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Abstract—One of the main objectives of Cloud Providers
(CP) is to guarantee the Service-Level Agreement (SLA) of
customers while reducing operating costs. To achieve this goal,
CPs have built large-scale datacenters. This leads, however, to
underutilized resources and an increase in costs. A way to
improve the utilization of resources is to reclaim the unused parts
and re-sell them at a lower price. Providing SLA guarantees to
customers on reclaimed resources is a challenge due to their
high volatility. Some state-of-the-art solutions consider keeping
a proportion of resources free to absorb sudden variation in
workloads. Others consider stable resources on top of the volatile
ones to fill in for the lost resources. However, these strategies
either reduce the amount of reclaimable resources or operate on
less volatile ones such as Amazon Spot instance. In this paper,
we proposed RISCLESS, a Reinforcement Learning strategy to
exploit unused Cloud resources. Our approach consists of using
a small proportion of stable on-demand resources alongside the
ephemeral ones in order to guarantee customers SLA and reduce
the overall costs. The approach decides when and how much
stable resources to allocate in order to fulfill customers’ demands.
RISCLESS improved the CPs’ profits by an average of 15.9%
compared to state-of-the-art strategies. It also reduced the SLA
violation time by an average of 36.7% while increasing the
amount of used ephemeral resources by 19.5% on average 1.

Index Terms—Cloud, Unused Resources, Ephemeral Re-
sources, Stable Resources, Resource Allocation, SLA, Reinforce-
ment learning, Deep learning

I. INTRODUCTION

Cloud Computing [2], according to NIST2, is a model for
enabling ubiquitous, convenient, on-demand network access to
a shared pool of configurable computing resources. Companies
are increasingly moving towards this solution because of its
advantages in terms of accessibility, availability, elasticity,
flexibility, and reduced costs. However, the expansion of these
infrastructures brings to the surface a major problem for CPs,
namely the underutilization of resources. In fact, the efficiency
of resources, and therefore their profitability, is measured by
their degree of utilization: the better the resources are used,
the more profitable they are.

In order to cut down the cost of operating underutilized
resources, CPs can reclaim the unused part from regular
customers (the ones who reserved these resources) to (re)sell
it at a lower price to other customers (let us call them

1This is an extension of the paper published in PDP22 [1]
2NIST: National Institute of Standards and Technology

ephemeral customers). These reclaimed resources are by na-
ture volatile. The resale of such resources must meet the
ephemeral customers’ expectations in terms of SLA. If the
SLA is violated, CPs may be subject to penalties. Deploying
applications on volatile resources while guaranteeing SLA is
still a challenge in the scientific literature [3]–[7]. Indeed,
volatile resources can be lost and returned to their owner
(the regular customers) in the event that their applications see
their resource requirements increase. This change in regular
customers’ application behavior is very difficult to predict as
it may depend on human behavior or interference between
co-located applications [8]–[10].

Different strategies were proposed to improve resource
utilization and guarantee customers SLA on ephemeral re-
sources. First, some strategies [3], [5]–[7], [11]–[13] solely
rely on ephemeral resources. They leave a proportion of
those resources unused, called a safety margin, to absorb the
sudden increase in regular customers’ application demand. The
use of a safety margin decreases the amount of reclaimable
resources in order to avoid SLA violations. However, when
the volatility of resources is significant, these strategies may
not perform well. Second, other strategies [14]–[19] combine
stable resources with the volatile ones to guarantee customers’
SLA. Nonetheless, they mainly focus on Amazon Spot In-
stance3 which is less volatile than the reclaimed resources. The
customers also receive a notification from Amazon prior to the
actual interruption. In the case of ephemeral resources, such
a notification does not exist. Thus guaranteeing SLA while
increasing the CPs’ profits is a real challenge.

We argue in this paper that Machine Learning (ML) algo-
rithms can be used to determine when and how many stable
resources to allocate on top of the ephemeral ones. Specifi-
cally, we used Reinforcement Learning (RL) algorithm, a field
of ML used for decision making. The main reason for using
RL is due to the limitations of classical solutions. In fact, most
of the solutions [5], [14], [15] are centered on the parametric
improvement and optimization of allocation strategies based
on heuristics. The algorithms are sometimes difficult and time-
consuming to (re)configure. Above all, the solutions are rigid
and not flexible to changes with regards to the environment

3https://aws.amazon.com/ec2/spot/
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Fig. 1: Reinforcement Learning Architecture Overview

(e.g., workloads’ requirements). Thus, it compromises their
performance and usability on the Cloud. To solve this problem,
several researchers have proposed methods mainly based on
ML with models that are capable of autonomously learn
resource allocation policies. More specifically, a number of
RL approaches have been proposed for task scheduling [20]–
[23] and resource allocation [24]–[26]. Although these studies
do not consider ephemeral resources, they show that RL is
indeed a promising choice to solve similar problems.

