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Bordeaux INP, HESAM Université
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Abstract

We homogenize the mechanical properties of a two-phase polymer composite, made
of a polyurethane matrix containing porous spherical silicone-based inclusions, and
designed to be used for wave control as a local resonant insulator. First we consider
a homogenized energy for the spherical inclusions, an expression obtained by an
explicit method. Then, we couple inclusions and matrix by means of the second-
order tangent method. Direct finite element simulations allow some comparisons
with available experiments.

Key words: Homogenization; Multiscale modelling; Hyperelasticity;
Metamaterials; Finite elements.



1 Introduction

Physical properties of composites depend on several factors: nature and volume
fractions of the constituents, size and shape of the inclusions, matrix-inclusion
interface properties, etc. A comprehensive review concerning the effects of
particle size, particle-matrix interface adhesion and particle-loading on the
stiffness, strength and toughness of such particulate polymer composites is in
reference [56] (see also [72,31,62,65,16,70,54,63,55]).

Pertinent homogenization techniques are manifold (see, e.g., [20,11,44,33]).
They cover even non-linear constitutive structures [68,66,67] and large strain
setting [26,27,45]. The treatise by G. Milton [43] represents a good literature
review on the topic.

Related computational techniques rest on the solution of two nested bound-
ary problems, one at the macroscopic scale, the other at a microscopic scale,
the one of heterogeneities [34] (see also, e.g., [17,42]). A starting point is the
evaluation of the macroscopic deformation gradient at every integration point.
This allows assigning Dirichlet-type boundary conditions to a statistically rep-
resentative volume element (SRVE). Once equilibrium for the SRVE has been
determined, the macroscopic stress follows as an average of the SRVE stress
field. In this way, we can consider large strains at both gross and sub-SRVE
scales. Although the computational cost is lower with respect to the one of a
full scale simulation, the approach is still computationally cumbersome, since
it requires the solution of a wide set of non-linear problems.

Analytical and semi-analytical approaches to homogenization are mainly re-
stricted to specific microstructural arrangements in linear elastic range; some
results in the presence of large strains and elastic behavior are also available
under particular loading conditions [43,59] (for appropriate bounds to geo-
metrically non-linear composites see [46,47]). However, also in this case, the
homogenization strategy could require the numerical resolution of a set of
non-linear equations.

A way to estimate the effective elastic behavior of heterogeneous materials in
non-linear setting rests on a truncated expansion of the elastic energy density
with respect to the deformation gradient (as introduced in reference [49]; see
also [52]). Here, we follow this path to homogenize a particle-based composite
consisting of porous silicone microspheres embedded in a polyurethane (PU)
matrix. Two scales need to be considered: the microscopic one pertaining to
each porous sphere (in which two phases can be identified: silicone-rubber and
voids), and the scale involving PU matrix and spheres taken after their own
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homogenization.

The material we are interested in is commonly used as an acoustic insulator.
Indeed, such a composite can be designed to get extreme acoustic macro-
scopic properties, such as large, small, imaginary or negative index of re-
fraction [20,11,44,33]. Locally resonant composites are designed, in fact, to
optimize the spatial wave-control with a sub-wavelength architecture of small
inclusions distributed (uniformly or not) in an appropriate matrix. They help
in reaching underwater furtivity of submarines from sonars, obtained by a
sound-absorbing coating, designed to reduce both the reflection of incident
waves and their transmission properties. In fact, PU matrices exhibit a low
reflection coefficient with respect to liquids like water [57] (see also [64,73]).
To improve the internal damping properties of the polymer, thus the ability
to dissipate acoustic wave energy, different types of inclusions can be consid-
ered, e.g. glass spheres, nanographene and, more commonly, hollow spherical
shells, also called micro-balloons [5,38]. Elastomers characterized by porosities
of about 1-10 µm have also been used for the fabrication of locally resonant
composites [53,4]. Their modulus of compressibility (i.e., the sound speed in-
side them) strongly depends on a small fraction of pores (this is mainly due
to the very low shear modulus of the matrix). Then, we can create spherical
Mie-type resonators at low frequency (Figure 1) to be dispersed in the PU
matrix (see also [8,7,53]).

The locally resonant composite considered here has been variously discussed in
references [8,7,53], where it has been shown how control over the porous bead
size allows the selection of a frequency range in which the composite exhibits
a prominent acoustic attenuation. For a deeper insight into the matter on
the main advantages in using a three-phase composite instead of classical soft
acoustic insulators solutions available in literature the reader is addressed to
[7,8].

Figure 1. Porous elastomeric microspheres (left: a single spherical resonator; right:
porous structure with a close-up inserted). Pictures taken with an Hitachi TM-1000
apparatus; the samples have been previously metallized with a thin layer of Pt.

Here, we neither dwell upon specific applications nor consider inertial effects,
so that we exclude a direct analysis of the acoustic behavior. We limit ourselves
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to the homogenization of elastic material properties of such a composite. Since
the inclusions have no degrees of freedom that are relative to the matrix, we
do not need to exploit directly the general model-building framework for the
mechanics of complex materials (see [39]), so that our result is an “equivalent”
Cauchy-type body. Therefore this work can be placed in the following context
with respect to the acoustic application of the composite: the homogenization
of the mechanical behavior due to a pre-stress state of the material, e.g. the
hydrostatic pressure of the water surrounding the submarine.

This paper is organized as follows: in Section 2 we summarize a strategy for
non-linear homogenization of hyperelastic media and specify how we use it.
Section 3 collects details on the analytical homogenization. Pertinent results
are in Section 4, while Section 5 reports comparisons with finite element (FE)
analyses. Section 6 includes final remarks.

