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ABSTRACT Due to the considerable increase of images in everyday life, many applications require a study
on their similarity. The main challenge is to find a simple and efficient method to compare and classify image
pairs into similar and dissimilar classes. This study presents a new method to image pairs comparison and
classification based on the modeling of the Local Dissimilarity Map (LDM). The LDM is a tool for locally
measuring the dissimilarity between two binary or grayscale images. It is a measure of dissimilarities based
on a modified version of the Hausdorff distance, which allows quantifying locally the dissimilarities between
images. This measure is completely without parameters and generic. The image pairs classification (2-class
classification) method is structured as follows. First, a statistical model for the LDM is proposed. The model
parameters, used as descriptors, are relevant to discriminate similar and dissimilar image pairs. Second,
classifiers are applied to compute the classification scores (2-class classification problem). In addition, this
approach is robust with respect to geometric transformations such as translation compared to the state-of-
the-art similarity measures. Although the main objective of this paper is to apply our approach to image pairs
classification, it is also performed on a classification with more than two classes (multi-class classification).
Experiments on the well-known image data sets *NIST and on old print data set prove that the proposed
method produces comparable, even better results than the state-of-the-art methods in terms of accuracy and
F1score.

INDEX TERMS Local dissimilarity map, Euclidean distance transform, Weibull distribution, supervised
classification.

I. INTRODUCTION AND STATE-OF-THE-ART
Image comparison and image classification have received a
great attention from researchers in the recent years, due to
the considerable increase of available images in our digital
world. Many analysis and processing techniques have been
studied to compare and classify images (mainly image pairs).

Usually, image similarity is being assessed by measures
such as Mean Square Error (MSE) and the Peak Signal to
Noise Ratio (PSNR). MSE and PSNR are widely applicable
because they are simple to calculate and also convenient to
implement mathematically in an optimization context. But
they are very poorly adapted to perceive visual quality [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Wenming Cao .

However, researchers have developed two measures of
structural and feature similarity to enhance the quality of
visual perception: Structural Similarity Index (SSIM) and
Feature Similarity Index (FSIM). In [2], Wang proposed a
Structural Similarity Index for quality assessment based on
the degradation of structural information. The computation
of the SSIM index depends on three sub-indices: luminance,
contrast and structure. After calculating the SSIM through a
local sliding window, the global image quality is evaluated
by calculating the average: Mean SSIM (MSSIM [3]). The
great success of SSIM is due to the fact that the human visual
system is adapted to the structural information in images.
But it does not detect information on images with low-
level features. However, the visual information in an image
is redundant, while the human visual system understands
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an image mainly based on its low-level features, such as
edges and zero crossings. In [4], Zhang proposed the feature
similarity index (FSIM) to detect low-level features similarity
between images. The computation of this measure is based
on two main parameters which are the phase congruence and
the gradient magnitude. Gradient magnitude uses convolution
masks to express the gradient operators [4], [5]. To our
knowledge, no researcher has developed another similarity or
dissimilarity measure more recent and better than these two
above-mentioned measures for image pairs comparison and
classification. However, these two similarity measures are not
constructed from a local distance. This makes their statistical
modeling difficult. To our best knowledge, no researcher
has been able to model a similarity or dissimilarity measure
map by a statistical distribution, neither MSSIM, nor FSIM
nor the other existing similarity measures. In each case,
similarity indices are used as descriptors to classify image
pairs.

Generally for multi-class image classification the process
can be divided into two steps: feature extraction and
classification. The first step aims to extract descriptors
vectors from the local distinguishing features of images.
In the second step, a classifier is applied on all the
resulting vectors to recognize the class of the unknown
images. The performance of the classification depends on the
quality of descriptors. Currently, machine learning and deep
learning algorithms (convolutional neural networks) [6]–[9]
are mostly used and give very good results for image
recognition and classification. But convolutional Neural
Networks architectures are sometimes complex and hard to
interpret.

This paper proposes a new efficient and low complexity
technique for image comparison, image pairs classification
(2-class classification), and essentially multi-class image
classification. In [10], Baudrier proposed a measure to
characterize the local differences between binary images.
It is based on the Hausdorff distance and has produced
good results in several research works [11], [12]. This
measure is called the Local Dissimilarity Map (LDM). In this
work, an extension of this measure is adapted to grayscale
images. In [13], Molchanov and Teran have extended the
Euclidean distance transform to grayscale images. This work
has enabled us to adapt our approach to structural non-
binary images. In contrast to other measures, the LDM
computes the local distance between the pixels of images.
The LDM will lead to detect low-level features between
images.

In the literature many researchers have proposed statistical
distributions to model images and classify them using model
parameters as descriptors. In [14], Nguyen introduced the
gamma distribution to model images noise. The parameters
of this model are relevant to distinguish authentic face
images and high quality presentation attack images. In [15],
Huang proposed a statistical model to distinguish the natural
images acquired by digital cameras and images created by
computer graphics rendering software. For classification,

using the estimated parameters, the authors proposed to
establish a generalized likelihood ratio test. In [16], Qiao
used a parametric model to expose the traces of resampling
forgery, which is described with the distribution of residual
noise. The authors proposed a statistical model describing
the residual noise from a resampled image. In [17], Doan
introduced a noise model which is relevant to describe a
natural image acquired by a digital camera. The parametric
model is characterized by two fingerprints which are used for
falsification identification.

In this paper, a statistical two-parameter Weibull distribu-
tion is proposed to model the LDM of binary and grayscale
images regardless of their size. The model is applied to
old print images and is validated by the Kolmogorov-
Smirnov (K -S) test. The LDMs of images are characterized
by the two parameters of the model. In addition, image
pairs classification (from *NIST and old print data sets)
is proposed applying supervised classifiers and taking
the two parameters of Weibull distribution as descriptors.
To extend the effectiveness of our approach, we applied it
on a classification with more than two classes (multi-class
classification). Results are compared with state-of-the-art
methods [6].

