Gloria Buritic 
  
Philippe Naveau 
  
SUPPLEMENTARY MATERIAL STABLE SUMS TO INFER HIGH RETURN LEVELS OF MULTIVARIATE RAINFALL TIME SERIES

Keywords: Environmental time series, multivariate regular variation, stable distribution, stationary time series, cluster process

First, we complement the case study of heavy rainfall in France by implementing Pareto-based methods using declustering techniques. Second, we develop on the asymptotic theory of the stable sums method. To prove Theorem 6.1, we give a more general statement and prove the multivariate central limit theory of regularly varying time series with unit (tail)-index.

A.2. Analysis of the radial component. We apply all three methods on the regional samples ( robust estimates as a function of k. Also, as suggested by the simulation study in Section 4, the estimates obtained with the peaks over threshold method might underestimate return levels. We also see in 

B. Supplement on the asymptotic theory

In the remaining, we detail on the asymptotics of the stable blocks method and we prove Theorem 6.1. We consider (X t ) t∈Z to be a regularly varying time series in (R d , | • |). We denote (Θ t ) t∈Z spectral tail process of the series as in [START_REF] Feller | An introduction to probability theory and its applications[END_REF]. Recall AC, CS, MX, the main assumptions of Theorem 6.1. B.1. Preliminaries. We start by reviewing Proposition 3.2 in [START_REF] Buriticá | Large deviations of lp-blocks of regularly varying time series and applications to cluster inference[END_REF].

Lemma B.1. Let (X t ) t∈Z be a regularly varying time series in (R d , | • |),
with (tail)-index α > 0, and spectral tail process (Θ t ) t∈Z . Consider a sequence (x n ) and assume AC((x kn ) α ) holds. Then,

t∈Z |Θ t | α := Θ t α α < +∞ a.s.
and Q t = Θ t / Θ t α , for t ∈ Z, is well defined. We call (Q t ) t∈Z the cluster process of the series. Lemma 7.1 in [START_REF] Buriticá | Large deviations of lp-blocks of regularly varying time series and applications to cluster inference[END_REF] shows c(α) = 1 in (2), which justifies the righthand side of (4) for p = α. We recall its statement below. The proof is deferred to Section C.1.

Lemma B.2. Let (X t ) t∈Z be a regularly varying time series in (R d , |•|), with (tail)-index α > 0. Let (x n ) satisfy AC((x kn ) α ), CS((x kn ) α ), and

nP(|X | > x n ) → 0, then (B.1) lim n→+∞ P (S n (α)) 1/α > x n n P(|X 0 | > x n ) = E[ Q t α α ] = 1.
Lemma 7.1. in [START_REF] Buriticá | Large deviations of lp-blocks of regularly varying time series and applications to cluster inference[END_REF] states that in many cases, the limit of p-norms (with p instead of α at the left-hand side of (B.1)

) equals E[ Q t α p ]
. In this way, the choice p = α in ( 2) is a mindful strategy for handling the time dependencies. Indeed, the unit limit holds regardless of the underlying extremal time dependencies captured in (Q t ). The proof of Lemma B.2 uses arguments of large deviations of sums as the ones considered in [START_REF] Basrak | Regularly varying time series[END_REF][START_REF] Buraczewski | Large deviations for solutions to stochastic recurrence equations under kesten's conditions[END_REF][START_REF] Mikosch | Precise large deviations for dependent regularly varying sequences[END_REF]. B.2. Proof Theorem 6.1. We now focus on showing central limit theory of the α-power partial sums of (X t ) t∈Z . To prove Theorem 6.1, we first give a general statement in Theorem B.3 concerning multivariate central limit theory (see Section C.2 for its proof). Our proof of Theorem 6.1 then follows straightforwardly. In our proof of Theorem 6.1, we remove the assumption (4.10) in [START_REF] Basrak | An invariance principle for sums and record times of regularly varying stationary sequences[END_REF] and (CT) in Theorem 3.1. [START_REF] Bartkiewicz | Stable limits for sums of dependent infinite variance random variables[END_REF], treating the recentering term.

Moreover, Theorem 6.1 shows (3) holds for p = α. For the p-power partial sums theory with p/α ∈ (0, 1) ∪ (1, 2), we refer to Proposition 4.4. in [START_REF] Buriticá | Large deviations of lp-blocks of regularly varying time series and applications to cluster inference[END_REF].

Theorem B.3. Let (Z t ) t∈Z be a regularly varying time series in (R d , | • |)
, with unit (tail)-index. Consider non-negative and real sequences andd 

(a n ), (d n ) such that n P(|Z 0 | > a n ) → 1,
n := E[|Z t |1 1(|Z t | ≤ a n )]. Assume AC(a n ), CS(a n ), MX(k n ) hold for the multivariate series. Then, n t=1 (Z t -d n )/a n d - → ξ 1
where ξ 1 is a d-variate stable distribution with stable parameter one.