This paper proposes a new approach to Cloud resource
allocation that improves the utilization of ephemeral resources
while guaranteeing SLA. The proposed solution computes
the volatility rate of resources using past utilization traces.
It then captures a set of information, namely i) customers
allocation request, ii) the amount of stable and ephemeral
resources available and iii) the volatility rate of resources.
The information is used for the decision process of when to
allocate ephemeral and stable resources in order to respond to
customer’s requests. All while increasing CPs’ profits because
stable resources are more expensive than the ephemeral ones.
The solution also aims to reduce the possible penalties for
violating the SLA.

The experimental evaluation was based on Amazon’s Spot
Instance4 model prices. The results show that our solution
allows reducing SLA violation time by 36.7% on average
compared to the safety margin strategies. The use of stable
resources allows RISCLESS to compensate for the possible
loss of allocated ephemeral resources. The solution provides,
in most cases, the amount of resources requested by customers.
The reduction in violation time also proves that the model
estimates more precisely the amount of volatile resources lost
at each time step.

The remainder of this paper is organized as follows. Sec-
tion II provides a background about RL and Deep ML.
Section III details our contribution. Then, Section IV describes
the experimental evaluation and the results obtained. In Section
V, we discuss the related work. Finally, Section VI concludes
the paper and discusses future work.

II. BACKGROUND

In this section, we briefly describe the RL technique. We
also define Deep Machine Learning that is used by several RL
algorithms for solving large and/or complex problems.

A. Reinforcement Learning
RL [27] is a field of ML alongside supervised learning and

unsupervised learning. In RL, an agent (model) is responsible

4https://aws.amazon.com/ec2/spot/pricing/

for learning a policy (i.e., behavior) through trial and error. The
agent tries to find the best policy that allows choosing the right
decisions through experience. In order to gather experience,
the agent interacts with its environment.

Fig.1 illustrates the basic principle of RL. At each time step,
the agent observes the state of the environment st ∈ S and
chooses one of the possible actions at ∈ A(st). By executing
the action of the agent, the environment goes from the state
st to the state st+1. The agent receives, in addition to the new
state st+1, a reward rt+1 that is a feedback on the quality of
its action at to the state st.

RL is formalized through a Markov Decision Process
(MDP) [28]. The Markov hypothesis assumes independence
between past and future states, which means that the state of
the environment at instant t+ 1 depends only on its state and
the action at time t. An MDP is represented by a quadruplet
< S,A, T,R >:
• S: set of the environment states.
• A: set of actions.
• T s

′

s,a : S × A × S → [0, 1] : the probability to have a
transition from state s to s′ by performing action a at
time t.

• Rs
′

s,a : S × A × S → R : defines the reward function
of the agent when transitioning from state s to s′ by
performing action a at time t.

A policy noted π : S → A, maps actions to states. In each
state, the agent selects, according to the policy, the action that
maximizes the future expected rewards. Optimizing the policy
involves optimizing one of the two functions:
• Value function Vπ(s): it represents the expected future

rewards if the agent follows the policy π from state s.
• Q-value function Qπ(s, a): it represents the expected

future rewards following π from state s and performing
action a.

Several algorithms [27] exist for optimizing a policy such
as Dynamic Programming, Monte Carlo, and TD learning.
However, when the state space (or action space) is too large,
approximation techniques are used such as Deep Machine
Learning [29].

B. Deep Machine Learning
Deep ML [29] is defined by what is called artificial neural

networks. Each artificial neuron has n input connections and
a weight θ. Neural networks estimate a non-linear function
f∗(x) by combining several neurons. The set of parameters
θ that contains all the weights θi of all neurons must be
adjusted so that the neural network gives the best possible
approximation of the function. Each layer has an activation
function that defines the output of each neuron. The process
of finding a good set of θ parameters is referred to as model
learning.

A neural network organizes artificial neurons into different
layers. The neurons of these layers are connected to each
other in a retro-propagated way. There are no connections
that are sent back to previous neurons. Each network has an
input layer, which processes the raw input data and an output
layer, which contains the approximate result. Between these
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two layers, there may be one or more so-called hidden layers
where calculations are performed.