This paper is structured as follows. Section II presents
the principle of the Local Dissimilarity Map for binary
and grayscale images. Since this measure depends on the
calculation of the Euclidean distance transform, we will
first introduce the notion of distance transform. Section III
presents the robustness of the Local Dissimilarity Map
to geometric transformations. We will test the robustness
on geometric transformations such as pixels translation.
It is also true for rotation, barrel deformation and noise
addition. Section IV introduces the statistical model and its
theoretical validation. We will show theoretically that the
LDM follows the proposed statistical distribution. Section V
reports the numerical experimentation. We will first validate
the theoretical model on old print data set and evaluate
the performances of our classifications on *NIST and old
print data sets. Section VI addresses the comparison of our
approach to state-of-the-art methods. Finally, section VII
concludes the paper with a few perspectives.

II. LOCAL DISSIMILARITY MAP
The Local Dissimilarity Map (LDM) [10] is an image
processing tool allowing characterizing local differences
between two binary images. Let’s consider two images A
and B of the same size (w, h), the LDM between A and B,
LDM(A,B), is a 2D array of size (w, h). It can easily be
transformed by normalization of its values into an image in
order to display it. In this section, the aim is to compare
two grayscale images with a local dissimilarity measure
and to model it statistically. The LDM of grayscale images
are constructed from the LDM of binary images which are
themselves constructed from Euclidean distance transforms.
The proposed dissimilarity measure is completely without
parameters and generic.

VOLUME 10, 2022 35751



M. Diaw et al.: Modeling LDM With Weibull Distribution

FIGURE 1. A binary image X (a) and its euclidean distance transform (b).

A. EUCLIDEAN DISTANCE TRANSFORM
The distance transform is a measuring tool which plays a cru-
cial role in computer vision [18], in pattern recognition [19],
[20], in robotics [21]. The calculation of the distance
transform depends on the chosen underlying distance d . The
classic choices for d are: the Euclidean distance from the
L2 norm, the Manhattan distance from the L1 norm, which
produces the 4-neighborhood, the Chebyshev distance from
the L∞ norm, which produces the 8-neighborhood. In this
work, the Euclidean distance is used to compute the distance
transforms on binary images.

1) FOR BINARY IMAGES
The distance transform for a binary imageX is the application
that associates to each point x ∈ X the distance to the nearest
non-zero point of X . Consider a binary image X and p =
(p1, p2), q = (q1, q2), two pixels in X , the Euclidean distance
transform of X is therefore written as follows:

DTX (p) = min
q|X (q)6=0

{
||p− q||2

}
(1)

where ||p−q||2 =
√
(p1 − q1)2 + (p2 − q2)2 is the Euclidean

distance between p, q ∈ X . Figure 1 presents a binary
image and its Euclidean distance transform. The pixel values
become weak if they are close to the object.

2) FOR GRAYSCALE IMAGES
Consider F as an upper semi-continuous function (F ⊂ R2)
that takes values in {0, 1, . . . , 255}. This function is called a
grayscale image.

Since the computation of the Euclidean distance transform
only works for binary images, Molchanov and Teran [13]
have extended the Euclidean distance transform to grayscale
images. A grayscale image is divided into N binary sub-
images obtained using N thresholds τi, i = 1 . . .N . The
Euclidean distance transform of a grayscale image is obtained
by summing the distance transform of every computed sub-
image. For an upper semi-continuous function F , the set Fτ
of the sub-images is given by:

Fτ = {p ∈ F : F(p) ≥ τ } . (2)

At any level τ , Fτ has values in {0, 1} (binary image). So,
the Euclidean distance transform of a grayscale image F
(RVDTF ) is the sum of the Euclidean distance transform of

the binary sub-images Fτi , DTFτ (x):

RVDTF (p) =
1
N

∑
τ

DTFτ (p). (3)

Figure 2 shows a grayscale image and its RVDTs with the
number of slices 2, 5, 15 and 25. It also shows the graph of
standard L2 squared of the difference of RVDT for N and
N+1 slices as a function of the number of slicesN .We started
with N = 2 and we observe that the Euclidean distance D =
||DTN+1 −DTN ||22 is low in the interval [7, 9], and increases
again in [10, 13]. From N = 15 until the end,D becomes low
again and thus stable. Hence, from N = 15 the Euclidean
distance transforms are nearly identical. The same behavior
can be observed for other images. In any case D ' 0 for
N ≥ 15. In this paper, we could have chosen N = 7,
N = 8 or N = 9, but we risked losing information when
we calculated the RVDT. To ensure the opposite, we choose
N = 15, in the rest of this paper, which is sufficient to
obtain good results with less computing time compared to the
N = 255 thresholds of the original paper [13].

B. LDM FOR BINARY IMAGES
For binary images, A and B take their values in the set {0, 1}
and LDM(A,B) takes its values in R+. It corresponds to a
map of distances between A and B. Let p = (x, y) be a pixel
at coordinates (x, y). The LDM is defined from R2

× R2 to
R2 by [10]:

LDM(A,B)(p) = 1A
a
B(p) max(DTA(p),DTB(p)) (4)

= |A(p)− B(p)| max(DTA(p),DTB(p)), (5)

where

1A
a
B(p) =

{
1 if p ∈ A

i
B

0 otherwise,

with A
a
B = (A|B) ∪ (B|A) and DTA(p) is the Euclidean

distance transform of A between the pixel p and the nearest
non-zero pixel of A. Eq. (5) can be simplified for binary
images [12]:

LDM(A,B)(p) = B(p) DTA(p)+ A(p) DTB(p). (6)

Eq. (6) removes the max operator and the absolute value.
It has a great interest in the modeling of the Local
Dissimilarity Map.