2 Elements of non-linear homogenization of hyperelastic media

A key point in homogenization methods is the choice of a material elementary
cell whose properties are eventually attributed to a material point. Defining
such a cell has not always a unique and immediate way [29]. For heteroge-
neous media with a periodic microstructure the definition of a representative
volume element (RVE) is straightforward. Material heterogeneity complicates
even enormously the analysis unless we recognize a spatial scale (which can be
even not unique) at which we can consider the material to have a statistically
periodical structure. The presence of at least one such a scale justifies the no-
tion of SRVE (see also [24,13,28,41,40]). Roughly speaking, the characteristic
size of the SRVE should be chosen in such a way that the distribution of the
inclusions within the SRVE can be considered statistically self-similar (also re-
ferred to as “statistically periodic”). This means that, if one considers an SRVE
of the same size located at a different region of the heterogeneous medium, the
distribution of inclusions will be the same (although their position could be
different). Under these circumstances, the equivalent homogenised properties
of the continuum at the macroscopic scale will not depend upon the position
of the SRVE into the heterogeneous medium. For a deeper insight into the
matter the reader is addressed to [29].

Here, we consider the SRVE of a hyperelastic composite as made up of N
phases, i.e., matrix and N − 1 different types of inclusions randomly dis-
tributed. We also assume that the scales separation condition is fulfilled and
that the SRVE undergoes homogeneous strain at its boundary. Consequently,
the imposed deformation gradient F is such that F = 〈F〉, where F is the
deformation gradient tensor inside the SRVE and 〈·〉 indicates average over
the SRVE. Inclusions and matrix are both assumed to be hyperelastic, each
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one with pertinent objective elastic energy density W (r)(F), r = 1, ..., N , while
the one pertaining to the SRVE is given by

W (x,F) =
N∑
r=1

θ(r)(x)W (r)(F),

where θ(r)(x) is the characteristic function of phase r (it is equal to 1 if the
material point at x in the reference configuration belongs to the phase r, zero
otherwise). The first Piola–Kirchhoff stress tensor P at x in the SRVE is given
by

P =
∂W (x,F)

∂F
.

The effective internal (strain) energy density W̃ is defined by

W̃ (F) := min
F∈K (F)

〈W (x,F)〉 = min
F∈K (F)

N∑
r=1

c(r)〈W (r)(F)〉(r), (2.1)

where c(r) is the volume fraction of phase r, 〈·〉(r) indicates the average over the
phase r, while 〈·〉 is once again the SRVE average, where the spatial variable
x in the term defining W̃ (F) ranges. The minimum is taken over the set
K (F) of kinematically admissible deformation gradients. Finally, according
to a proposal by R. Hill [26], the effective stress in the composite P = 〈P〉 is
related to the macroscopic deformation gradient F = 〈F〉 through

P =
∂W̃ (F)

∂F
. (2.2)

2.1 Microscopic-mesoscopic scale transition: explicit strain energy densities
for porous elastomers

Silicone rubber may be considered as incompressible because its stiffness under
compression is definitely higher than the shear one [4]. A neo-Hookean type
energy density, namely

W (F) :=


µ
2
(I1 − 3) if det(F) = 1,

+∞ otherwhise,

where µ is the shear modulus and I1 := tr(C), with C := FTF the right
Cauchy-Green tensor, appears to be appropriate for it. However such a choice
does not account for porosity of the spheres that we consider, so we start
homogenizing the spherical inclusion.

Be f0 the void volume fraction (porosity) in the silicone matrix. Its presence
has two effects: (1) the homogenized continuum will be characterized by elastic
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moduli lower than those of the elastomer; (2) the incompressibility assumption
will no longer apply.

Several attempts with different methods have been made to homogenize porous
elastomers, e.g. [30,6]. In 1962, P. J. Blatz and W. L. Ko [6] proposed a strain
energy density expression, corroborated by experimental results on PU porous
rubber:

W (F) =
1

2
µf(I1−1− 1

ν
+

1− 2ν

ν
J

−2ν
1−2ν )+

1

2
µ(1−f)(

I2
J2
−1− 1

ν
+

1− 2ν

ν
J

2ν
1−2ν ),

where µ and ν correspond, respectively, to shear modulus and Poisson’s ratio
in small strain regime, f is a material parameter to be determined by a data
fitting procedure, J := det(F) and I2 := 1

2
[(tr(C))2 − tr(C2)]. Simple tension,

strip-biaxial tension, and homogeneous-biaxial tension tests of a 47% foamed
PU rubber were at the ground of that proposal. In a similar way, in [30], a
phenomenological approach based on the invariants of the logarithmic strain is
proposed for the constitutive modelling of PU-based elastomer foam. However,
these approaches require proper fitting of the material parameters through
various experimental tests, which are not available in our case.

A first explicit approximate result for arbitrary large strains is due to M.
Danielsson, D.M. Parks, and M.C. Boyce [12]; it is an upper bound for the
actual behavior of incompressible porous hyperelastic materials with HSA mi-
crostructure, obtained by making use of appropriate kinematically admissible
fields on a hollow elastomeric sphere.

Under large strain conditions, O. Lopez-Pamies and P. Ponte-Castañeda got
[35,36] more accurate estimates than those reported in reference [12]. Their
result, however, is implicit and requires the numerical resolution of a system
including seven non-linear algebraic equations.

Eventually, B. Shrimali, V. Lefevre, and O. Lopez-Pamies [58] proposed an
approximated explicit solution for the effective strain energy density of porous
neo-Hookean incompressible elastomers, which holds for isotropic distributions
of empty pores. It reads

W̃ (F, f0) =
3(1− f0)µ
2(3 + 2f0)

[I1 − 3]

+
3µ

2J1/3

[
2J − 1− (1− f0)J1/3(3J2/3 + 2f0)

3 + 2f0

− f
1/3
0 J1/3(2J + f0 − 2)

(J − 1 + f0)
1/3

]
,

(2.3)

where µ is the shear modulus of the incompressible matrix while f0, J , and
I1 have been above defined. Such an expression of the energy accurately de-
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scribes the mechanical behavior of the porous body regardless the shape and
dispersion of pores and for a maximum value of the initial void volume fraction
equal to 30%, which corresponds to our range of interest.