III. RISCLESS : A REINFORCEMENT LEARNING
STRATEGY TO GUARANTEE SLA

In this section, we describe the proposed Reinforcement
Learning strategy that allocates resources according to cus-
tomers’ requests. The solution combines volatile and stable
on-demand resources to reduce the cost of allocation. At the
same time, the solution should minimize SLA violations.

A. Architecture overview
Fig.2 presents an overview of the architecture that de-

ploys our solution called RISCLESS (ReInforcement Learning
Strategy to Guarantee SLA on CLoud Ephemeral and Stable
ReSources). There are three main actors:
1) Farmers: datacenter owners, that seek to reduce their To-

tal Cost of Ownership (TCO) by offering unused resources
to customers. We suppose that these farmers have stable
resources that could be allocated on-demand with higher
costs compared to the unused resources.

2) Customers: we focus here on customers that request
ephemeral cloud resources at a lower cost (i.e., ephemeral
customers).

3) Operator: the interface between farmers and customers.
They aim at minimizing farmers’ TCO by offering unused
resources to customers with SLA requirements.

Globally, the architecture is composed of two pools of
resources namely ephemeral and stable resources. Each of the
two resource pools is formed by a set of hosts. The hosts
forming the ephemeral pool deploy the following two modules:
• Forecasting Builder: designed by the authors of [4], this

module is responsible for predicting the next 24 hours of
future resource utilization on a host-level. The amount of
available resources is then computed according to host
capacities.

• QoS Controller: designed by the authors of [5], [7],
it ensures that the SLA of regular customers who have

reserved resources on the host are respected. It does so
by reducing the utilization of ephemeral resources if their
owners (i.e., regular customers) need them.

Finally, the Operator needs to deploy two modules repre-
senting our contribution:
• Volatility Calculator: this module is used to reduce

the complexity of the resource allocation process. It
summarizes the multiple points (i.e., 24 hours) predictions
from the Forecasting Builder into a single value. This
value represents the volatility rate (i.e., probability) of
losing the ephemeral resources.

• RLAllocator: represents the decision-maker of our so-
lution. It is based on an RL algorithm to decide when
to allocate ephemeral and stable resources. The module
aims at allocating the resources requested by customers
with SLA requirements while maximizing CPs’ profits.

The architecture in Fig.2 illustrates the workflow and com-
munication between the different actors and modules. The
workflow starts with (1) the customers requesting resources
for allocation through the Customers interface. The request is
received by the Operator who transfers it to the RLAllocator
module. The Volatility Calculator module then (2) retrieves
the predictions of ephemeral resources and calculates their
volatility rate. The module sends (3) the volatility rate to
the RLAllocator module. The RLAllocator module also (4)
receives the available ephemeral resource capacities. Once all
the data have been collected, the RLAllocator module (5)
decides on the pool of resources to allocate namely ephemeral
or stable resources. Finally, The Operator (6) informs the
customers of the allocated resources.

We detail in what follows the design of the two modules
presented above that is the Volatility Calculator and RLAllo-
cator.

B. Volatility Calculator

As mentioned above, the Forecasting Builder predicts future
resource utilization for every host. Having the hosts’ pre-
dictions for the next 24 hours as input for the RLAllocator
is costly as the size increases with the number of hosts.
Through the Volatility Calculator module, our goal is to
reduce the verbose information and only provide a single value
that represents the volatility rate of losing resources in the
ephemeral pool.

The volatility rate provides a summary of prediction errors
to the RLAllocator module. The latter can then make allocation
decisions based on the provided information. The module
receives as input both the past prediction and utilization of
resources during a ∆t window (e.g., 24 hours). The module
then computes the volatility rate p ∈ [0, 1] of the ephemeral
pool. Finally, the module outputs the value for the RLAllocator
module.

Table I shows an example of traces with predictions from
the Forecasting Builder for a time window of ∆t=24h with a
3-minute sampling period. It contains the following for both
the CPU and memory metrics:
• Actual measures of utilization: ymetric



TABLE I: Example of the utilization and prediction traces
from the Forcasting Builder module

t ŷcpu ycpu ecpu = ŷcpu − ycpu ŷm ym em = ŷm − ym z

0 30% 60% -30% 40% 60% -20% 1
1 40% 30% 10% 53% 50% 3% 0
...