To illustrate the LDM behavior, two examples of LDM
between three binary images are given in Figure 3. As the
LDM locates and quantifies image pairs difference, Figure 3
shows, for similar image pairs, the LDM values will be lower
in intensity and quantity than for dissimilar image pairs. For
similar image pairs (see Figure (3d)), the LDM appears really
darker because on the two images A and B, the pixel values
are locally close to each other. For dissimilar image pairs (see
Figure (3e)), the LDM appears clearer than for similar image
pairs because only a small number of pixels are equal. Images
A, B and C are taken from the MNIST data set, initially in
grayscale and they have been binarized using the Sauvola
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FIGURE 2. A grayscale image from the F-MNIST data set (a), RVDTF with N = 2 (b), RVDTF with N = 5 (c), RVDTF with N = 15 (d), RVDTF with N = 25
(e), standard L2 squared of the difference of distance transform as a function of N (f). The distance transform with 15 slices is almost equal to the
distance transform with 25 slices. In addition, the standard L2 squared of the difference of distance transform for N slices and N + 1 slices
(D = ||DTN+1 − DTN||

2
2) remains close to zero from the 15 slices (D ' 0 for N ≥ 15). Thus, for the computation of the distance transform, using only

15 slices are sufficient to obtain good results.

FIGURE 3. Binary image A (a), binary image B (b), binary image C (c), LDM(A,B) (d) and LDM(A,C) (e).

threshold [22]. The object is the pixel values equal to 1 and
the background is the pixel values equal to 0. For both LDM,
the areas where the pixels of the two images have a very large
gap are in gray and where they are locally close are 0 (black).

The LDM of dissimilar images has a maximum grayscale
value equal to 0.2 while for similar images the maximum
value is close to 0.5, so the grayscale of the LDMof dissimilar
images appears clearer than those of similar images.

VOLUME 10, 2022 35753
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FIGURE 4. Grayscale images A (a), grayscale image B (b), grayscale image C (c), grayscale image D (d), LDM(A,B) (e), LDM(C,D) (f) and
LDM(A,C) (g).

C. LDM FOR GRAYSCALE IMAGES
In order to extend the LDM to grayscale images, in eq. (6), the
RVDT from Molchanov and Teran [13] can be used instead
of the classical distance transform in eq. (5) or (6).

But in this case, distances between positions (x, y) and
pixel values (luminance) are mixed together leading to inter-
pretation and dynamics problems. Indeed, by mixing pure
distances (max(DTA(p),DTB(p))) and luminance differences
(|A(p) − B(p)|), the distances obtained are no longer pure
positional deviations between two pixels (p, q). We clearly
want in this paper to keep true distances for the LDM, which
will be important in the section IV. One way to avoid this
problem is to use the thresholding techniques of Molchanov
by slicing grayscale images into several binary images and
then compute simple multiple LDM between these binary
images.

So the Real Value Local Dissimilarity Map (RVLDM) is
defined as the sum of thresholded images:

RVLDM(A,B)(p) =
1
N

N∑
i=1

LDM(Ai,Bi)(p), (7)

where N is the number of thresholds used in the sum, τi
is a threshold, Ai = {p ∈ A : A(p) ≥ τi}. Each
threshold τi is chosen according to a regular spacing between

m = max(min(A),min(B)) and M = min(max(A),max(B)).
So this regular spacing has a step of s = (M − m)/N .
Three examples of RVLDM between four grayscale

images A, B, C and D are given in Figure 4. These are
images extracted from old print data set where two images
are considered similar if they represent the same scene. For
similar images (see Figures (4e) and (4f)), the map appears
much darker than for dissimilar images (see Figure (4g)).
There are small pixel differences (in gray) on images from the
same print. The areas where the two images being compared
are not identical and clearly highlighted. The map of the
dissimilar images (not coming from the same print) shows
a very large difference between the two images with higher
pixel values. It can also be seen, as in the case of binary
images, because the maximum value of the gray levels of
the RVLDM for dissimilar images is much higher than for
similar images. The maximum RVLDM value for dissimilar
images is 70 while it is only 18 and 30 for similar images.
For grayscale images the same behavior of the RVLDM is
observed as with two binary images (see Figure 3).

III. ROBUSTNESS OF THE LDM TO GEOMETRIC
TRANSFORMATIONS
In this section, we present a comparison of the robustness
between RVLDM, SSIM and FSIMmeasures. Using an input
image from the F-MNIST data set, we applied deformations

35754 VOLUME 10, 2022



M. Diaw et al.: Modeling LDM With Weibull Distribution

FIGURE 5. An original image (a) and examples of its variations (b), (c), (d) and (e). Translation with t = 10 (b), rotation with θ = 20◦ (c),
barrel deformation with a = 10−4 (d) and Gaussian noise with PSNR = 22.7 dB (e).

which are translation, rotation, barrel deformation and noise
addition. For each deformation, RVLDM, SSIM and FSIM
are computed with respect to the input image. Subsequently,
each measure is normalized to obtain values between 0 and 1.
Figure 5 shows the input image and examples of its deforma-
tions. FSIM and SSIM are initially similarity measures and
are here transformed into dissimilarity measures.

SSIM′(p) = 1− SSIM(p), (8)

FSIM′(p) = 1− FSIM(p), (9)

in order to have the same behavior as the RVLDM.
In addition, normalizations are:

RVLDMn =
RVLDM

max(RVLDM)
, (10)

SSIMn =
SSIM′

max(SSIM′)
, (11)

FSIMn =
FSIM′

max(FSIM′)
, (12)

where RVLDMn, SSIMn and FSIMn are array containing
the dissimilarity indices between the original image and the
distorted images.

In Figure 6 we plot the maximum value of the normalized
measures RVLDMn, SSIMn and FSIMn with respect to the
amount of deformation. The maximum value is taken into
account, we do not measure a global similarity from the map,
but we measure the local dissimilarity in order to localize
the changes. Thus, the particular values of the maps are
important. Taking into account the maximum provides some
upper bound of the measures. We can observe in each graph
(Figure 6) that the RVLDM and FSIM is monotonic with
respect to all deformations. It can be seen in the graphs
on Figure 6 that the RVLDM and FSIM gradually reach

their maximum. This ensures a good distribution of the
RVLDM values. Since we cannot compute a map with FSIM,
we took only the dissimilarity measure index. This shows
the robustness of the measure of all deformations (except
translation). On the other hand, SSIM gave erratic evolution
for all deformations.

