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SUPPLEMENTARY MATERIAL
STABLE SUMS TO INFER HIGH RETURN LEVELS

OF MULTIVARIATE RAINFALL TIME SERIES

GLORIA BURITICÁ AND PHILIPPE NAVEAU

Abstract. First, we complement the case study of heavy rainfall
in France by implementing Pareto-based methods using decluster-
ing techniques. Second, we develop on the asymptotic theory of
the stable sums method. To prove Theorem 6.1, we give a more
general statement and prove the multivariate central limit theory
of regularly varying time series with unit (tail)-index.

Keywords: Environmental time series; multivariate reg-
ular variation; stable distribution; stationary time series; cluster
process.

A. Supplement on the case study of heavy rainfall in

France

We review the case study presented in Section 5, on the France fall

rainfall data set. For comparison, we also implement the Pareto-based

methods in Section 4.4 for the radial component analysis.

A.1. Implementation. Recall that to study the 3-dimensional sample

(X1, . . . ,Xn) obtained from each region, we have implemented the sta-

ble sums method as a function of the number of order statistics k, with

k = 150, 250, 350, 450, 550. Then we have obtained pairs α̂n(k), b(k) to

run Algorithm 1; see Section 5.1. For comparison, we also implement

Pareto-based methods as a function of k as follows. We compute the

peaks over threshold method for threshold levels th(k) = X(k) such that

X(1) ≥ X(2) ≥ · · · ≥ X(n), and we compute the block maxima method

for blocks of length blBM(k) := n/k.
1
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A.2. Analysis of the radial component. We apply all three meth-

ods on the regional samples (|X1|, . . . , |Xn|) to compute confidence

intervals of the 50 years return level of fall observations. The estimates

are presented in Figure A.1. Rows correspond to different regions and

the columns correspond to different methods. As mentioned, the sta-

ble sums method, illustrated in the third column of Figure A.1, gives

robust estimates as a function of k. Also, as suggested by the simu-

lation study in Section 4, the estimates obtained with the peaks over

threshold method might underestimate return levels. We also see in

Figure A.1 that the block maxima method varies strongly for different

block length choices.

B. Supplement on the asymptotic theory

In the remaining, we detail on the asymptotics of the stable blocks

method and we prove Theorem 6.1. We consider (Xt)t∈Z to be a reg-

ularly varying time series in (Rd, | · |). We denote (Θt)t∈Z spectral

tail process of the series as in (6). Recall AC, CS, MX, the main

assumptions of Theorem 6.1.

B.1. Preliminaries. We start by reviewing Proposition 3.2 in [5].

Lemma B.1. Let (Xt)t∈Z be a regularly varying time series in (Rd, | · |),

with (tail)-index α > 0, and spectral tail process (Θt)t∈Z. Consider a

sequence (xn) and assume AC((xkn)α) holds. Then,

∑
t∈Z |Θt|α := ‖Θt‖αα < +∞ a.s.

and Qt = Θt/‖Θt‖α, for t ∈ Z, is well defined. We call (Qt)t∈Z the

cluster process of the series.
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Figure A.1. Estimates of the 50 years return level
of fall norm observations with confidence intervals. We
write estimates as a function of k with the parametriza-
tion detailed in Section A.1.

Lemma 7.1 in [5] shows c(α) = 1 in (2), which justifies the right-

hand side of (4) for p = α. We recall its statement below. The proof

is deferred to Section C.1.

Lemma B.2. Let (Xt)t∈Z be a regularly varying time series in (Rd, |·|),

with (tail)-index α > 0. Let (xn) satisfy AC((xkn)α),CS((xkn)α), and

nP(|X0| > xn)→ 0, then

(B.1) lim
n→+∞

P
(
(Sn(α))1/α > xn

)
nP(|X0| > xn)

= E[‖Qt‖αα] = 1.
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Lemma 7.1. in [5] states that in many cases, the limit of p-norms

(with p instead of α at the left-hand side of (B.1)) equals E[‖Qt‖αp ].

In this way, the choice p = α in (2) is a mindful strategy for handling

the time dependencies. Indeed, the unit limit holds regardless of the

underlying extremal time dependencies captured in (Qt). The proof

of Lemma B.2 uses arguments of large deviations of sums as the ones

considered in [3, 4, 9].

