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A set of (Ln[14-MCZn
(II)

N(quinHA)-5])2Ln2Zn2(quinHA)2(ph)2(Hph)4(OH)8(H2O)4 metallacrowns 

(Ln-1, Ln = Tb, Gd, or Yb; H2quinHA = quinaldic hydroxamic acid, H2ph = phthalic acid) have 

been synthesized via solution-state self-assembly. The MCs possess an uncommon topology 

within the metallacrown family where two rarely seen 14-metallacrown-5 moieties are fused by a 

Yb2Zn2(quinHA)2 bridge. Moreover, Yb-1 analyzed in the solid state exhibits a characteristic near-

IR luminescence signal arising from Yb3+ 2F5/2→2F7/2 transition despite the proximity of high 

energy O–H oscillators.

Compounds formed with trivalent lanthanide cations (Ln3+) possess unique magnetic and 

luminescence properties that are examined across a variety of fields.1,2 These properties result from 

4f valence electrons that are shielded from their environment by filled 5s and 5p orbitals.3 From a 

magnetic perspective, Ln3+ have been studied as single-molecule magnets, thanks to unquenched 

spin-orbit coupling that enhances anisotropy, and as contrast agents for magnetic resonance 

imaging.4–9 From a luminescence point of view, Ln3+ are attractive because of their characteristic 

and narrow emission bands, as well as their long luminescence lifetimes.3,10–15 In addition, several 

Ln3+ ions emit photons in the near-IR spectroscopic range that are of special interest for deep tissue 

imaging and telecommunications.10 However, Ln3+ have low absorbance because most f–f 
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transitions are parity forbidden. To counteract this limitation organic chromophoric ligands with 

large molar absorption coefficients can be used to sensitize Ln3+ via energy transfer, leading to 

enhanced emission (antenna effect).16,17

Figure 1. Representation of the molecular structure of Yb-1 from single crystal diffraction data (a), 

and schematic representation of the two parent ligands: quinaldic hydroxamic acid (H2quinHA) 

and phthalic acid (H2ph) (b). Aqua = Yb, pink = Zn, light blue = N, red = O, grey = C. Solvent 

molecules and hydrogen atoms are omitted for clarity.
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Metallacrowns (MCs) were first introduced by Pecoraro and Lah in 1989 as inorganic analogues 

to crown ethers, where the [–C–C–O–]n repeating unit is replaced by a [–M–N–O–]n unit to form 

a rigid macrocycle.18,19 M is typically a third-row metal ion, and the N–O binding unit is usually 

provided by hydroximates.20–22 Since 2011, MCs have been studied as antenna for Ln3+,23 typically 

inclding optically silent metals such as Zn2+ and Ga3+ to form the metallamacrocycle structure. 

Such Ln3+-based MCs have shown promises for optical imaging, orthogonal functionalization, 

nanothermometry, and white-light emission.24–33 Here, we present a series of Ln3+/Zn2+ MCs 

(Ln[14-MCZn
II

N(quinHA)-5])2Ln2Zn2(quinHA)2(ph)2(Hph)4(OH)8(H2O)4 (Ln-1, Ln = Tb, Gd, or Yb; 

H2quinHA = quinaldic hydroxamic acid, H2ph = phthalic acid, Figure 1) possessing a different 

structure that hasn’t been reported so far. They contain two fused [14-MC-5] motifs and are able 

to sensitize Yb3+ luminescence in the near-IR range. 

The self-assembly synthesis of Ln-1 compounds was achieved via a stoichiometric addition of 

the appropriate components in N,N-dimethylformamide. A diffusion of water into N,N-

dimethylformamide solutions of Ln-1 formed single crystals. X-ray diffraction confirmed the same 

unit cell parameters for each of the series of Ln-1. Detailed analysis was performed on Yb-1 that 

is comprised of four Yb3+, twelve Zn2+, ten quinHA2–, four Hph–, two ph2–, eight OH–, and four 
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H2O. This structure contains two [14-MC-5] motifs that are spanned by a central Yb2Zn2(quinHA)2 

moiety (Figures S1 and S2, Supporting Information). The solid-state packing of Yb-1 molecules 

is stabilized by through-solvent intermolecular interactions (including hydrogen bonding and van 

der Waals interactions) and – stacking of adjacent quinHA2– located on neighboring molecules. 

Each metal ion was analyzed for its coordination geometry. In particular, coordination number 

(CN), shape, crystal shape measure parameter (CShM)), average bond length (dav), and bond-

valence sums (BVS) were determined (Table 1). Representations generated from the 

crystallographic data of each ligand field may be observed in Table 1 and Figure S3 (Supporting 

Information).

