator,

while negative values detect a deterioration of its performance.

We omit details on coverage probabilities as they both have similar

coverage as the ARMAX(0.7) univariate model (as expected from (11)).

We analyze in detail estimates zT (3) of the T = 50 years return level as

similar results hold for all other coordinates. The relative percentage

changes are plotted in figure 4 as a function of the spatial dependence

coefficient τ . We notice that for the sum lengths 32 and 64 the multi-

variate outperforms the component-wise estimator. Indeed, the choice

of sum length 64 was optimal for the ARMAX(0.7) univariate model

as pointed out by Table 1.
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To conclude, for values of τ greater or equal than 0.4, the multi-

variate outperforms the component-wise estimator for the optimal sum

lengths of 32 and 64. As τ approaches 1, and the model approaches the

regime of asymptotic independence, the multivariate estimator has an

outstanding improvement. If τ = 1, the assumption of asymptotic in-

dependence means that we work with 3 independent time series, identi-

cally distributed as (Xt(3)), which are sampled from the ARMAX(0.7)

model. For this reason, it is reasonable to obtain a gain from aggregat-

ing spatial extremes. In contrast, the amelioration is less evident for

values of τ close to 0. Recall from equation (14) that τ = 0 points to

asymptotic dependence. We conclude that in general the multivariate

estimator is preferable to the component-wise approach since it also

has a gain in computational time. Identifying, both theoretically and

practically, which spatial features efficiently improve the multivariate

inference procedures requires further investigation.

5. Case study of heavy rainfall in France

We recall the data set of fall daily rainfall introduced in Section 1

and our goal of computing the level of daily rain to be exceeded in 50

years at all the nine weather stations in France. We conduct our anal-

ysis separately over the three different regions: northwest, south, and

northeast of France. Fall observations from the same region are mod-

elled as a 3-dimensional sample (X1, . . . ,Xn), from a stationary mul-

tivariate regularly varying time series, i.e., Xt := (Xt(1), Xt(2), Xt(3)),

t ∈ Z. We include both wet and dry days in our daily observations.
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Figure 4. Relative percentage change of the multi-
variate against the component-wise estimator (for the 50
years return level zT (3) estimator) of the: squared vari-
ance, absolute bias and mean squared error as in (15),
from left to right. Positive values indicate a refinement
while negative values indicate a degradation with the
multivariate estimate.

In this setting, our goal traduces to estimating the 99.98-th quantile of

X0(j), for j = 1, 2, 3.

5.1. Implementation. To study the 3-dimensional sample obtained

from each region (X1, . . . ,Xn), we implement the stable sums method

as a function of k in the following way. For k = 150, 250, 350, 450, 550,

first, we compute estimates α̂n(k) as described in Section 3.3, second,

we search the sum length larger than 32 for which the p−value of the

ratio likelihood test from Algorithm 1 is minimized, among the first 20

acceptances of the test. We obtain in this way couples α̂n(k), b(k).

5.2. Analysis of the radial component. At each region, we start by

studying the supremum norm sample (|X1|, . . . , |Xn|). The estimates

of the 50 years norm return levels are presented in Figure 5 as a function

of k. The rows correspond to different regions. We see that the stable

sums method gives robust estimates as a function of k. For comparison,
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the Pareto-based methods are also implemented in terms of k in the

supplementary material.
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Figure 5. Estimates of the 50 years return level of
fall supremum norm observations with confidence inter-
vals. We write estimates as a function of k with the
parametrization detailed in Section 5.1.

To select a value for k, we inspect the qqplots of the observed stable

records given by (Si,b(k)(α̂
n(k))1/α̂

n(k))t=1,...,bn/b(k)c, against the theoret-

ical stable quantiles to the power 1/α̂n(k). Recall the pairs α̂n(k), b(k)
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are the ones detailed in Section 5.1. Figures 6, 7, 8 contain the qq-

plots for the northwest, south and northeast, respectively, and allow

us to assess goodness of fit for the different choices of k. We conclude

from Figure 6 that for the northwest locations, the choice k = 350,

b(k) = 165 captures nicely the intermediate and extreme quantiles.