Based on the above considerations, we take the energy (2.3) as an appropriate
form for the porous silicone spheres with randomly distributed pores, whose
characteristic diameter varies between 0 µm and 10 µm.

The standard condition for elastic simple bodies, which prescribes that the en-
ergy grows up to infinity when the determinant of F goes to zero (see treatises
as [60]), for the energy density (2.3) changes into

lim
J→1−f0

W̃ (F, f0) = +∞ . (2.4)

Remark 2.1 The main drawback in the choice of (2.3) is an overestimation
of the stiffness when volumetric strain grows. Nevertheless, for lower values,
the predicted behavior appears to be sufficiently accurate for our purposes.

2.2 The second-order method

Overview

The second-order method, introduced by P. Ponte-Castañeda [49], and later
applied to hyperlastic composites [52], provides estimates for the effective
elastic energy density (2.1). It rests on a truncation at second order of the
Taylor expansion for the elastic energy densities W (r)(F) of the underlying
phases:

W (r)(F) ≈ W (r)(F(r))−P(r) ·F(r)+
1

2
F(r) ·L(r)

F(r)+τ (r) ·F+
1

2
F ·L(r)

F, (2.5)

where F(r) is an unknown reference deformation gradient, assumed to be uni-

form in each phase. The tensor P(r) =
∂W (r)

∂F
(F(r)) is the first Piola-Kirchhoff

stress in the r-th phase evaluated at F(r), while τ (r) = P(r)−L(r)
F(r), whereas

L(r)
is a fourth-rank tensor to be determined.

By inserting equation (2.5) into (2.1), we get

W̃ (F) = min
F(r),L(r)

(
N∑
r=1

c(r)
(
W (r)(F(r))−P(r) · F(r) +

1

2
F(r) · L(r)

F(r)
))

+ Ŵ (F),
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where Ŵ (F) is defined as

Ŵ (F) := min
F∈K (F)

〈
τ (x) · F +

1

2
F · L0(x)F

〉
. (2.6)

It represents the effective free energy density of a fictitious linear ‘thermoe-
lastic’ composite, having reference configuration and microstructure as the
original hyperelastic material, subjected to the same macroscopic deforma-
tion, with stiffness tensor

L0(x) =
N∑
r=1

θ(r)(x)L(r)
,

and ‘thermal’ stress tensor

τ (x) =
N∑
r=1

θ(r)(x)τ (r).

To estimate the macroscopic strain energy density of the non-linear hyperelas-
tic composite, the associated linear ‘thermoelastic’ boundary value problem
must be solved.

The choice of F(r) and L(r)
needs to be specified. According to reference [52],

the deformation gradients F(r) are given by

F(r) = 〈F〉(r) =: F
(r)
,

with F the argument minimizing (2.6). Tensors L(r)
, instead, are taken equal

to the hyperelastic phase tangent modulus, namely,

L(r)
= L(r)(F

(r)
) :=

∂2W (r)

∂F∂F
(F

(r)
). (2.7)

The resulting effective elastic energy density reads

W̃ (F) =
N∑
r=1

cr

[
W (r)(F

(r)
) +

1

2
P(r)(F

(r)
) · (F− F

(r)
)

]
. (2.8)

Remark 2.2 Different choices can be made for the fourth-rank linear oper-

ators L(r)
; for example, they can be chosen as secant moduli instead of the

tangent ones, or we can include possible fluctuations in their definition, as
done in references [50,51].

Application to two-phase composites with porous spherical inclusions

In the special case that we treat here, wherein deformable spherical porous
particles (phase “2”) are randomly scattered in an elastic matrix (phase “1”),
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we compute F
(1)

and F
(2)

by determining the minimum (2.6) associated with
the linear ‘thermoelastic’ comparison composite subjected to a macroscopic
deformation gradient F.

By exploiting a result due to V. T. Levin [32], we obtain

F
(r)

= A(r)F + (A(r) − I)(∆L)−1(∆τ ), r = 1, 2, (2.9)

where ∆L := L(1)(F
(1)

) − L(2)(F
(2)

) and ∆τ := τ (1)(F
(1)

) − τ (2)(F
(2)

). In
equation (2.9), A(r) represents the strain localization tensor of phase r in the
linear elastic case; A(r), with r = 1, 2, is such that

c(1)A(1) + c(2)A(2) = I,

with I the fourth-rank unit tensor. We recall that the actual expression of the
localization tensor depends on the chosen linear homogenization scheme, and
allows us to generate the corresponding non-linear estimates for W̃ .

Generalized Hashin-Shtrikman estimates for the localization tensors [22] have
been given by Willis [68], see also Castaneda and Tiberio [52]. For the special
case of two-phase composites with particulate microstructure, the expressions
of the localization tensors are the following ones:

A(1) = [c(1)I + c(2)[I− P∆L]−1]−1,

A(2) = [I− c(1)P∆L]−1,

where P represents the Hill tensor associated with the matrix-inclusion prob-
lem, according to Eshelby’s theory [15,25]. It should be pointed out that pre-
vious expressions of localization tensors were derived in the context of linear
elasticity with pertinent symmetric strain and stress tensors as well as with
elasticity tensors showing major and minor symmetries. However, as explained
in [52], these results apply even in the case considered here, i.e. non-symmetric
strain and stress tensors and elasticity tensor showing only major symmetries.
By assuming that the spherical particles are randomly dispersed in the matrix,
and that the composite is statistically isotropic in the reference configuration,
Hill’s tensor reads

P = P(1) =
1

4π

∫ 2π

0

∫ π

0
H(1)(ξ) sin ΦdΦdΘ, (2.10)

with

H(1)
ijkl(ξ) = N

(1)
ik ξjξl ,

N(1) =
(
K(1)

)−1
,

K
(1)
ik = L(1)

ijklξjξl ,
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where ξ1 = cos Θ sin Φ, ξ2 = sin Θ cos Φ, ξ3 = cos Φ. The assessment of Hill’s
tensor (which is not symmetric in the present case) requires the integration of
its 81 components over the unit sphere.