...
...

...
...

...
...

...
479 41% 52% -11% 45% 40% 5% 1

• Predictions of future resource utilization: ŷmetric
• Prediction errors: emetric = ŷmetric − ymetric
The volatility rate represents the probability of underesti-

mating the amount of resource utilization. In other words,
resources are lost if ŷmetric < ymetric and the amount of
resources lost is proportional to the prediction error.

To calculate this probability, a random variable z is used
where zt represents whether the predictions underestimated
the CPU or memory usage at time t. Table I shows the values
that the variable z takes according to its definition. It is set
to ’1’ if the prediction is underestimated (i.e., emetric < 0).
For example, at t = 0, the predicted CPU is ŷ = 30% but the
measured utilization is y = 60%, thus the prediction error is
ecpu = −30% < 0 and z = 1. Note that for this first version,
the size of the prediction error does not impact the value of z
(e.g., errors of -1% or -50% =⇒ z = 1).

Assuming that the different measures are independent of
each other, the variable z follows a Bernoulli’s distribution5

of parameter p. With p representing the probability of under-
estimation:

zt  B(p) (1)
Punderestimation = P(∆t) = p (2)

To estimate p, an empirical estimator p̂ is used. The estimator
is the mean over a ∆t time window of the z values as follows:

p̂ =

∑
t∈∆t zt

∆t
(3)

In summary, the volatility rate is the probability of losing
resources. It is computed on the basis of the underestimation
part of prediction errors. Note that the resource volatility
is recalculated at the beginning of each ∆t period by the
Volatility Calculator module. This value is later provided to
the RLAllocator as an indicator of resource volatility.

C. RLAllocator

The RLAllocator module is the decision-maker in the so-
lution architecture. Its objective consists of deciding when to
allocate ephemeral and stable resources in order to maximize
CPs’ profits and reduce SLA violations.

This module was built using RL. As explained in Section II,
it is formalized with the MDP composed of the quadruplet <
S,A, T,R > with: S being the set of states of the environment,
A the set of actions, T the transition function, and R the
reward function.

5The Bernoulli’s distribution, or Bernoulli’s law [30], is a discrete proba-
bility distribution, which takes the value 1 with the probability p and 0 with
the probability q = 1− p.

1) Environment: Each of the two pools of resources is
characterized by its available capacity in terms of CPU and
memory (other resources could be considered). The ephemeral
pool is further characterized by their volatility rate. Both
resource types have a cost of allocation. Ephemeral resources
are less expensive than the stable ones with up to 90%
difference in the case of Amazon Spot Instance 6.

2) State space S: At each time step t, the state is charac-
terized by the customers’ request, the quantity of ephemeral
and stable resources allocated, the available capacity of the
two types of resources, and finally the volatility rate of the
ephemeral resources. The state of the environment is defined
as follows:

S = {resrem, resalloc(e), resalloc(s), resavail(e),
resavail(s), p}

With:
• resrem ∈ N: the amount of the remaining resources to

be allocated.
• resalloc(e) ∈ N: the amount of ephemeral resources

allocated.
• resalloc(s) ∈ N: the amount of stable resources allocated.
• resavail(e) ∈ N: the amount of available ephemeral

resources.
• resavail(s) ∈ N: the amount of available stable resources.
• p ∈ [0, 1]: the volatility rate.
Note that the model can allocate more resources than

originally requested. This is permissible for fast recovery when
losing resources to avoid SLA violations.

3) Action space A: At each time step t, the model can
perform an action a. The set of actions we defined are:
A = {a1, a2, a3, a4, a5}
with:
• a1: Allocate an ephemeral resource unit.
• a2: Remove an ephemeral resource unit.
• a3: Allocate a stable resource unit.
• a4: Remove a stable resource unit.
• a5: Do nothing.
A resource unit is defined as an amount of vCPU and

memory that are allocated at the same time to a customer
(e.g., a resource unit of 2 vCPU and 8 Gb).

4) Reward function R: Our goal is to maximize CPs’
profits from selling ephemeral resources and minimize the cost
of stable resources and SLA violations. The reward function
is defined for each state as:

r = resalloc(e)× CPE − resalloc(s) ×
CPS − resrem × CPV (4)

with :
• CPE: cost per ephemeral resource unit.
• CPS: cost per stable resource unit.
• CPV : cost of SLA violation penalty.