Actually, the series admits a cluster process

(Q Z t ) t∈Z , Q Z 1 = 1 a.s. (see Lemma B.1). Then, for u ∈ R d , (B.2) log E exp iu ξ 1 = ∞ 0 E exp iu t∈Z yQ Z t -1 -i sin u t∈Z yQ Z t d(-y -1 ) + iµ(u) .
The last term is a location parameter given by

µ(u) = ∞ 1 E sin u t∈Z yQ Z t -sin u t∈Z yQ Z t -u t∈Z yQ Z t 1 d(-y -1 ),
where for a univariate unit stable limit ξ 1 , such that

x 1 := x1 1(|x| > 1).
P(|X 0 | α > a n ) → 1,
as n → +∞, and

d n = E[|X 0 | α 1 1(|X 0 | ≤ a n )]. The limit ξ 1 has log- characteristic function given by, for u ∈ R, log E[exp{i u ξ 1 }] = ∞ 0 E exp i uy -1 -i sin(uy) d(-y -1 ) + iµ(u) ,
Finally, following the argument lines in section XVII.2 of Feller [START_REF] Feller | An introduction to probability theory and its applications[END_REF], we deduce the skewness parameter of the stable limit ξ 1 verifies β = 1.

C. Auxiliary proofs

C.1. Proof of Lemma B.2. We rely on telescopic sum arguments from [START_REF] Jakubowski | Minimal conditions in p-stable limit theorems[END_REF][START_REF] Jakubowski | Minimal conditions in p-stable limit theorems -ii[END_REF]; see [START_REF] Bartkiewicz | Stable limits for sums of dependent infinite variance random variables[END_REF]. For all > 0, δ > 0,

P(S n (α) > x α n ) = P S n (α) > x α n , n t=1 |X t | α 1 1 {|Xt|≤ xn} < δ x α n + P S n (α) > x α n , n t=1 |X t | α 1 1 {|Xt|≤ xn} > δ x α n .
Referring to condition CS, the probability term above satisfies

P n t=1 |X t | α 1 1 {|Xt|> xn} > x α n ≤ P(S n (α) > x α n ) ≤ P n t=1 |X t | α 1 1 {|Xt|> xn} > (1 -δ)x α n + o(n P(|X 0 | > x n )).
Hence, to show (B.1) it suffices to prove that for all δ > 0 the following relation holds

lim δ→0 lim →0 lim n→+∞ P n t=1 |X t | α 1 1 {|Xt|> xn} > (1 -δ)x α n n P(|X 0 | > x n ) = 1. (C.3)
Using the so-called telescopic sum argument we have

P n t=1 |X t | α 1 1 {|Xt|> xn} > (1 -δ)x α n = n-1 j=1 P j+1 t=1 |X t | α 1 1 {|Xt|> xn} > (1 -δ)x α n , |X 1 | > x n -P j+1 t=2 |X t | α 1 1 {|Xt|> xn} > (1 -δ)x α n , |X 1 | > x n + P(|X 1 | α > (1 -δ)x α n ).
Then, condition AC yields for all K > 0,

= n-1 j=K P K t=1 |X t | α 1 1 {|Xt|> xn} > (1 -δ)x α n , |X 1 | > x n -P K t=2 |X t | α 1 1 {|Xt|> xn} > (1 -δ)x α n , |X 1 | > x n + P(|X 1 | α > (1 -δ)x α n ) + o(n P(|X 0 | > x n )).
Then, writing (Θ t ) t∈Z as in ( 6), we obtain

I := lim n→+∞ P n t=1 |X t | α 1 1 {|Xt|> xn} > (1 -δ)x α n n P(|X 0 | > x n ) = lim ↓0 lim K→+∞ -α ∞ 1 P K t=0 | yΘ t | α 1 1 {y|Θt|>1} > (1 -δ) -P K t=1 | yΘ t | α 1 1 {y|Θt|>1} > (1 -δ) d(-y -α ) .
To take the limit as n goes to infinity, notice that the points of discontinuity are contained in ∪ K t=1 {Y |Θ t | = 1}, which has zero probability. Then, we take the limit as K → +∞ within the integral, which is justified by monotone convergence. Furthermore, the change of coordinates u = y entails

I = lim ↓0 ∞ P ∞ t=0 |yΘ t | α 1 1 {y|Θt|> } > (1 -δ) -P ∞ t=1 |yΘ t | α 1 1 {y|Θt|> } > (1 -δ) d(-y -α ) .
Using again monotone convergence at each term, we can take the limit as goes to zero. As a result we obtain asymptotic equivalence with the term below

I ∼ ∞ 0 P ∞ t=0 |yΘ t | α > (1 -δ) -P ∞ t=1 |yΘ t | α > (1 -δ) d(-y -α ) = (1 -δ) -1 E ∞ t=0 |Θ t | α -∞ t=1 |Θ t | α = (1 -δ) -1 .
In the last step we use that |Θ 0 | = 1 a.s.. Finally, we conclude taking the limit as δ goes to zero that the relation (C.3) holds, and this concludes the proof.