B.2. Proof Theorem 6.1. We now focus on showing central limit the-

ory of the α-power partial sums of (Xt)t∈Z. To prove Theorem 6.1, we

first give a general statement in Theorem B.3 concerning multivariate

central limit theory (see Section C.2 for its proof). Our proof of The-

orem 6.1 then follows straightforwardly. In our proof of Theorem 6.1,

we remove the assumption (4.10) in [2] and (CT) in Theorem 3.1. [1],

treating the recentering term.

Moreover, Theorem 6.1 shows (3) holds for p = α. For the p−power

partial sums theory with p/α ∈ (0, 1) ∪ (1, 2), we refer to Proposition

4.4. in [5].

Theorem B.3. Let (Zt)t∈Z be a regularly varying time series in (Rd, | ·

|), with unit (tail)-index. Consider non-negative and real sequences

(an), (dn) such that nP(|Z0| > an)→ 1, and dn := E[|Zt|11(|Zt| ≤ an)].

Assume AC(an), CS(an), MX(kn) hold for the multivariate series.

Then, ∑n
t=1(Zt − dn)/an

d−→ ξ1

where ξ1 is a d-variate stable distribution with stable parameter one.

Actually, the series admits a cluster process (QZ
t )t∈Z, ‖QZ‖1 = 1 a.s.
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(see Lemma B.1). Then, for u ∈ Rd,

(B.2)

logE
[

exp
{
iu>ξ1

}]
=
∫∞
0
E
[

exp
{
iu>
∑

t∈ZyQ
Z
t

}
− 1− i sin

(
u>
∑

t∈ZyQ
Z
t

)]
d(−y−1)

+ iµ(u) .

The last term is a location parameter given by

µ(u) =
∫∞
1
E
[

sin
(
u>
∑

t∈ZyQ
Z
t

)
− sin

(
u>
∑

t∈ZyQ
Z
t − u>

∑
t∈ZyQ

Z
t 1

)]
d(−y−1),

where x1 := x11(|x| > 1).

Theorem 6.1 follows straightforwardly from Theorem B.3 for univari-

ate time series.

Proof of Theorem 6.1. Let (Zt)t∈Z be defined by Zt = |Xt|α, t ∈ Z. By

Lemma B.1, it admits a non-negative spectral process (QZ
t )t∈Z satisfy-

ing
∑

t∈ZQ
Z
t = 1 a.s. Then, Theorem B.3 entails

∑n
t=1(Zt − dn)/an

d−→ ξ1

for a univariate unit stable limit ξ1, such that P(|X0|α > an) → 1,

as n → +∞, and dn = E[|X0|α11(|X0| ≤ an)]. The limit ξ1 has log-

characteristic function given by, for u ∈ R,

logE[exp{i u ξ1}]

=
∫∞
0
E
[

exp
{
i uy
}
− 1− i sin(uy)

]
d(−y−1) + iµ(u) ,

Finally, following the argument lines in section XVII.2 of Feller [6], we

deduce the skewness parameter of the stable limit ξ1 verifies β = 1. �
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C. Auxiliary proofs

C.1. Proof of Lemma B.2. We rely on telescopic sum arguments

from [7, 8]; see [1]. For all ε > 0, δ > 0,

P(Sn(α) > xαn)

= P
(
Sn(α) > xαn,

∑n
t=1|Xt|α11{|Xt|≤ε xn} < δ xαn

)
+ P

(
Sn(α) > xαn,

∑n
t=1|Xt|α11{|Xt|≤ε xn} > δ xαn

)
.

Referring to condition CS, the probability term above satisfies

P
(∑n

t=1|Xt|α11{|Xt|>εxn} > xαn
)

≤ P(Sn(α) > xαn)

≤ P
(∑n

t=1|Xt|α11{|Xt|>εxn} > (1− δ)xαn
)

+ o(nP(|X0| > xn)).

Hence, to show (B.1) it suffices to prove that for all δ > 0 the following

relation holds

lim
δ→0

lim
ε→0

lim
n→+∞

P
(∑n

t=1 |Xt|α11{|Xt|>εxn} > (1− δ)xαn
)

nP(|X0| > xn)
= 1.(C.3)

Using the so-called telescopic sum argument we have

P
(∑n

t=1|Xt|α11{|Xt|>εxn} > (1− δ)xαn
)

=
∑n−1

j=1

{
P
(∑j+1

t=1 |Xt|α11{|Xt|>εxn} > (1− δ)xαn , |X1| > εxn
)

− P
(∑j+1

t=2 |Xt|α11{|Xt|>εxn} > (1− δ)xαn , |X1| > εxn
)}

+ P(|X1|α > (1− δ)xαn).
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Then, condition AC yields for all K > 0,

=
∑n−1

j=K

{
P
(∑K

t=1|Xt|α11{|Xt|>εxn} > (1− δ)xαn , |X1| > εxn
)

− P
(∑K

t=2|Xt|α11{|Xt|>εxn} > (1− δ)xαn , |X1| > εxn
)}

+ P(|X1|α > (1− δ)xαn) + o(nP(|X0| > xn)).