The next section will go deeply into the theory and will
define a statistical model of the behavior of RVLDMs.

IV. STATISTICAL MODEL AND THEORETICAL
VALIDATION
A. THE WEIBULL DISTRIBUTION
The Weibull distribution is a continuous probability distri-
bution, discovered by the Swedish mathematician Waloddi
Weibull [23]. Generally, the Weibull probability density
function is defined as follows:

f (t) =
α

β

(
t − γ
β

)α−1
e
−

(
t−γ
β

)α
(13)

where f (t) ≥ 0, t > 0, α > 0, γ ≥ 0 and β > 0.
α is the shape parameter, β is the scale parameter and γ
is the location parameter. The probability density f and
the cumulative distribution function F of a two-parameter
Weibull distribution (γ = 0) are:

f (t) =
α

β

(
t
β

)α−1
e
−

(
t
β

)α
, (14)

and

F(t) = 1− e−(
t
β
)α
, (15)

respectively, for t > 0, α > 0 and β > 0. t is a random
variable that represents in this paper the pixel values of
RVLDM. Figure 7 shows the densities and the cumulative
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FIGURE 6. A comparison of RVLDM, SSIM and FSIM with respect to translation (a), rotation (b), barrel
deformation (c) and noise addition (d). The maximum value of the measure map between a test image and its
translation is plotted with respect to the deformation amount. For SSIM and FSIM we took the dissimilarity
index. Note that for the barrel deformation, the bigger is the parameter a the smaller is the deformed image.
In (d) the noise is a Gaussian white noise.

Weibull distribution functions for different shapes and scale
parameters. In the next section, thanks to the theorem 1,
we will show theoretically that the RVLDM follows a two-
parameter Weibull distribution.

B. THEORETICAL MODEL VALIDATION
The modeling of a Local Dissimilarity Map is based on the
modeling of the L2 norm. The following theorem [24] gives
us the distribution of the Lr (r ≥ 1) norm under certain
conditions.
Theorem 1: For non-identical, correlated and upper-

bounded random variables Xi = |Si − Ti|r , the random
variable Z =

∑N
i=1 Xi, with finite N , is Weibull-distributed.

The density of Z is given by the eq. (14).
With Si and Ti are feature vectors. In our case, Si and Ti
represent the pixel vector of image 1 or image 2.

For the proof, see [25]–[27].
Property 1: If the random variable Z is Weibull-

distributed with shape (resp. scale) parameter α

(respectively β), then the variable Z1/r
= (

∑N
i=1 Xi)

1
r is a

Weibull distribution with parameters rα and β
1
r .

For the proof it is sufficient to calculate the distribution
function of Z .

When r = 2, the L2 norm between two features vectors
follows a Weibull distribution Wbl(2α, β

1
2 ).

1) FOR THE LDM OF BINARY IMAGES
The pixel values of a distance transform are non-identical
and upper-bounded by d =

√
w2 + h2, where w and h are

the dimensions of the image. Since the distance transform
is constructed by the spatial propagation of a distance, then
the neighboring pixel values of the distance transform are
correlated. As an example, we have retrieved the values of
the neighboring pixels of the distance transform obtained
in Figure 1, plotted them against each other (see Figure 8)
and computed the correlation coefficient which is equal to
0.9911. The conditions of the theorem 1 are checked, so the
distance transform on a binary image is aWeibull distribution.
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FIGURE 7. Densities of weibull distribution for different shapes and scale parameters (a). Cumulative
distribution functions of weibull for different shapes and scale parameters (b).

FIGURE 8. Neighboring pixel values graph of the distance transform map.

For any pixel p, minq ||p − q||2 is still a Euclidean distance.
The Euclidean distance transform (dtX) of a binary image X
is then Weibull-distributed.

For A, B two binary images and p ∈ A
a
B. From eq. (6)

we have:
• if A(p) = 1 and B(p) = 0, then DTA(p) = 0 and
LDM(A,B)(p) = DTB(p),

• if B(p) = 1 and A(p) = 0, then DTB(p) = 0 and
LDM(A,B)(p) = DTA(p).

Previously we showed that the Euclidean distance transform
of a binary image follows a Weibull distribution. So we
can conclude that the Local dissimilarity Map of two binary
images is Weibull-distributed. �

2) FOR THE RVLDM OF GRAYSCALE IMAGES
As discussed in the previous section, in order to compute
the Euclidean distance transform and the RVLDM between
grayscale images, the images are divided into sub-images
obtained using τ thresholds. The sub-images obtained after
thresholding are binary images. From eq. (6) and (7),

we have:

RVLDM(p) =
1
N

N∑
i=1

(
Bi(p)DTAi (p)+ Ai(p)DTBi (p)

)
=

1
N

N∑
i=1

Bi(p)DTAi (p)

+
1
N

N∑
i=1

Ai(p)DTBi (p). (16)

Since RVLDM is a sum of Euclidean distance transforms,
it is still a distance transform. As seen above, the distance
transform follows a Weibull distribution. Hence, RVLDM is
Weibull-distributed. �

V. NUMERICAL EXPERIMENTATION
A. DATA DESCRIPTION
To evaluate the proposed method we used a local old print
data set [10], and the *NIST data sets which are: MNIST [6],
[9], F-MNIST [6], [9], E-MNIST [30], [31], K-MNIST [32].
The MNIST, F-MNIST, E-MNIST, K-MNIST data sets
contain a large number of images of shape 28 ∗ 28 pixels.
They are composed of 10 classes (0-9), except the E-MNIST
data set. The E-MNIST data set contains uppercase letters
(A-Z ) and lowercase letters (a-z) which are each composed
of 26 classes. F-MNIST data set contains a lot of contrasting
images (see Figure 9(c)). All these data sets, except the old
print data set (64 images), contain 60, 000 grayscale images
for training and 10, 000 images grayscale for testing a model.

In [6], Xiao proposed different types of machine learning
algorithms for solving MNIST and F-MNIST data set. In [9],
Kadam applied convolutional neural networks (CNN) for
image classification. Authors used five different architectures
with varying convolutional layers, filter size and fully
connected layers are proposed. They used MNIST and F-
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FIGURE 9. Example of *NIST images; MNIST (a), E-MNIST (b), F-MNIST
(c) and K-MNIST (d).