6https://aws.amazon.com/ec2/spot/

https://aws.amazon.com/ec2/spot/


Each ephemeral or stable resource has a cost per unit
CPE and CPS. While the SLA violation has a cost per
violation CPV . In a state S, the reward function considers
the total cost of the amount of ephemeral resources allocated
resalloc(e) which is considered as the profit. The amount of
stable resources resalloc(s) has to be minimized since its
cost is higher than the ephemeral ones. SLA violation can
occur in two cases: i) when losing an ephemeral resource, ii)
when the customer requests are not provided. In both cases,
the remaining resource to allocate resrem increases, hence
increasing SLA violation penalties.

5) Model algorithm: In order to solve the Cloud resource
allocation problem, we train the RL agent using the Deep Q-
Network (DQN) algorithm [31]. DQN is used to approximate
the Q-values (defined in Section II) using neural networks
with a single function (called Q network). Since the state
representation of the allocation problem is too large (see
Section III-C2), DQN can approximate values for the Cloud
states that have never been encountered during the learning
process. Algorithm 1 represents the pseudo-code of allocating
Cloud ephemeral and stable resources using DQN.

The algorithm starts by initializing (line 1) the configuration
of the agent’s model (e.g., the architecture of the neural
network, see Section IV-A4 for the initialization used in the
evaluation). Then, it initializes a buffer that stores previous
resource allocation experiences (line 2). The buffer is used to
improve the learning process of the agent. Each experience
contains the state (e.g., allocated amount of ephemeral and
stable resources), action (e.g., allocate stable resource), reward
(e.g., SLA violation penalty), and the next state of the Cloud
environment. The agent starts by receiving the amount of
resources to allocate (line 3). Then it receives (lines 5-7)
the available amount of resources for the ephemeral and
stable pools. The agent then makes either a random resource
allocation decision (i.e., action) or the best one according
to a probability ε (line 8). The random selection of actions
is necessary since initially, the agent does not have any
previous experience. Note that the probability ε is reduced
during the evaluation in order to assess the learned strategy.
Then, the selected action is sent to the Cloud environment.
Afterward, the agent fetches both the reward and the new state
of the environment (line 9). This current resource allocation
experience is stored in the buffer (line 10) which is used for the
learning process (lines 11-13). The decision process is repeated
while resources remain to be allocated for customers.

IV. EXPERIMENTAL EVALUATION

In this section, we present the results of the experimental
evaluation of RISCLESS. Through the experiments, we try to
answer the following Research Questions (RQ):

• RQ1: What is the overall performance of RISCLESS in
terms of resource utilization, SLA violations, and CPs’
profits?

• RQ2: How many on-demand stable resources does RISC-
LESS use on top of the ephemeral ones to reduce SLA
violations and to increase profits ?

Algorithm 1: Pseudo-code of allocating Cloud
ephemeral and stable resources using DQN

1. agent = initialize DQN model();
2. experiences = initialize experience buffer();
3. resrem = get remaining resources to allocate();
4. while resrem > 0 do // remaining resources to

allocate
5. resalloc = get allocated resources();
6. resavail = get available resources();
7. p = compute volatility rate();

8. select a=
{

random action with probability ε
best action else

9. reward = observe reward value();
10. experiences.add current experience()
11. if should update then
12. agent.update(experiences);
13. end
14. resrem = get remaining resources to allocate();
15. end

TABLE II: Summary information of each datacenter

Datacenter Number
of hosts

CPU
(cores)

RAM
(TB)

PC-1 9 120 1.2
PC- 2 27 230 3.8

University 6 72 1.5

We evaluate RISCLESS by comparing it to other resource
allocation approaches that exploit ephemeral resources. The
comparison is done using in-production traces of three dat-
acenters (presented below). The results are then analyzed in
terms of stable resources percentage compared to the total
allocated by RISCLESS.

A. Experimental setup

1) Datasets: the traces used for training as well as for
evaluation are from three different datacenters. One datacenter
is from a University, and two are from Private Companies
labeled PC-1 and PC-2 respectively. The total capacity of each
datacenter in terms of hosts, total CPU power, and the amount
of memory is represented in Table II. Fig.3 is a boxplot that
shows the resource utilization for the CPU and RAM for each
datacenter. The traces used are recorded over a period of 6
consecutive months with a 3-minute sampling period.