Then, writing (Θt)t∈Z as in (6), we obtain

I := lim
n→+∞

P
(∑n

t=1|Xt|α11{|Xt|>εxn} > (1− δ)xαn
)

nP(|X0| > xn)

= lim
ε↓0

lim
K→+∞

{
ε−α
∫∞
1
P
(∑K

t=0|εyΘt|α11{y|Θt|>1} > (1− δ)
)

− P
(∑K

t=1|εyΘt|α11{y|Θt|>1} > (1− δ)
)
d(−y−α)

}
.

To take the limit as n goes to infinity, notice that the points of discon-

tinuity are contained in ∪Kt=1{Y |Θt| = 1}, which has zero probability.

Then, we take the limit as K → +∞ within the integral, which is justi-

fied by monotone convergence. Furthermore, the change of coordinates

u = ε y entails

I = lim
ε↓0

{∫∞
ε
P
(∑∞

t=0|yΘt|α11{y|Θt|>ε} > (1− δ)
)

− P
(∑∞

t=1|yΘt|α11{y|Θt|>ε} > (1− δ)
)
d(−y−α)

}
.

Using again monotone convergence at each term, we can take the limit

as ε goes to zero. As a result we obtain asymptotic equivalence with

the term below

I ∼
∫∞
0
P
(∑∞

t=0|yΘt|α > (1− δ)
)

− P
(∑∞

t=1|yΘt|α > (1− δ)
)
d(−y−α)

= (1− δ)−1E
[∑∞

t=0|Θt|α −
∑∞

t=1|Θt|α
]

= (1− δ)−1.
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In the last step we use that |Θ0| = 1 a.s.. Finally, we conclude tak-

ing the limit as δ goes to zero that the relation (C.3) holds, and this

concludes the proof.

C.2. Proof of Theorem B.3.

Proof. Let (Zt)t∈Z be an Rd–valued regularly varying time series with

index equal to one. We denote partial sums by Sn :=
∑n

t=1 Zt, and we

introduce the truncation notation, for ε > 0,

Sn/an
ε

:=
∑n

t=1Zt/an11{|Zt|≤ε an},

Sn/an
ε

:=
∑n

t=1Zt/an11{|Zt|>εan}.

More generally, for x ∈ Rd, we write xε for x11|x|>ε, and xε for x11|x|≤ε.

We also consider a truncation of the centering sequence (dn) as

dn/an
ε

= E[|Z0/an|11{ε an<|Z0|≤an}], n ∈ N.

To simplify we denote the cluster process (QZ
t )t∈Z by (Qt), taking val-

ues in (Rd, | · |).

To begin, notice the multivariate mixing condition MX(kn) implies

there exists a sequence k := kn → +∞, as n → +∞, such that for

u ∈ Rd,

II = E
[

exp
{
iu> (Sn/an − n dn/an)

}]
∼ E

[
exp

{
iu> (Sk/an − k dn/an)

}]bn/kc
.

as n→ +∞. Then, taking the logarithm at both sides yields

log II ∼ n

k
logE

[
exp

{
iu> (Sk/an − k dn/an)

}]
∼

E
[

exp
{
iu> (Sk/an − k dn/an)

}]
− 1

k P(|Z0| > an)
.
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This step is granted since k dn/an → 0, and also Sk/an
P−→ 0, as n →

+∞. Moreover,

log II ∼
E
[

exp
{
iu> (Sk/an

ε
− k dn/an

ε
)
}]
− 1

k P(|Z0| > an)
.

This last relation follows by condition CS, since the the exponential

function is bounded by |eix − eiy| ≤ |x− y| ∧ 1, for all x, y ∈ R.