MNIST to test the performances of CNN. In [31], Vaila
proposed a deep unsupervised feature learning spiking
neural networks with binarized classification layers for
the E-MNIST classification. Authors have used binary
activations to extract features from spiking input data, and
a gradient descent on the output layer to perform training for
classification. The E-MNIST data set is intended to represent
amore challenging classification task for neural networks and
learning systems. In [32], Clanuwat introduced the K-MNIST
data set to engage the machine learning community to the
field of Japanese literature.

In this paper, we randomly selected 130 images (to avoid
bias in the results) from each class on MNIST, F-MNIST
and K-MNIST data sets and 100 images from each class
on E-MNIST data set. In addition, to compare images,
each image must be compared to the rest of images in the
data set in order to provide the RVLDMs of image pairs.
We then obtained a huge number of RVLDMs. It can be seen
in Table 1 that the comparison of 1, 300 images provided
844, 350 RVLDMs of distinct image pairs on F-MNIST
data set, and 100 images on E-MNIST data set supplied
3, 378, 700 RVLDMs distinct image pairs. In practice,
a storage constraint limits the number of usable images in
the * NIST data sets.

B. NUMERICAL MODEL VALIDATION WITH THE K-S TEST
The Kolomorov-Smirnov test is an adjustment test based on
distribution function F rather than density. It is based on these
two assumptions:
• H0: the empirical distribution function F̂ is close to the
distribution function F of a continuous law.

• H1: otherwise.

TABLE 1. Number of images, classes and RVLDM in each data set.

To perform this test, we first look for an estimate of the
distribution function from an observed sample in order to
compare it with the theoretical distribution function. The
measurement of the fit from F to F̂ is done using the
Kolmogorov-Smirnov statistic, K-S statistic [28]. To know
whether to accept or reject the null hypothesis, we compare
this Kolmogorov Smirnov statistic with a critical valueDσ (n).
This critical value depends on the σ risk of being wrong and
the number of samples n.

In the previous sections, we have shown that the RVLDM
is a two parameter (α, β) Weibull distribution. Parameters
are estimated by using the maximum likelihood method [29],
which not only allows us to model the RVLDMs but
will also be used later to discriminate images (separating
RVLDMs of similar image pairs and dissimilar image pairs,
section V-C). To illustrate, we have modeled the RVLDMs
of grayscale images given in Figure 4. Their histograms
and their empirical distribution functions, fitted with a two-
parameter Weibull distribution, are shown in Figure 10. The
fits of the Weibull distribution on histograms and empirical
distribution functions of RVLDMs in Figure 4 are perfect. So,
the Weibull distribution fits well with the grayscale values of
the RVLDMs. This fit is evaluated by Kolmogorov Smirnov’s
statistical test at a confidence level of σ = 0.05. This
experiment is repeated on more 1000 RVLDMs of old print
images and every time the distance Dσ (n) is less than the
critical value. This experience remains true for any Local
Dissimilarity Maps of binary or grayscale images.

C. BEHAVIOR OF DISTRIBUTION PARAMETERS
FOR DATA SETS
The RVLDMs in each data set are labeled into similar and
dissimilar classes. A RVLDM of image pairs is considered as
similar when they belong to the same class. As mentioned
above, the RVLDMs of images follow a two-parameter
Weibull distribution. To illustrate RVLDMs discrimination,
we took 6 classes and 15 images in each class of MNIST
and F-MNIST data sets. The RVLDMs of all images are
computed and the two parameters are then extracted and rep-
resented (scale parameter with respect to the shape parameter,
see Figure 11). For these two data sets, we obtained 4005
RVLDMs, 630 of similar image pairs and 3, 375 of dissimilar
image pairs.

With our method, any image differences (whatever their
size) can be summarizedwith only two values (α, β) extracted
from the Weibull distribution of their RVLDMs. To classify
image pairs, we only need to give a vector composed of two
values into the classifiers to compute the results.
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FIGURE 10. Empirical densities and empirical distribution functions of the RVLDMs in Figure 4 fitted with a two-parameter Weibull
distribution. In (a), we merge on the same graph the histograms of RVLDM(A,B), RVLDM(A,C) and RVLDM(C,D) fitted by the weibull
distribution with parameters (α1 = 1.08, β1 = 0.87), (α2 = 0.96, β2 = 0.79) and (α3 = 2.10, β3 = 0.76) respectively. In (b), we merge on
the same graph the empirical distribution functions and the cumulative distribution functions of Weibull for the three RVLDM with the
parameters (α1, β1), (α2, β2) and (α3, β3). Note that the curves of the two RVLDMs of similar images overlap and are detached from
those of dissimilar images.

FIGURE 11. Representation of the scale and shape parameters of the RVLDM of images from MNIST data set (a) and F-MNIST data set (b).

It is clear that in the scale-shape parameter space, similar
and dissimilar image pairs belong to distinct clusters.
Figure 11 shows the relevance of the two parameters of
Weibull to distinguish the RVLDMs of similar and dissimilar
image pairs. So the next step is to use supervised binary
classifiers to be able to discriminate similar and dissimilar
image pairs. A multi-class classification will also be tested
to show the effectiveness of our method with limited data
available. The following sections present the results of binary
and multi-class classification obtained from our proposed
approach.

D. 2-CLASS CLASSIFICATION
In this section, supervised algorithms are used to classify
similar image pairs and dissimilar image pairs. In this work,
the following three supervised classifiers are used: k-Nearest
Neighbors (k-NN) [33], [34], Artificial Neural Networks
(ANN) [35], [36] and the Logistic Regression (LOGR) [36].
The k-NN is one of the easiest supervised learning algorithms
to implement. It can be used to solve both classification and
regression problems. The ANN are widely used in image
processing. They do more in-depth learning and give better
performance depending on the number of hidden layers and
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TABLE 2. Classifiers and their implementation details.