Two unique Yb3+ cation sites can be distinguished, yet analysis with SHAPE v2.1 software on 

both Yb1 and Yb2 confirm eight-coordinate trigonal dodecahedral environments comprised of 

eight oxygens.34 Bond-valence sums confirmed the +3 oxidation state for each of the two Yb3+ 

cations. Yb1 is a part of the spanning moiety while Yb2 is a part of the [14-MC-5] motif. There 

are six Zn2+ in the asymmetric unit, and all but Zn2 adopt a coordination number of five. Zn2 is in 

a six-coordinate octahedral coordination environment comprised of oxygen atoms. Zn1 and Zn3–

Zn6 are all in five-coordinate coordination environments comprised of three oxygen and two 
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nitrogen donor atoms. Analysis with SHAPE v2.1 suggests that the best coordination geometry to 

describe Zn1 and Zn4–Zn6 is square pyramidal while Zn3 is best described as a trigonal 

bipyramidal geometry.34 Bond-valence sums confirm the +2 oxidation state for each Zn2+ cation. 

Zn1 is the only Zn2+ cation that is a part of the spanning moiety, whereas the other five Zn2+ cations 

are a part of the [14-MC-5] motif. 

Table 1. Geometric information for metal cations in Yb-1.

Metal dav CN Crystallographic 

Representation

Shape CShMa BVS35,36 Addison 

Tau37

Yb1 2.321 8 [5 OquinHA, 

1 Oph, 1 OOH, 

1 Owater]

Trigonal 

Dodeca-

hedron

1.01186 3.036 -----

Yb2 2.337 8 [4 OquinHA, 

2 Oph, 1 OOH, 

1 Owater]

Trigonal 

Dodeca-

hedron

0.60167 2.950 -----

Zn1 2.066 5 [2 NquinHA, 

2 Oph, 1 OOH]

Square 

Pyramid

2.06806 1.988 0.446

Zn2 2.098 6 [1 OquinHA, 

3 Oph, 1 OOH]

Octa-

hedron

1.17399 2.050 -----

Zn3 2.074 5 [2 NquinHA, 

1 Oph, 2 OOH]

Trigonal 

Bipyramid

2.20789 1.995 0.583
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Zn4 2.052 5 [2 NquinHA, 

2 OquinHA, 1 

Oph]

Square 

Pyramid

0.59023 2.022 0.110

Zn5 2.035 5 [2 NquinHA, 

2 OquinHA, 1 

Oph]

Square 

Pyramid

0.88679 2.113 0.169

Zn6 2.048 5 [[2 NquinHA, 

2 OquinHA, 1 

OOH]]

Square 

Pyramid

1.28931 2.038 0.103

a Smallest CShM out of all ideal geometries from SHAPE v2.1 analysis.34

There are other examples of MCs formed with Zn2+, including [12-MC-4]s, [15-MC-5]s, and a 

bis[12-MC-4][12-MC-8] “encapsulated sandwich” compounds.24,38–45 The structure reported here 

stands out among these examples since examples of [14-MC-5]s are rare and Ln-1 series is only 

the second example reported. The first example of a [14-MC-5] was comprised of Mn3+ and 

salicylhydroximate ligands that encapsulate a single Ln3+ in their cavity, plus another Ln3+ as a 

part of the MC ring.48 Even though both compounds are [14-MC-5]s, there are significant 

differences in their structural compositions (Figure 2). Both [14-MC-5] compounds have a M–O–

M “stutter” using a 3-OH– or 3-O2– rather than a hydroximate group that induces the removal of 

a nitrogen atom from the standard M–N–O–M motif. Another difference that can be observed 
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between the two structures is the presence of a mirror plane that bisects the molecule in Mn3+/Ln3+ 

[14-MC-5] MC. Conversely, Yb-1 does not possess a mirror plane and maintains the M–N–O 

sequence for each of the four subunits. In addition, the Mn3+/Ln3+ MC has a Ln3+ in the [14-MC-

5] MC ring, while that in the Ln-1 consists only of Zn2+ ring metal ions. Lastly, the [14-MC-5] 

ring in Mn3+ is planar since each Mn3+ is located in an octahedral coordination environment with 

the 5,6-fused chelate motif of the salicylhydroximate ligand. In the case of Ln-1, both the square 

pyramidal Zn2+ centers and the 5,5-fused chelate motif requires some bowling to complete the 

cycle with reasonable bond lengths.



9

Figure 2. Molecular representation of [14-MC-5] motifs established from crystallographic data for 

the Mn3+/Y3+ (a) and Yb-1 (b) MCs. The MC ring and encapsulated Ln3+ are highlighted. Teal = 

Y, aqua = Yb, indigo = Mn, pink = Zn, light blue = N, red = O, grey = C.