Moreover, a Taylor expansion yields∣∣(E[ exp
{
iu> (Sk/an

ε
− k dn/an

ε
)
}]
− 1
)

−
(
E
[

exp
{
iu> Sk/an

ε

}]
− 1− iE[sin(u> Sk/an

ε

1
)]
)∣∣∣

= O
(
k dn/an

ε
E[|Sk/an

ε
|11(|Sk/an

ε
| ≤ 1)]

)
,

and |k dn/an
ε
E[|Sk/an

ε
|11(|Sk/an

ε
| ≤ 1)]|/k P(|Z0| > an)→ 0, as n goes

to infinity. Thus, the asymptotic equivalence below holds.

logE
[

exp
{
iu> (Sn)/an

ε
− n dn/an

ε
)
}]

∼
E
[

exp
{
iu> Sk/an

ε

}
− 1− i sin(uSk/an

ε

1
)
]

k P(|Z0| > an)
.

as n→ +∞. Furthermore,

E
[

exp
{
iu> Sk/an

ε

}
− 1− i sin(u> Sk/an

ε

1
)
]

= E
[(

exp
{
iu> Sk/an

ε

}
− 1)

)
11{|Sk|>εan}

]
− E

[
i sin(u> Sk/an

ε

1
)11{|Sk|>εan}

]
.

Then, conditioning to the event {|Sk| > ε an}, we use the limit relation

in (B.1) and Proposition 4.2. in [5] and take the limit as n goes to
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infinity in the above expression. Hence,

E
[

exp
{
iu>Sk/an

ε

}
− 1− i sin(u> Sk/an

ε

1
)
]

kP(|Z0| > an)

∼
∫∞
0
E
[

exp
{
iu>
∑

t∈ZyQtε

}
− 1− i sin

(
u>
∑

t∈Z(yQtε

1)]
d(−y−1),

where (Qt)t∈Z is the cluster process of the stationary process (Zt).

In particular, it takes values in RZ and verifies
∑

t∈Z |Qt| = 1 with

probability one.

Furthermore, let δ > 0 and let’s divide the integral above on the

events {y > δ} and {y ≤ δ}. On the event {y ≤ δ}, for δ < 1,∫ δ
0
E
[

exp
{
iu>
∑

t∈ZyQtε

}
− 1− i sin

(
u>
∑

t∈ZyQtε

1)]
d(−y−1)

=
∫ δ
0
E
[

exp
{
iu>
∑

t∈ZyQtε

}
− 1− i sin

(
u>
∑

t∈ZyQtε

)]
d(−y−1).

Recall the inequality

| exp{iz} − 1− i sin(z)| ≤ |z|2

for all z ∈ R. Then, the integral above is bounded in absolute value by∫ δ
0
E
[∣∣u>∑t∈Z|yQt|

∣∣2]d(−y−1)

≤ δE
[∣∣u>∑t∈Z|Qt|

∣∣2] = δ|u|2 < +∞.

We conclude that

logE
[

exp
{
iu> (Sk/an − n dn/an)

}]
∼ lim

δ→0

∫∞
δ
E
[

exp
{
iu>

∑
t∈ZyQt

}
− 1− i sin

(
u>
∑

t∈ZyQt
1)]
d(−y−1).
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We now write the term above as the sum of two integrals as follows

lim
δ→0

∫∞
δ
E
[

exp
{
iu>

∑
t∈ZyQt

}
− 1− i sin

(
u>
∑

t∈ZyQt

)]
d(−y−1)

+ i µ(u)

= III + iµ(u)

where

µ(u) =
∫∞
1
E
[

sin
(
u>
∑

t∈ZyQt

)
− sin

(
u>
∑

t∈ZyQt − u>
∑

t∈ZyQt1

)]
d(−y−1)

To simplify the expression above, we recall the trigonometric relation

sin(p)− sin(p− q) = 2 sin(p/2) cos(p− (q/2)),

for p, q ∈ R. Then, µ(u) is bounded in absolute value by one since∫ +∞
1

y−2 = 1. We interpret the term µ(u) as a location parameter.

Finally, using the bound previously derived, we can take the limit as

δ goes to 0 in III which yields

logE
[

exp
{
iu> (Sk/an − n dn/an)

}]
∼
∫∞
0
E
[

exp
{
iu>

∑
t∈ZyQt

}
− 1− i sin

(
u>
∑

t∈ZyQt

)]
d(−y−1)

+ i µ(u)

as n → +∞. This shows the limit relation from equation (B.2), and

this concludes the proof. �
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