The homogenization process reduces to the analysis of a non-linear system

(2.9) for the nine components of F
(1)

and F
(2)

, which allows us to evaluate the
effective elastic energy W̃ , according to equation (2.8).

3 Implementation of the second-order homogenization method

The implementation of what we have above summarized requires the defini-
tion of suitable elastic energy densities for matrix and inclusions, an effective
strategy to solve the non-linear system (2.9), the numerical evaluation of the
effective stress (2.2).

3.1 Material properties of the constitutive phases

We refer to composites consisting of a dispersion of porous silicone micro-
spheres, with a diameter greater than 100 µm, in a PU matrix (see also [53]).
The PU matrix is a bi-component commercial polyurethane, provided by Sika
[61]. It is made of a polyol solution (Part B) and an isocyanate mixture (Part
A). Each microsphere is made of Silcolease UV Cata221 TM and an epoxy-
bearing PDMS rubber (Silcolease UV Poly200 TM), provided by Elkem [14].
An emulsion process allows one to obtain the microspheres in two steps. The
first one exploits microfluidics and allows synthesising spheres of controlled
diameter and porosity. The inverse emulsion (W/O) rest on the use of a sy-
ringe pump under a controlled flux of glycerol. Polymerization follows while
droplets flow-through. The second step consists of a double emulsion approach
(W/O/W), which allows us to produce a large quantity of spheres, even though
they are characterized by a higher diameter dispersion (see Table 1).

Label Type Spheres size

A Monodisperse 192±25 µm

B Monodisperse 338±32 µm

C Monodisperse 505±40 µm

D Polydisperse 203±110 µm

Table 1
Size values of the porous elastomeric spheres exploited in reference [53].
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For the PU matrix, experimental data from confined compression tests real-
ized at Naval Group are available, together with indicative values for the shear
modulus in small strain regime. Reference samples of pure PU were fabricated
by mixing together 5g of polyol B and 10g of isocyanate A. Tests under con-
fined uni-axial cyclic compression on cylindrical specimens (see Fig. 2) with
diameter and height of 30mm allows sample characterization. The specimen
fills a rigid cylindrical recipient with radius of 30mm. A ZwickRoell Z005
machine at cross-head speed of 200mm/min develops the test. A ZwickRoell
long-stroke extensometer allows strain measures. The stress-strain curve un-

Figure 2. Schematic boundary conditions on experimental confined compression
tests: axial-symmetric conditions.

der confined compression conditions (Figure 3) shows almost vanishing initial
slope, followed by a sudden increase. The neo-Hookean (or Mooney-Rivlin)
scheme, which presumes a linear trend of stress with respect to volumetric
strain, appears to be not suitable due to the evidences that we have. At vari-
ance, a second-order Yeoh’s polynomial form for the elastic energy of the ma-
trix seems to be more adequate to describe that behavior, so that we choose
[69]

W (1)(F) =
2∑
p=1

Cp0(i1 − 3)p +
2∑

k=1

Dk(J − 1)2k,

where i1 = I1J
−2/3 is the first deviatoric invariant. Values of the material

constants Cp0 and Dk are intended to emerge from a data fitting approach.
However, the limited set of experimental data does not guarantee that a simple
parameter-tuning strategy could give physically significant results. For this
reason we set-up these parameters on the basis of mechanical considerations. In
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Figure 3. Confined compression test on pure PU.

small strain regime, in fact, to be consistent with the linear theory of elasticity,

we should have C10 =
µ

2
and D1 =

K

2
, with µ and K being, respectively,

shear and compressibility moduli. For the initial shear modulus of the PU, a
reference value of 5 MPa, which is typical of PU rubbers, has been chosen.
We set equal to zero the parameter C20, instead, in order to neglect higher-
order dependence of the elastic energy density on the deviatoric strain. In fact,
under confined state, the PU undergoes volumetric compression and, thus, the
elastic energy associated with volume variation is dominant. We choose also
D1 equal to zero, because it roughly corresponds to the initial slope of the
stress-strain curve in Figure 3. Also, we set D2 equal to the slope in Figure 3,
i.e., about 2000 MPa.

In order to check the adequacy of the chosen parameters, we performed a curve
fitting MATLAB-based analysis in which, to obtain physically meaningful val-
ues of the parameters, we have been forced in a sense to set C20 equal to zero.
Table 2 summarizes the comparison with our initial choices.

As shown in Figure 4, there is no significant difference between the two curves:
this means that the expression of the strain energy density for the PU rep-
resents a reasonable approximation of the experimental curve obtained under
confined compression, at least up to 1% of strain. Moreover, we can employ
such an approximation because the PU strain state in the composite does not
exceed this value in the application considered here.

Nevertheless, it is difficult to assess the influence of using this strain energy
density of the PU matrix as an input in the homogenization properties of the
whole composite submitted to confined compression. Indeed, when the con-
fined compression holds for the whole composite material, due to interactions
between the PU matrix and the porous spheres, the curve of Figure 3 does
not apply everywhere into the PU matrix.
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In what follows we base our analyses only on the values of parameters in Table
2, those chosen through mechanical considerations.

Criterion C10 C20 D1 D2

mechanical considera-
tions

2.5 0 0 2× 106

MATLAB 3.44 0 1.17× 10−6 1.91× 106

Table 2
Material parameters for the PU matrix (values in MPa).