TABLE 3. Accuracy, recall, precision, and F1score obtained by the classifiers k-nearest neighbors, artificial neural network and logistic regression.
Application on MNIST, F-MNIST, K-MNIST, E-MNIST and old print data sets. It is a binary (two classes) classification: class of similar image pairs and class
of dissimilar image pairs using the RVLDM, MSSIM and FSIM approaches. In bold is where our approach gives best performances for the different data
sets.

the number of neurons in each layer. Finally, LOGR is one
of the statistical approaches that can be used to evaluate
and characterize the relationships between a binary response
variable and exploratory variables that can be categorical

or numerical. In our case, we used a supervised learning
algorithm.

In the rest of this paper, we use these three algorithms
proposed by Xiao [6]. First, the k-NN using the number of

35760 VOLUME 10, 2022



M. Diaw et al.: Modeling LDM With Weibull Distribution

FIGURE 12. The whole process for classifying an image pair into similar
and dissimilar. Our approach uses the two weibull parameters as
descriptors and the others use the similarity indices.

neighbors k = 9 and Manhattan distance (l1). Second, the
ANN using ′relu′ as activation function, and 2 hidden layers
with 100 neurons on the first hidden layer and 10 neurons on
the second hidden layer. Third, the LOGR using the inverse
of regularization strength C = 1, and (l1) penalty term as
hyperparameters. Their implementation details are illustrated
in Table 2. For each classifier, hyperparameters chosen
provide good performances. In this section, the purpose is
to classify image pairs into similar and dissimilar using
the Weibull parameters as descriptors. Figure 12 shows the
whole process for classifying an image pair into similar and
dissimilar classes. The performance of our proposed method
is compared with the state-of-the-art similarity measures such
as MSSIM and FSIM.

In the MNIST, F-MNIST and K-MNIST data sets, 83, 850
RVLDMs of similar image pairs and 760, 500 RVLDMs
of dissimilar image pairs were obtained. For the E-MNIST
data set, we obtained 128, 700 similar image pairs and
3, 250, 000 dissimilar image pairs. Finally, for the old print
data set we have 96 RVLDMs of similar image pairs
and 1, 795 RVLDMs of dissimilar image pairs. In each
case, 10-cross validation is used for all data to compute
performances. Since these two classes are very unbalanced
for each data set (the class of dissimilar image pairs contains

twice or three times as much RVLDMs as that of similar
image pairs), we evaluate the performance of our proposed
method by calculating the accuracy, the Recall, the Precision,
and the F1score with respect to the similar image pairs class.
The accuracy is the percentage of correct predictions. In our
case, it is the percentage of correctly classified image pairs.
The F1score is the harmonic mean of Precision and Recall.
The Precision refers to positive predictive value and the
Recall refers to true positive rate.

Algorithm 1 2-Class Classification Procedure
Input: Image pairs (Ai,Aj), i = 1, . . . ., N-1 and j = i +

1, . . . ,N, where N is the number of images
Output: The prediction vector for 2-class classification `
1: for i = 1 to N step 1 do
2: for j = i+1 to N-1 step 1 do
3: Compute RVLDM(Ai, Aj), refer to eq.(7).
4: end for
5: end for
6: for i = 1 to Number of RVLDMs do
7: Extract (αi, βi) using the maximum likelihood

method.
8: end for
9: Apply a 10-cross validation in the data (α, β) using

classifiers k-NN, ANN and LOGR.

1) Accuracy = TP+TN
TP+FP+TN+FN

2) Recall = TP
TP+FN

3) Precision = TP
TP+FP

4) F1score =
2×(Recall×Precision)
(Recall+Precision)

• TP = Number of similar image pairs correctly
classified.

• TN = Number of dissimilar image pairs correctly
classified.

• FP = Number of dissimilar image pairs classified
as similar.

• FN = Number of similar image pairs classified as
dissimilar.

E. APPLICATIONS OF GEOMETRIC TRANSFORMATIONS
ON DATA SETS
In this section, we will see the robustness of the RVLDM
on geometric transformations such as pixel translations.
Figure 13 shows the evolution of the F1score as a function of
the number of translated pixels in the image to be compared in
theMNIST, FMNIST, KMNIST and old print data sets. Since
k-NN with k = 9 gave the best performances for classifying
image pairs into similar and dissimilar without geometric
transformations (see Table 3), we took the same classifier to
compute the F1score of similar image pair classes. We also
tested for the ANN classifier and the same behavior was
observed. Even before calculating the F1score, we had tested
for both classifiers the recall and the precision. For each
metric and regardless of the classifier, the RVLDM is more
robust than the state-of-the-art similarity measures to pixel
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Algorithm 2Multi-Class Image Classification Procedure
Input: Images Ai, i = 1, . . . .,N where N is the number of

images
Output: The prediction vector for the multi-class image

classification v1
1: for i = 1 to N step 1 do
2: for j = i+ 1 to N − 1 step 1 do
3: Compute RVLDM(Ai,Aj), refer to eq.(7).
4: end for
5: end for
6: for = 1 to Number of RVLDMs do
7: Extract (αi, βi) using the maximum likelihood

method.
8: end for
9: Apply a 10-cross validation in the data (α, β) using

classifiers k-NN, ANN and retrieve the prediction label `.
The vector ` contains, in our case, 0 and 1. 1 corresponds
the class of similar image pairs and 0 the class of
dissimilar image pairs.

10: Initialize a square matrixM of size N .
11: Initialize x = 0
12: for i = 1 to N step 1 do
13: for j = i+ 1 to N step 1 do
14: M [i, j] = `[x]
15: x = x + 1
16: end for
17: end for
18: R = M + M t . M t is the transpose matrix ofM
19: Initialize a matrix C of size N ∗mwherem is the number

of classes in the data set.
20: N1 = N/m is the number of images in each class
21: for k = 1 to m step 1 do
22: s1 = (k − 1) ∗ N1 and s2 = k ∗ N1
23: for i = 1 to N step 1 do
24: for j = s1 to s2 step 1 do
25: C[i, k] = sum(R[i, s1 : s2]==1), count the

number of similar RVLDM correctly classified in each
line in the matrix R.