Absorption spectra were collected for each Ln-1 and the parent ligands in N,N-

dimethylformamide solution at ambient temperature (Figure S4, Supporting Information). 

Compared to the H2quinHA and H2ph that possess absorption bands in the UV range up to 350 
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and 300 nm, respectively, absorption spectra of Ln-1 are significantly red-shifted and extend up to 

475 nm. The broad lower energy absorption band with a maximum at 380 nm (ε380 = 2.7 × 104 M–1 

cm–1) could be assigned to intra- and/or inter-ligand charge transfer (ILCT) transitions considering 

that Zn2+ usually does not participate in metal-to-ligand or ligand-to-metal charge transfer 

transitions and that the absorption spectra of Ln-1 are independent of Ln3+ identity. Similar ILCT 

absorption bands were observed for Zn2+/Ln3+ MCs with an ‘encapsulated sandwich’ structure 

assembled using quinHA2– ligands.24 Diffuse reflectance spectra of Ln-1 formed with the different 

Ln3+ are similar to each other and exhibit broad bands in the UV and visible range up to 550 nm 

(Figure S5, Supporting Information).

Luminescent properties of Ln-1 were analyzed in the solid state. Energy positions of the ligand-

centered levels, in particular triplet states, employ Gd3+ since the emissive state (32 200 cm–1)49 is 

too high in energy for many organic sensitizers. However, no phosphorescence could be detected 

upon excitation of Gd-1 in the range of 280–340 nm at 77 K in time resolved mode. On the other 

hand, Gd-1 exhibited broad-band emission in the range 450–750 nm arising from the ILCT in 

steady-state mode (Figure S6, Supporting Information). The energy position of the ILCT state was 

determined to be 21 410 cm–1 (467 nm) from the onset of the emission band of Gd-1, a value 
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similar to the Zn2+/Ln3+ ‘encapsulated sandwich’ MCs (21 560 cm–1).24 Upon excitation into ILCT 

band at 400 nm, Tb-1 exhibited only a broad-band emission in the range 450–750 nm (Figure S6, 

Supporting Information). The latter could be explained by a high probability of back energy 

transfer because of the energy match between the ILCT (21 410 cm–1) and the Tb3+ 5D4 emitting 

level (20 500 cm–1) in Tb-1. On the other hand, Yb-1 upon excitation at 400 nm displays Yb3+-

centered luminescence in the near-infrared range due to the 2F5/2 → 2F7/2 transition (Figure 3). 

Excitation spectrum of Yb-1 upon monitoring emission at 980 nm resembles the diffuse reflectance 

one (Figure 3, solid vs. dashed black traces) and exhibits broad bands in the UV and visible ranges 

up to 550 nm pointing towards a sensitization of Yb3+ through the MC scaffold.17 It should be 

noted that Yb3+ near-infrared emission in Yb-1 could be observed despite the presence of water 

molecules in the first coordination sphere of Yb3+ that often quench near-IR emitting Ln3+.3 The 

Yb3+-centered absolute quantum yield ( ) of Yb-1 upon excitation at 400 nm is 0.051(1)%. 𝑄𝐿
𝑌𝑏

Luminescence decays of Yb-1 were best fitted by a monoexponential function (Figure S7) where 

the luminescence lifetime is 714(8) nanoseconds. Both values of  and τobs of Yb-1 are smaller 𝑄𝐿
𝑌𝑏

than the ones reported for the Zn2+/Yb3+ ‘encapsulated sandwich’ MC (  = 2.44(4)%;  = 47.8(4) 𝑄𝐿
𝑌𝑏
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ms),24 due to the presence of water molecules directly bound to the lanthanide cation as well as 

self-quenching induced by proximal Yb3+.
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Figure 3. Normalized steady-state luminescence spectra of Yb-1.  Excitation spectra (black traces) 

were recorded with em = 980 nm. Emission spectra (red traces) were acquired with ex = 400 nm. 

The diffuse reflectance spectrum of Yb-1 is superimposed for comparison (dashed black trace).

The new Ln-1 MCs we report here represent a significant addition to the library of metallacrown 

structures not only as an example of a 14-MC-5 system, but also for the ability to sensitize near-

IR emission from Yb3+. The compound is a fused bis[14-MC-5] that contains both quinHA2– and 

ph2–. Absorption spectra of Ln-1 display broad bands at lower energy due to intra-/inter-ligand 
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charge transfer transitions. Yb-1 in the solid-state displays characteristic Yb3+ emission in the near-

IR range despite the presence of water molecules directly bound to the metal ion. Given the novelty 

of the structure and composition as well as the potential application of near-IR luminescence, Ln-1 

is a notable MC compound.
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