C.2. Proof of Theorem B.3.

Proof. Let (Z t ) t∈Z be an R d -valued regularly varying time series with index equal to one. We denote partial sums by S n := n t=1 Z t , and we introduce the truncation notation, for > 0,

S n /a n := n t=1 Z t /a n 1 1 {|Zt|≤ an} , S n /a n := n t=1 Z t /a n 1 1 {|Zt|> an} .
More generally, for x ∈ R d , we write x for x1 1 |x|> , and x for x1 1 |x|≤ .

We also consider a truncation of the centering sequence (d n ) as

d n /a n = E[|Z 0 /a n |1 1 { an<|Z 0 |≤an} ], n ∈ N.
To simplify we denote the cluster process (

Q Z t ) t∈Z by (Q t ), taking val- ues in (R d , | • |).
To begin, notice the multivariate mixing condition MX(k n ) implies there exists a sequence k := k n → +∞, as n → +∞, such that for

u ∈ R d , II = E exp i u (S n /a n -n d n /a n ) ∼ E exp i u (S k /a n -k d n /a n ) n/k .
as n → +∞. Then, taking the logarithm at both sides yields

log II ∼ n k log E exp i u (S k /a n -k d n /a n ) ∼ E exp i u (S k /a n -k d n /a n ) -1 k P(|Z 0 | > a n ) .
This step is granted since k d n /a n → 0, and also S k /a n P -→ 0, as n → +∞. Moreover,

log II ∼ E exp i u (S k /a n -k d n /a n ) -1 k P(|Z 0 | > a n ) .
This last relation follows by condition CS, since the the exponential function is bounded by |e ix -e iy | ≤ |x -y| ∧ 1, for all x, y ∈ R.

Moreover, a Taylor expansion yields

E exp i u (S k /a n -k d n /a n ) -1 -E exp i u S k /a n -1 -iE[sin(u S k /a n 1 )] = O k d n /a n E[|S k /a n |1 1(|S k /a n | ≤ 1)] ,
and

|k d n /a n E[|S k /a n |1 1(|S k /a n | ≤ 1)]|/k P(|Z 0 | > a n ) → 0, as n goes
to infinity. Thus, the asymptotic equivalence below holds.

log

E exp i u (S n )/a n -n d n /a n ) ∼ E exp i u S k /a n -1 -i sin(u S k /a n 1 ) k P(|Z 0 | > a n ) .
as n → +∞. Furthermore,

E exp i u S k /a n -1 -i sin(u S k /a n 1 ) = E exp i u S k /a n -1) 1 1 {|S k |> an} -E i sin(u S k /a n 1 )1 1 {|S k |> an} .
Then, conditioning to the event {|S k | > a n }, we use the limit relation in (B.1) and Proposition 4.2. in [START_REF] Buriticá | Large deviations of lp-blocks of regularly varying time series and applications to cluster inference[END_REF] and take the limit as n goes to infinity in the above expression. Hence,

E exp i u S k /a n -1 -i sin(u S k /a n 1 ) kP(|Z 0 | > a n ) ∼ ∞ 0 E exp iu t∈Z yQ t -1 -i sin u t∈Z (yQ t 1 d(-y -1 ),
where (Q t ) t∈Z is the cluster process of the stationary process (Z t ).

In particular, it takes values in R Z and verifies t∈Z |Q t | = 1 with probability one.

Furthermore, let δ > 0 and let's divide the integral above on the events {y > δ} and {y ≤ δ}. On the event {y ≤ δ}, for δ < 1,

δ 0 E exp iu t∈Z yQ t -1 -i sin u t∈Z yQ t 1 d(-y -1 ) = δ 0 E exp iu t∈Z yQ t -1 -i sin u t∈Z yQ t d(-y -1 ).
Recall the inequality

| exp{iz} -1 -i sin(z)| ≤ |z| 2
for all z ∈ R. Then, the integral above is bounded in absolute value by To simplify the expression above, we recall the trigonometric relation sin(p) -sin(p -q) = 2 sin(p/2) cos(p -(q/2)), for p, q ∈ R. Then, µ(u) is bounded in absolute value by one since +∞ 1

δ 0 E u t∈Z |yQ t | 2 d(-y -1 ) ≤ δE u t∈Z |Q t | 2 = δ|u| 2 < +∞. We conclude that log E exp i u (S k /a n -n d n /a n ) ∼ lim δ→0 ∞ δ E exp i u t∈Z yQ t -1 -i sin u t∈Z yQ t 1 d(-y -1
y -2 = 1. We interpret the term µ(u) as a location parameter.

Finally, using the bound previously derived, we can take the limit as 

δ
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goes to 0 in III which yields

log E exp i u (S k /a n -n d n /a n ) ∼ ∞ 0 E exp i u t∈Z yQ t -1 -i sin u t∈Z yQ t d(-y -1 ) + i µ(u)

as n →