The material properties of the porous spherical inclusions are listed in Table
3. Those data are taken from [4] and concern only shear and compressibility
moduli in small strain regime. f0, on the other hand, correspond to the ac-
tual porosity volume fraction of silicone beads. Figure 5 shows the resulting
stress-volumetric strain curve for the porous microspheres under hydrostatic
compression. For volumetric strain close to 30% (which corresponds to the
void volume fraction), the predicted stress tends to infinity, because the ma-
trix is assumed to be incompressible. Indeed, for strain close to this value, the
curve should be proportional to the compressibility modulus of the silicone
elastomer. On the other hand, for lower values of the volumetric strain, the
explicit effective energy density guarantees reliable results.

µ (MPa) f0

0.3 [4] 0.3

Table 3
Material parameters used for the strain energy density of the porous inclusions.

Figure 4. Comparison between experimental data of pure PU and the interpolating
curves.
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Figure 5. Stress as a function of the volume variations for (2.3) when using param-
eters of Table 3 under hydrostatic compression.

3.2 Numerical strategy

As already stated, the evaluation of effective elastic energy of the compos-
ite requires the analysis of the non-linear system (2.9). To this aim we use
an effective resolution algorithm. Specifically, Algorithms 1 and 2, specified
here below, are the pseudo-code for solving the non-linear system (2.9) and
computing the effective elastic energy density (2.8), while Algorithm 3 is a
pseudo-code for computing the first Piola-Kirchoff tensor.

For the confined compression macroscopic state characterization, we consider
an uniaxial homogeneous strain in the specimen. Specifically, we chose

F = λe1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3, (3.1)

with λ < 1 and e1 being the unit vector along the compression direction; e2

and e3 constitute with e1 an orthonormal frame.

In the case of a two-phase material, it is thus sufficient to determine only F
(1)

,

the tensor F
(2)

emerges from the relation

F = c(1)F
(1)

+ c(2)F
(2)
. (3.2)

The system (2.9) involves nine non-linear equations, which correspond to the

nine components of F
(1)

:

F
(1)

= A(1)F + (A(1) − I)(L(1) − L(2))−1(τ (1) − τ (2)). (3.3)

Thus, for its analysis, a fixed-point iteration scheme appears a useful strategy.

By taking into account the sensitivity to initial guess of non-linear systems, for

the analysis developed here we set the initial value of F
(1)

equal to the macro-
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scopic deformation gradient F because the matrix is considerably stiffer than
the inclusions, so its strain does not significantly differ from the macroscopic
one.

Algorithm 1 FixedPoint [ ]: fixed point iteration scheme

Input: F

Initialize F
(1)

= F
Compute residual r = RHS[F

(1)
,F]− F

(1)

procedure while(‖r‖ > tol) do

Update F
(1)

�RHS[F
(1)
,F]

Compute new residual r = RHS[F
(1)
,F]− F

(1)

end procedure

Compute F
(2)

from Eq. (3.2)
Evaluate W̃ (F) from Eq. (2.8)
Return: W̃ (F)

Algorithm 2 RHS[ ]: evaluation of the right-hand side of Eq. (3.3)

Input: F, F
(1)

Compute F
(2)

from Eq. (3.2)

Evaluate τ (1) and L(1) in F
(1)

Evaluate τ (2) and L(2) in F
(2)

Integrate P from Eq. (2.10)
Compute A(1) from Eq. (2.2)
Return: A(1)F + (A(1) − I)(L(1) − L(2))−1(τ (1) − τ (2))

Algorithm 3 Effective stress computation

Input: F
procedure

for i = 1 to 3 do
for j = 1 to 3 do

Define increments F
±

= F± δei ⊗ ej
Compute W̃ (F

±
) =FixedPoint(F

±
)

Compute homogenized stress P =
W̃ (F

+
)− W̃ (F

−
)

2δ
end for

end for
end procedure
Return: P

By rendering isotropic the Hill tensor

In Algorithm 2, we evaluate the Hill tensor P, required to compute A(1), at
every iteration, with a general purpose integration scheme available in Python.
However, this task requires a significant computational effort at each iteration.
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In order to speed up the calculation, it is possible to avoid the numerical
integration by rendering isotropic the Hill tensor.

P depends only on inclusion geometry and tangent constitutive tensor L(1) of
the matrix; it can be equivalently expressed in terms of Eshelby’s tensor SE
[15] as

P = SEL(1)−1

.

When a matrix has an isotropic tangent constitutive tensor, namely one of
the form

L(1) = 3ktJ + 2µtK,
where µt and kt are shear and compressibility moduli, respectively, while J
and K represent volumetric and deviatoric fourth-rank identity tensors, re-
spectively, it is possible to determine an explicit form of Eshelby’s tensor:

SE =
3kt

3kt + 4µt
J +

6(kt + 2µt)

5(3kt + 4µt)
K.

If the porous spheres are randomly dispersed in the reference configuration,
the macroscopic behavior of the composite can be considered isotropic at first
glance. It is possible then to express shear and bulk moduli as

kt = J · L(1), µt =
1

5
K · L(1). (3.4)

The isotropic version L(1)
iso of the tangent constitutive tensor follows and the

isotropic version of the Eshelby tensor can be derived according to equation
(3.2). It implies the isotropic version of Hill’s tensor:

Piso = SE(L(1)
iso )L(1)−1

. (3.5)

When using equation (3.3) to update the value of F
(1)

at each iteration, only
the two tangent shear and compressibility moduli can be explictly computed
from equation (3.4), instead of integrating the 81 components of Hill’s tensor
(2.10).

In the presence of appropriate symmetries of the elastic tensor appropriate
specific strategies for the evaluation of Hill’s tensor components can be adopted
(see, e.g., [75,76]).