26: end for
27: end for
28: end for
29: Initialize a vector v1 of size N and a vector v2 ranging

from 0 to 9 with step 1
30: for i = 1 to N step 1 do
31: S = C[i, :]
32: for j = 1 to m step 1 do
33: if max(S)= S[j] then
34: v1[i] = v2[j]
35: end if
36: end for
37: end for

translations. The same behavior was also observed for other
transformations such as rotation, noise addition and barrel
deformation.

TABLE 4. Accuracy obtained by the classifiers K-nearest neighbors,
artificial neural networks. Application on MNIST, F-MNIST, K-MNIST,
E-MNIST data sets. It is a multi-class classification using our approach
based on RVLDM and those proposed by Xiao [6]. The latter is a well
known and widely used method. Values in bold are where our approach
gives the best performances for the different data sets.

After evaluating the effectiveness of the proposed approach
on similar and dissimilar image pairs classification (2-class
classification), we will test it on multi-class classification in
the next section.

F. MULTI-CLASS CLASSIFICATION
In this part, the proposed method is tested on 10-class
image classification for MNIST, F-MNIST, and K-MNIST
data sets and 26-class image classification for E-MNIST
data set. This approach consists of extracting the Weibull’s
parameters (α, β) in each RVLDM and to use them as
input data in the classifiers to be able to give the class of
unknown images. We have 10 classes in each data set (except
E-MNIST data set which has 26 classes). The classes are
given from 0-9 for MNIST, F-MNIST, K-MNIST data sets
and A-Z for E-MNIST data set. In this case, we make a
multi-class classification instead of a 2-class classification.
To know the class of an unknown image, the RVLDM of
this image is calculated with all images in each class and the
proposed class of the image is the one that contains the most
similar RVLDMs. The method is compared with the widely
used state-of-the-art machine learning methods proposed by
Xiao [6] (see Table 4). There are methods that consist of
injecting images directly into a classifier. It is the role of
the classifier to look directly at the image features and to
decide their class. We used the same classifiers quoted in the
section V-D with the same hyper parameters. Table 3 shows
that the K-Nearest Neighbors (k-NN) and Artificial Neural
Network (ANN) are given the best F1score. Hence, in the rest
of this paper, these two classifiers and 10-cross validation are
used to perform the classification.

G. INFERENCE TIMES IN BINARY AND MULTI-CLASS
CLASSIFICATION
In this section, we present the inference times of our proposed
method and the state-of-the-art methods on *NIST and old
print data sets. In this paper, it is the time of extracting
input parameters and classification. For our approach the
inputs represent (α, β) parameters of theWeibull distribution,
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FIGURE 13. The F1score curves for each measure as a function of the number of translated pixels Nt of the image to be compared in
the MNIST (b), FMNIST (c), KMNIST (d) and old print (e) data sets. In each instance, k-NN with k = 9 is used to compute the F1score.
We also tested for the ANN classifier and the same behavior has been observed. Even before calculating the F1score, we had tested
for both classifiers the recall and the precision and in each instance our method is more robust the state-of-the-art methods.

extracted from the RVLDMs of image pairs. For MSSIM and
FSIM, the inputs are the similarity indices. Table 5 shows
the inference times in seconds of our approach and those
of the state-of-the-art methods for image pairs classification
(2-class classification). Steps of the approach are illustrated
in Algorithm 1. Table 6 presents the inference times of our
method and methods presented in [6] for multi-class image
classification. Algorithm 2 present the steps of this approach.

VI. COMPARISON TO STATE-OF-THE-ART METHODS
First, we evaluate our approach against the two state-of-
the-art similarity measures: the MSSIM and the FSIM.
For both measures, the similarity index of image pairs is
calculated and it is used as descriptors for classifiers. Table 3
present image pairs classification (2-class classification)
results based on similarity measures. We can see that the
proposed method based on the RVLDM outperforms the
state-of-the-art methods in terms of accuracy and F1score
when we took k-NN and ANN as classifiers. However, our
method does not outperform the state-of-the-art methods in
the F-MNIST data set when we used the Logistic Regression.

Indeed, the F-MNIST data set contains contrasted images and
the RVLDM is sensitive to these kinds of images. Despite
the fact that it is below the other methods, it gives good
performances in terms of accuracy, and even in terms of
F1score.

Second, geometric transformations such as pixel transla-
tion is applied to show the robustness of our proposed method
against the state-of-the-art similarity measures. In Figure 13,
we can see that our method is more robust than others to
pixel translation. Whatever the number of translated pixels,
our approach gives the highest F1score compared to other
methods. This behavior is also true for other transformations
such as rotation, noise addition and barrel deformation.

Finally, to further investigate the effectiveness of our
method, we applied it to a multi-class image classifica-
tion problem. It is compared against the state-of-the-art
classification methods based on machine learning proposed
by Xiao [6]. In this part, the classifiers used in [6] are
the same ones cited in section V-D. Table 4 presents the
results of our proposed method and the state-of-the-art image
classification methods. The results show that our approach
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TABLE 5. *NIST and old print data sets: Inference times in seconds for extracting input parameters ((α, β) for our measure RVLDM and similarity indices
for the state-of-the-art measures MSSIM and FSIM), and image pairs classification for each classifier.

TABLE 6. *NIST data sets: Inference times in seconds for extracting input parameters (α, β) for our measure RVLDM and multi-class image classification
for k-NN and ANN classifiers. We also provide inference in seconds of the state-of-the-art methods proposed by Xiao [6] in the same data sets.

based on the RVLDM outperforms the other methods in
terms of accuracy in data sets, except for the F-MNIST
data set.