For the southern region, we see in Figure 7 that the choice k = 150

and b(k) = 135 gives an accurate fit. Lastly, for the northeast region,

Figure 8 suggests the choices k = 350 and b(k) = 70, or k = 450 and

b(k) = 53, for a correct alignment of intermediate and high quantiles.
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Figure 6. qqplots for different k values of
the 1/α̂n(k)–stable quantiles against the 1/α̂n(k)–
(St,b(α̂

n(k)))t=1,...,bn/bc records with 95% confidence inter-
vals for the northwest.
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Figure 7. qqplots for different k values as in Figure 6
but for the southern region.
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Figure 8. qqplots for different k values as as in Fig-
ure 6 but for the northeast region.
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5.3. Analysis of the multivariate components. Finally, we turn

back to the component-wise analysis. In this case, we must esti-

mate the indexes of spatial clustering. Relying on (7), we obtain es-

timates: m̂n = (0.4966, 0.2709, 0.5744) corresponding to the weather

stations at Brest, Lanveoc and Quimper in the northwest region; m̂n =

(0.6064, 0.4706, 0.2866) for Bormes, Le Luc and Hyeres in the south;

and m̂n = (0.3910, 0.4448, 0.5649) for Nancy, Metz, Roville in the

northeast. Figure 9 plots the estimated return levels and confidence

intervals for each station based on estimates m̂n, and the tuning pa-

rameters α̂n, b(k) from Section 5.2, pointing to a nice fit of the radial

component. In particular, we fix k = 350, b(k) = 165 for the northwest

region, k = 150, b(k) = 135 for the south and k = 350, b(k) = 70 for

the northeast. Rows correspond to different regions.

Moreover, we interpret (2), roughly speaking, to say: heavy daily

rainfall at each weather station can be modelled as high quantiles of

a stable distribution. In particular, letting the largest order statistics

from each station play the role of the sequence of high threshold levels

in (2), we deduce the following empirical version of this relation

P
(
(Sbn(α̂n))1/α̂

n ≤ X(k)(j)
)
≈ 1− k

m̂n(j)n/bn
(16)

≈
(
1− k

m̂n(j)n

)bn(17)

where X(1)(j) ≥ X(2)(j) ≥ · · · ≥ X(n)(j), for j = 1, . . . , d, and (17)

holds whenever n/kn → +∞, and bn/n → +∞, as n → +∞. Indeed,
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Figure 9. Return level plots with confidence intervals
based on 1 000 bootstrap replicates. The grey dotted
line gives the estimated 50 years return level. Other re-
turn levels can be obtained alike. The black line is the
log(x) 7→ x plot. The points are the logarithm of esti-
mated 1/α̂n - stable quantile at (1− k

n m̂n(j)
)bn vs. the k-

th largest order statistics; see Equation (17). The largest
order statistics should lie on the solid line.

the approximations in (16), (17) are only justified for large observa-

tions; see Section 3.2. The left-hand side in (16) can be approximated

using the stable fit in line 4 of Algorithm 1. In this case, (17) yields

the estimated T -return level j-th coordinate from Algorithm 1, with
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T = n/k. We work using (17) to have a positive difference 1−1/(m̂nT )

in a wide range. We inspect (17) in Figure 9 by adding the 1/α̂n–stable

quantiles, from the fit in line 4 of Algorithm 1, against the sample

largest order statistics. We interpret the largest records close to the

solid line as a nice fit.

Overall, the most extreme records lie inside the confidence bands.

The intermediate quantiles shouldn’t necessarily align, and in practice,

there is not a clear procedure for knowing how many of the top quantiles

should line up with the solid line in Figure 9. We conclude that in gen-

erate the multivariate method captures accurately the highest rainfall

records, and supported by the numerical results from Section 4.6, it is

justified for addressing the spatio-temporal dependencies of extremes.

6. Asymptotic theory

In the remaining, we discuss the theory behind the stable sums

method. We will denote (Xt)t∈Z to be a regularly varying time series

in (Rd, | · |) as in (6).

Theorem 6.1 below states that under classical conditions [see e.g.

12, 2], the asymptotics assumed in Section 3.2 hold for p = α (for p 6= α

see [7]). We introduce the anti-clustering, vanishing-small-values and

mixing conditions: AC,CS,MX, respectively, and comment on them

below. A full discussion, and the proof of Theorem 6.1 can be found

in the supplementary material.

Theorem 6.1. Let (Xt)t∈Z be a regularly varying time series in (Rd, |·|)

with (tail)-index α > 0. Let Zt = |X|α, t ∈ Z, and let (an(α)) be such
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that nP(Zt > an(α))→ 1. Assume there exists (kn) satisfying n/kn →

+∞, as n → +∞, and assume AC(an(α)),CS(an(α)),MX(kn) hold,

i.e., for all ε, δ > 0, u ∈ R,

AC (an): liml→∞ lim supn→∞ P(maxt=l,...,kn |Zt| > εan||Z0| > εan) = 0.