4 Results and discussion

We show results for each nominal strain 1− λ in terms of |P11|.
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We refer to data from confined compression tests involving samples obtained
by either adding microfluidic-based or double emulsion-based spheres into the
polyol B part prior to incorporation of isocyanate A. Test structures (Figure
2), specimen dimensions and measurements are the same used to characterize
the PU matrix.

We realized tests on two configurations of composite specimens with volume
fraction of type C monodisperse microspheres (with f0 = 0.3 in terms of
porosity) amounting to c(2) = 0.02 and 0.066, respectively (Figures 6 and 7).

Figure 6. Confined compression test on 6.6% filled PU.

Figure 7. Confined compression test on 2% filled PU.

Figures 8 and 9 summarize results of the analytical homogenization process
in confined compression state with c(2) corresponding to 6.6% and 2% vol-
ume fraction of porous spherical inclusions, respectively, obtained by directly
integrating the Hill tensor. In both cases, the homogenization appears very
accurate in small strain regime. As the imposed macroscopic deformation in-
creases, the analytical evaluation overestimates the actual behavior. Actually,
the result is an upper bound for a real behavior. The pertinent trend is ad-
equately represented, considering the very limited available data concerning
the constituents.
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A comparison between results obtained through direct integration of equation
(2.10) and those emerging after rendering isotropic the Hill tensor (3.5) ap-
pears in Figures 10 and 11. There is no significant discrepancy in the results.
So, the process of rendering isotropic the Hill tensor can be conveniently ex-
ploited because it is simpler and faster than the full integration in formula
(2.10).

Figure 8. Comparison between experimental tests and analytical homogenization
for PU with 6.6% porous inclusions.

Figure 9. Comparison between experimental tests and analytical homogenization
for PU with 2% porous inclusions.

4.1 Microstructural effects

Figure 12 shows the predicted trend of porosity f in the inclusions as a function
of the applied macroscopic strain. The porosity in the inclusions, since the
silicone is considered as incompressible, is simply calculated as (see also [58]):

f =
J (2) − 1 + f0

J (2)
. (4.1)
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Figure 10. Comparison between the analytical result obtained with and without
isotropization of Hill’s tensor for PU with 6.6% porous inclusions.

Figure 11. Comparison between the analytical result obtained with and without
isotropization of Hill’s tensor for PU with 2% porous inclusions.

The effective porosity is critical for applications; the acoustic properties strongly
depend on actual porosity and size of the spheres, and only in appropriate op-
timal conditions there is resonance and therefore acoustic attenuation.

Figure 13 shows that the porous inclusions undergo volumetric changes much
higher than the PU matrix, which is stiffer. In particular, the maximal volume
variations of the matrix are around 1%. Such a value falls in the range where
the chosen form of the PU elastic energy closely approximates the experimental
behavior (see Figure 4).

5 Comparison with finite element simulations

We compare results obtained via the second-order truncation of the elastic
energy Taylor’s expansion used above with what emerges from a numerical
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Figure 12. Variation of the porosity volume fraction in inclusions as a function of
the applied macroscopic strain (6.6% filled PU): analytical estimate.

Figure 13. Analytical estimate of the volume variations (1 − J (r), r = 1, 2) in the
PU matrix and in the inclusions, respectively (6.6% filled PU).

homogenization tested on the four classes of porous inclusions shown in Ta-
ble 1. For such non-linear quasi-static analyses we used the commercial FE
software ANSYS [2]. We include both material and geometrical non-linearity.

5.1 The finite element scheme adopted

We take a heterogeneous medium considered to be statistically periodic, with
characteristic SRVE containing a random distribution of a sufficiently large
number of inclusions. A Python script generates the SRVE, which consists
of a cubic block containing non-overlapping spheres with diameters randomly
chosen from the distributions listed in Table 1 and placements inside the block
drawn from a uniform distribution (as shown in Figures 14 and 15).

A Yeoh-type strain energy density is assigned to the PU matrix, with the
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Figure 14. A picture of SRVE used for the FE simulations: matrix block.

Figure 15. A picture of SRVE used for the FE simulations: inclusions.

parameters listed in the first row of Table 2, and the elastic energy density
(2.1) is assigned to the inclusions by means of a USERMAT subroutine [3].
ANSYS SOLID186 elements, with 20 nodes and 3 degrees of freedom per
node, model both phases constrained by mesh continuity at the matrix-sphere
interface. In other words, we assume a perfect adhesion between matrix and
inclusions. Also, the SRVE undergoes Dirichlet’s conditions at the boundary
nodes, namely

ui = (F− I)xi, i = 1, ..., Nb, (5.1)

where Nb is the total number of nodes located on the boundary of the SRVE
and xi = (xi, yi, zi) is the position of the i-th node in the global frame chosen
in the reference configuration. F is the one in equation (3.1). It refers to
3.25% compression strain (λ = 0.9675). Specifically, the prescribed boundary
conditions on the i-th node are uy = uz = 0 and ux = −0.0325xi. The lower
face of the block, along the compression direction x, has been placed in the
plane x = 0, so that the nodal degrees of freedom at x = 0 (in the reference
configuration) are equal to zero in order to avoid a rigid displacement of the
SRVE.
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5.2 Results and comparisons

We investigated the numerical sensitivity to both SRVE size l and mesh av-
erage element size for type A monodisperse spheres. Coarse, average, and fine
discretization types have been defined by varying the LESIZE control param-
eter (which defines the element size) as a function of side block length l and
mean inclusion radius R, as reported in Table 4 and shown in Figure 16 for the
porous spherical inclusions. For each discretization level, the overall number
of elements composing the FE model is reported in Table 4. As expected, an
average discretization represents a good compromise between accuracy and
computational cost. Figures 17 and 18 show the results of the sensitivity anal-
ysis.