In recent years, researchers have used deep learning
methods based on Convolutional Neural Network (CNN),
which is a branch of machine learning, to classify images
in these different data sets. CNN methods are currently very
successful to image classification. Kadam proposed in [9]
five architectures of CNN to classify images from the F-
MNIST and the MNIST data sets. Authors used architectures
with varying convolutional layers, filter size and fully
connected layers. For the two data sets the best accuracy is
given by the architecture 3. For MNIST data set, the accuracy
obtained is 99.3%while the F-MNIST, the accuracy is 93.5%.
Results are obtained with 128 batch size, softmax activation
function, adam optimizer, 0.25 dropout after each pooling
layer, 50 epochs and 2× 2 kernel size. CNN and Long Short-
Term Memory (LSTM) algorithms are introduced by [30] to
classify images from theMNIST and E-MNIST data sets. For
the MNIST data set, the accuracies obtained from CNN and
LSTM are 98.2% and 98.3% respectively. For the E-MNIST
data set, the accuracies obtained from CNN and LSTM are
85.1% and 85.7% respectively. To our knowledge, they are
the most recent deep learning methods applied to these data
sets. These models are all trained with 60, 000 images and
tested with 10, 000 images from each data set. However, only
a few of the images are needed by our approach to perform
well. The proposed method is very efficient when we don’t
have a large number of image data sets at our disposal. In this
case, deep learning models will not be well trained to make
good predictions.

Although our approach gives less performance for the
F-MNIST data set, it shows good accuracies for the other data
sets. For theMNIST data set, there is no significant difference
in performance between our approach and the state-of-the-art
deep learning methods. However, we can see that our method

outperforms the methods presented in [30] for the E-MNIST
data set. Machine learning methods require an input vector
of size (w, h) (because it takes the entire image as an input)
while our method needs only a vector with two values (α, β)
as an input for any classifier. So, we obtained comparable,
even better results compared to the state-of-the art.

Figure 14 shows confusion matrices achieved when using
both classifiers formed on the MNIST data set. For both
classifiers, our method outperforms the others in terms of
class accuracy. These results were also tested on the other data
sets (except the F-MNIST data set) and the same results were
obtained.

In terms of inference times, we can see that the proposed
method uses more computing time than the MSSIM method
and less computing time than the FSIMmethod (see Table 5).
For the MSSIM, although it is the least expensive in
inference times, it gives worse performances compared to
our method and FSIM. However, the Table 6 shows that the
proposed method is the least expensive in inference times
compared to the method proposed in [6] for multi-class image
classification. Deep learning methods are known to require
a huge amount of resources for model learning. In contrast,
our image classification method is simpler and more efficient
and does not require this huge amount of resources and image
data sets.

We also observed that the complexities of algorithms in
time and memory used in the proposed method with dif-
ferent classifiers were O(n2). The complexity of algorithms
increases quadratically when the image sizes or the number
of images increases.

The main limitation of the proposed method is that it fails
on images with mixed structures and textures. Contrasted
images contain a lot of structures. Although the state-of-the-
art methods outperform ours in terms of accuracy for multi-
class image classification, our approach works correctly and
has given good performances for these types of images.
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FIGURE 14. At the top, we have the confusion matrix obtained using k-NN of our proposed method (a) against the method proposed by
Xiao [6] (b) on MNIST data set. At the bottom, we have the confusion matrix obtained using ANN of our proposed method (c) against the
method proposed by Xiao [6] (d) on the same data set.

Wedecided not to do any preprocessing on the images to show
the robustness of our proposed method.

VII. CONCLUSION AND PERSPECTIVES
Image comparison and image classification have become
one of the research concerns in recent years, due to the
considerable increase of images in our digital world. This
paper presents a new method to image pairs classification
and especially multi-class image classification based on the
modeling of the Local Dissimilarity Map. We proposed
a two-parameter Weibull distribution to model the Local
Dissimilarity Map between two binary and grayscale images.
A Kolmogorov-Smirnov test was used to validate the model.
The two parameters characterizing the model are exploited
to distinguish the RVLDMs of image pairs into similar and
dissimilar classes. We showed that the proposed method is
robust to geometric transformations such as pixel translation.
The method is also applied to multi-class image classification
using the parameters (α, β) as descriptors. In each case,

our proposed approach is comparable, even better than the
state-of-the-art methods in terms of accuracy and F1score,
except for the F-MNIST data set with contains contrasted
images. The approach is also the least expensive in inference
times compared to the state-of-the-art images classification
methods. Unlike deep learning methods, our proposed
approach is even very efficient when we don’t have a large
number of image data sets at our disposal. It is a method that
could be used in the medical field or other fields where there
is not a huge available data set.

In future works, the two following points will be addressed
to overcome the problem of the RVLDM on images with
mixed structures and textures and to improve the robustness
of the method on contrasted images. They will enable us to
improve the results of our proposed method in different data
sets.

• We will inject in the RVLDM one of dissimilarity mea-
sures to detect differences on images images containing
contrasts or mixed structures and textures with very
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small windows. Among these measures, we have mutual
information, disjoint information, Minkowski distance
and Kullback-Leibler’s divergence. Mutual information
is a similarity measure that has shown good results in the
field of medical image registration [37]. It allows us to
analyze, interpret the data judiciously and quantify the
information measured in terms of entropy. The disjoint
information is the opposite of mutual information. The
difference between these two measures is the role of
joint entropy. For this reason, we want to exploit them,
in the future, as local measures for the RVLDM. It could
allow us to improve the results of our proposed method
for each data set.

• As most of image classification methods, preprocessing
on input images is required to have good performances.
In the future, we will then use a Local Contrast
Normalization method [38] to overcome the problem of
the RVLDM on contrasted images. This preprocessing
will make our measure more efficient at detecting
dissimilarities and it will improve the results of our
proposed method on each data set.

ACRONYMS
• LDM Local Dissimilarity Map
• PSNR Peak Signal to Noise Ratio
• MSE Mean Square Error
• MSSIM Mean Structural Similarity Index
• FSIM Feature Similarity Index
• DT Distance Transform
• RVDT Real Value Distance Transform (distance
transform for grayscale images)

• RVLDM Real Value Local Dissimilarity Map (LDM
for grayscale images)

• k-NN k-Nearest Neighbors
• ANN Artificial Neural Networks
• LOGR Logistic Regression
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