CS (an): limε↓0 lim supn→∞
P(

∑kn
t=1 |Zt|11{|Zt|≤ε an}>δ an)

kn P(|Zt|>an) = 0.

MX(kn): limn→∞ |E[ei u
∑n
t=1 Zt/an ]− E[ei u

∑kn
t=1 Zt/an ]bn/knc| = 0 .

thus knP(Zt > an(α))→ 0, as n→ +∞, and

(S1,n(α)− dn(α))/an(α)
d−→ ξ1, n→ +∞.

where dn(α) = E[Zt11(Zt ≤ an(α))], and ξ1 is stable distributed with

stable and skewness parameters a = 1 and β = 1; see (5). Moreover,

assuming AC((xkn)α), CS((xkn)α) we deduce (2) holds for levels (xn)

satisfying nP(|X0| > xn)→ 0, as n→ +∞.

Remark 6.2. Condition AC is tailored to avoid long-range extremal

dependence [see e.g. 4, 6]. It is also a common assumption to jus-

tify the declustering procedures from Section 4.4; see [27]. It holds for

short-range memory series. Consider m0-dependent stationary regu-

larly varying sequences (Zt)t∈Z, for example, the moving average

Zt = ϕ0Z
′
t + · · ·+ ϕm0Z

′
t−m0

, t ∈ Z,(18)

where (Z ′t)t∈Z is an i.i.d. sequence distributed as a heavy-tailed random

variable Z0. In this case, condition AC(xn) holds for any (xn) such

that nP(|Zt| > xn)→ 0, as n→ +∞.
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Remark 6.3. Condition CS help us dealing with the asymptotics of

sums of regularly varying sequences. Similar conditions were also con-

sidered in [2, 12, 40, 7, 5]. For m0-dependent regularly varying time

series (Zt)t∈Z (see e.g. (18)), condition CS(xn) holds for sequences

(xn) such that nE[|Z0/xn|11{Z0≤xn}]→ 0, which implies Sn(α)/xn
P−→ 0,

as n→ +∞. This follows from Remark 5.2. in [7]. In particular, the

limit expectation equals zero if there exists κ > 0 such that n/x1−κn → 0.

Remark 6.4. In our regularly varying setting, condition MX is com-

mon to many proofs of central limit theory (see condition (2.8) in [2]).

Actually, it has been verified on numerous examples under mixing-type

assumptions; cf. [2, 40] and references therein. In particular, it holds

whenever the decay of the mixing coefficients3 (αh) happens sufficiently

fast; cf. Lemma 3.8. in [2]. For m0-dependent regularly varying time

series (Zt)t∈Z (see e.g. (18)), it is easy to see that condition MX(kn)

holds choosing kn > m0.

7. Conclusions

Atmospheric conditions drive the heavy-rainfall measurements. These

records have a spatial and temporal coverage explained by the storm/fonts

dynamics. Typically, an extreme event with a common source is recorded

simultaneously at different locations and over different time lags. In

this work, we have proposed the stable sums method to aggregate space

3The mixing coefficients (αh) are defined, for all h ∈ N, as
αh := sup

A∈σ( (Xt)t≤0 ),B∈σ( (Xt)t≥h )

|P(A ∩B)− P(A)P(B)|.
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and time information of dependent observations. Our ultimate goal was

to extrapolate high quantiles at each weather station.

Our approach relies on the asymptotics of α-power sums of regularly

varying increments (i.e., we let p = α in (2)). A parametric model for

the sums (St,bn(α)) is at hand thanks to Theorem 6.1. Our method

has proven to be robust for dealing with time dependencies. For statis-

tical applications based on time-dependent observations, our method

has made integrating the multidimensional aspects of extremes man-

ageable.

Our stable sums approach could also be used to address other envi-

ronmental extremal problems. We now comment on one of them based

on the idea that the asymptotics of space and time multivariate extreme

events can be summarized by the univariate random variable of partial

sums. In this work, we allocated weights m(j) to each coordinate to

compute the marginal features like the set {X(j) > x}. Conceptually,

it should be also possible to study other d-dimensional extremal sets,

for example, {X(j) > x,X(j′) > x}. Applying the theoretical results

of [7] will introduce weights of the type m(j, j′). Still, our take-home

message will remain the same: important d−dimensional features are

accessible by fitting only the univariate sums.
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