A second sensitivity analysis aimed at investigating the influence of the SRVE
characteristic size l and the number of inclusions into the SRVE, on the overall
macroscopic response. For the sake of brevity, we performed this analysis only
for the “average” discretization type indicated in Table 4. Three different
values of l have been considered, as shown in Table 5. Figures 19 and 20 show
the pertinent results. No appreciable difference appears between the considered
SRVE sizes, as they account for an adequate number of dispersed inclusions.
In fact, at least 25 embedded spheres have been deemed to be enough for our
analyses. Therefore, we have considered such a configuration (i.e., “average”
discretization and at least 25 inclusions) in the remaining analyses because it
ensures sufficiently accurate results in a reasonable computational time with
an overall (almost) isotropic elastic response of the body.

Discretization n. elements LESIZE block LESIZE inclu-
sions

coarse 45.000 l/10 R/10

average 100.000 l/15 R/15

fine 200.000 l/20 R/20

Table 4
Mesh discretization sensitivity parameters.

Block length l (mm) n. inclusions

1 19

1.25 33

1.5 57

Table 5
SRVE size sensitivity.

Figures 21-to-24 summarize analytical and numerical results obtained under
confined compression for the four types of considered inclusions and a PU ma-
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Figure 16. Detail of discretization on spherical inclusions. From left to right: coarse,
medium and fine discretizations.

Figure 17. Mesh density sensitivity analysis on a SRVE of side length 1 mm with
6.6% of type A spherical inclusions: stress-strain relationship. (Type A monodisperse
spheres.)

Figure 18. Mesh density sensitivity analysis on a SRVE of side length 1 mm with
6.6% of type A spherical inclusions: detail of stress-strain relationship. (Type B
monodisperse spheres.)

trix filled by spheres up to 6.6% of its volume. The curve relative to numerical
FE results represents the average of 3 tests realized on 3 SRVEs having dif-
ferent random distributions of inclusions. Analytical predictions are in close
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Figure 19. SRVE size sensitivty analysis for SRVEs with 6.6% of type A spherical
inclusions with average mesh density: stress-strain relationship.

Figure 20. SRVE size sensitivty analysis for SRVEs with 6.6% of type A spherical
inclusions with average mesh density: detail of stress-strain relationship.

agreement with the numerical results, for various dimensions of the porous
spherical inclusions. The proposed analytical homogenization appears to be
independent of the actual inclusion size, but it depends on their volume frac-
tion. More recent works based on an approximate solution for non-Gaussian
rubber reinforced by an isotropic distribution of rigid particles [37,19], show,
as well, this size insensitivity effect. This is in agreement, also, with other
results available in the pertinent literature [18,55,54,62].

Some discrepancies can be observed with experimental results illustrated in
Figures 6 and 7. This is due to various factors. First, experiments are per-
formed on a specimen characterized by the geometrical parameters presented
in Section 4, under confined compression, while numerical and analytical re-
sults refer to a SRVE subjected to the same macroscopic deformation, as-
sumed to be uniform, measured during the experimental test. Of course, both
FE model and analytical approach do not take into account boundary phe-
nomena arising from non-ideal test conditions (e.g. friction and/or backlash
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Figure 21. Type A monodisperse spheres: comparison between numerical and ana-
lytical results for 6.6% filled PU.

Figure 22. Type B monodisperse spheres: comparison between numerical and ana-
lytical results for 6.6% filled PU.

Figure 23. Type C monodisperse spheres: comparison between numerical and ana-
lytical results for 6.6% filled PU.

between specimen and container walls) and the specimen finite size. Also, the
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Figure 24. Type D polydisperse spheres: comparison between numerical and ana-
lytical results for 6.6 % filled PU.

assumption of perfect adherence between matrix and inclusions is only a rough
approximation of reality wherein relative sliding may occur at the interfaces.
Finally, the behavior of the PU matrix used in the FE analysis and in the
analytical homogenization method is not in agreement with the real behavior
of the elastomer, due to the possible presence of defects like micro-porosities,
which could influence its macroscopic response. The circumstance can be eas-
ily inferred from the analysis shown in Figures 8 and 9: the lower the volume
fraction of spherical inclusions the higher a discrepancy between analytical
and experimental results.

6 Final remarks

The two-level non-linear static homogenization analysis that we presented
here appears to be adequate for two-phase composites wherein one of the
two phases requires to be homogenized per se, as it occurs for the composite
here considered: a material made of a polyurethane matrix filled by porous
spherical inclusions.

Its physical properties are strongly affected by the finite strain state reached.
Its peculiar structure suggests a low-scale homogenization (the one of spheres)
followed by a second step that couples with a different method (the one based
on a second-order truncation of the elastic energy Taylor’s expansion) matrix
and inclusions.

Our analytical and numerical results appear to be in good agreement with the
experimental ones up to a strain lower than or equal to 1% in the confined
compression test. Beyond such a range, high discrepancy with experiments can
be observed. This is mainly due to the unavoidable differences existing between
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an homogenization scheme, based on idealized boundary conditions, and what
is experienced by real specimens. A more accurate characterization of the
constituent phase material properties (i.e. a wider experimental campaign),
together with a more pertinent boundary conditions to be imposed during the
homogenization procedure, could lead to a better estimate, even beyond the
limits envisaged here.

Moreover, as a future perspective of this work, according to the acoustic ap-
plication of the considered composite, the provided results could be used as a
starting configuration (pre-stress due to hydrostatic pressure of the water) to
analyse the under-water furtivity performances of the material.

Acknowledgements. This work rests on ANR and DGA funding through the
PANAMA Project (ANR-17-ASTR-0002). Also, P.-M. Mariano acknowledges
GNFM-INDAM.

References

[1] Abbadi A., Koutsawa Y., Carmasol A., Belouettar S., Azari Z. (2019),
Experimental and numerical characterization of honeycomb sandwich composite
panels, 17, 1533-1547.

[2] ANSYS (2020), ANSYS mechanical APDL theory reference, ANSYS Inc.

[3] ANSYS (2020), ANSYS mechanical APDL programmers reference, ANSYS Inc.

[4] Ba A., Kovalenko A., Aristégui C., Mondain-Monval O., Brunet T. (2017), Soft
porous silicone rubbers with ultra-low sound speeds in acoustic metamaterials,
Sci. Reports, 7, 1-6.

[5] Baird A. M., Kerr F. H., Townend D. J. (1999), Wave propagation in
a viscoelastic medium containing fluid-filled microspheres, J. Acoust. Soc.
America, 105, 1527-1538.

[6] Blatz P. J., Ko W. L. (1962), Application of finite elastic theory to the
deformation of rubbery materials, Trans. Soc. Rheology, 6, 223-252.

[7] Brunet T., Leng J., Mondain-Monval O. (2013), Soft acoustic metamaterials,
Science, 342, 323-324.

[8] Brunet T., Merlin A., Mascaro B., Zimny K., Leng J., Poncelet O., Aristegui C.,
Mondain-Monval O. (2015), Soft 3D acoustic metamaterial with negative index,
Nature Materials, 14, 384-388.

[9] Cappelli L., Montemurro M., Dau F., Guillaumat L. (2018), Characterisation of
composite elastic properties by means of a multi-scale two-level inverse approach,
Comp. Struct. 204, 767-777.

27



[10] Cappelli L., Montemurro M., Dau F., Guillaumat L. (2019), Multi-scale
identification of the viscoelastic behaviour of composite materials through a non-
destructive test, Mech. Mat., 137, art. n. 103137.

[11] Cummer S. A., Christensen J., Alù A. (2016), Controlling sound with acoustic
metamaterials, Nature Rev. Mat., 1, 1-13.

[12] Danielsson M., Parks D. M., Boyce M. C. (2004), Constitutive modeling of
porous hyperelastic materials, Mech. Mat., 36, 347-358.

[13] Drugan W. J., Willis J. R. (1996), A micromechanics-based nonlocal
constitutive equation and estimates of representative volume element size for
elastic composites, J. Mech. Phys. Solids, 44, 497-524.

[14] Elkem, https://www.elkem.com/.

[15] Eshelby J. D. (1957), The determination of the elastic field of an ellipsoidal
inclusion, and related problems, Proc. Royal Soc. London A, 241, 376-396.

[16] Fu S. Y., Lauke B. (1997), Analysis of mechanical properties of injection molded
short glass fibre (SGF)/calcite/ABS composites, J. of Materials Science and
Technology, 13, 389-396.

[17] Geers M. G. D., Kouznetsova V. G., Brekelmans W. A. M. (2010), Multi-scale
computational homogenization: Trends and challenges, J. Comp. Appl. Math.,
234, 2175-2182.

[18] Gentieu T., Catapano A., Jumel J., Broughton J. (2019), A mean-field
homogenisation scheme with CZM-based interfaces describing progressive
inclusions debonding, Comp. Struct., 229, art. n. 111398.

[19] Goudarzi T., Spring D.W., Paulino G.H., Lopez-Pamies O. (2015), Filled
elastomers: A theory of filler reinforcement based on hydrodynamic and
interphasial effects, J. of the Mechanics and Physics of Solids, 80, 37-67.

[20] Haberman M. R., Guild M. D. (2016), Acoustic metamaterials, Phys. Today,
69, 42-48.

[21] Hashin Z. (1962), The elastic moduli of heterogeneous materials, ASME J. Appl.
Mech., 29, 143-150.

[22] Hashin Z., Shtrikman S. (1962), On some variational principles in anisotropic
and nonhomogeneous elasticity, J. Mech. Phys. Solids, 10, 335-342.

[23] Hashin Z. (1985), Large isotropic elastic deformation of composites and porous
media, Int. J. Solids Struct., 21, 711-720.

[24] Hill R. (1963), Elastic properties of reinforced solids: some theoretical principles,
J. Mech. Phys. Solids, 11, 357-372.

[25] Hill R. (1965), Continuum micro-mechanics of elastoplastic polycrystals, J.
Mech. Phys. Solids, 13, 89-101.

28

https://www.elkem.com/


[26] Hill R. (1972), On constitutive macro-variables for heterogeneous solids at finite
strain, Proc. Royal Soc. London A, 326, 131-147.

[27] Hill R., Rice J. (1973), Elastic potentials and the structure of inelastic
constitutive laws, SIAM emphJ. Appl. Math., 25, 448-461.

[28] Kanit T., Forest S., Galliet I., Mounoury V., Jeulin D. (2003), Determination of
the size of the representative volume element for random composites: statistical
and numerical approach, Int. J. Solids Struct., 40, 3647-3679.

[29] Krajcinovic D. (1996), Damage mechanics, North-Holland, Amsterdam.

[30] Landauer A. K., Li X., Franck C., Henann D. L. (2019), Experimental
characterization and hyperelastic constitutive modeling of open-cell elastomeric
foams, J. of the Mechanics and Physics of Solids, 133, 103701.

[31] Lazzeri A., Thio Y. S., Cohen R. E. (2004), Volume strain measurements on
CaCO3/polypropylene particulate composites: the effect of particle size, J. of
Applied Polymer Science, 91, 925-935.

[32] Levin V. M. (1967), Thermal expansion coefficients of heterogeneous materials,
Mech. Solids, 21, 9–17.

[33] Li Y., Yu G., Liang B., Zou X., Li G., Cheng S., Cheng J. (2014), Three-
dimensional ultrathin planar lenses by acoustic metamaterials, Scient. Rep., 4,
1-6.

[34] Liu W. K., Karpov E. G., Zhang S., Park H. S. (2004), An introduction to
computational nanomechanics and materials, Comp. Meth. Appl. Mech. Eng.,
193, 1529-1578.

[35] Lopez-Pamies
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