2) Customers requests: At each time step, we suppose
that the requested resources by customers can utilize all the
available unused resources. This means that if 14.6% of CPU
is used then the customers’ request is 85.4% CPU provided
that RAM is available. We do this in order to evaluate the
maximum of reclaimable resources in a datacenter with the
least of SLA violations, which should result in higher profits
for the CPs.

3) Resource allocation approaches: RISCLESS is com-
pared to a set of resource allocation approaches operating
in the same context (i.e., ephemeral resources with SLA
guarantees). These approaches use the safety margin method to
reduce SLA violations. Other approaches that combine stable
and ephemeral resources are not comparable to ours since they
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are tied to a specific type of application such as data processing
(more details in Section V). The following provides a brief
description of the different approaches:

• Fixed: proposed by the authors of [5]. This approach is a
static safety margin percentage of 5% selected empirically
from different datasets.

• Scavenger: proposed by the authors of [6]. This approach
uses the mean and standard deviation of resource utiliza-
tion history to compute a dynamic safety margin.

• ReLeaSER: proposed by the authors of [13]. This ap-
proach is based on Reinforcement Learning that selects a
dynamic safety margin according to the resource predic-
tion errors.

For these strategies that use safety margins, we suppose
that customers’ requests could be satisfied only by ephemeral
resources.

4) Implementation: The experiments were performed of-
fline on an ad-hoc simulator with in-production traces. RISC-
LESS was implemented using Keras [32] v. 2.3.1, a framework
that facilitates the development of deep machine learning mod-
els. Keras is an abstraction of Google’s open-source framework
TensorFlow [33]. We used TensorFlow GPU v. 1.14.0. The
architecture of the agent’s neural network is as follow:

• Neural network architecture [29]:
– 2 dense layers, 24 neurons (state size), ReLu activation,
– 1 dense layer, 5 neurons (actions size), Linear activa-

tion.
• Mean Square Error as the error function:
mse = 1

n

∑n
i=1(yi − ŷi)2,

• Batch size (number of transitions): batch size = 50,
• Learning rate: α = 0.001,
• Discount factor: γ = 0.95,
• Agent exploration decay: ε = ε ∗ 0.995,
• Replay memory (number of transitions): memory =

20000,

The model training takes place over several days. The training
is performed on 80% of PC-2 traces, while 20% are used for
testing. Note that the environment is reset at the beginning of
each episode.

B. Evaluation metrics

For evaluating the performance of RISCLESS and compare
it with the different approaches, we used the following metrics:
1) Total profits: we measure the total CPs’ profits by the

cost related to the profit of ephemeral resources sold (for
all the hosts of the datacenter). We take into account the
cost of SLA violations and the cost related to the on-
demand stable resources we needed to use for SLA sake.
The cost of stable resources is not considered for the
approaches that solely rely on a safety margin. Thus, the
profits are computed as follows:

profits = ephemeral resources profit −
stable resources cost− SLA cost (5)

2) SLA violation time: it indicates the cumulative time
during which the SLA was violated. The SLA is violated
when the Operator does not provide the resources that the
customers have requested. This may occur mainly when
ephemeral resources are lost.

3) Amount of reclaimed ephemeral resources: it measures
the cumulative amount of ephemeral resources that were
used without affecting the SLA of customers.

The evaluation of the first two metrics is based on a real
economical model from Amazon AWS. The economical model
comprises of resources cost according to their type (i.e.,
volatile or stable) and the penalty model for violating SLA:
1) Resource costs: we based our resource costs on Amazon

AWS instance type t2.large7 that corresponds to 2 vCPU
and 8 Gb of memory:
• Cost of an ephemeral instance: 0.0317 $/hour
• Cost of a stable instance: 0.0928 $/hour

2) SLA violation: the penalty model used calculates the cost
of violating the SLA as a discount on the profit related to
the sold instances. The discount percentage is based on
the cumulative violation time over one day as follows:
• Between 15 and 120 minutes: 10% discount
• Between 120 and 720 minutes: 15% discount
• More than 720 minutes: 30% discount

1) RQ-1. Overall performance of RISCLESS: This test
focuses on the performance of RISCLESS compared to the
other approaches. The performance is evaluated in relation to
i) the total CPs’ profits, ii) the cumulative SLA violation time,
and iii) the amount of reclaimed ephemeral resources.

1) Total profits: Fig.4 shows the total profits of RISCLESS
and the different approaches evaluated over the 6 months traces
for each datacenter.

We observe that for the three datacenters, the Fixed strategy
generates the least profits for CPs. We also observe that
ReLeaSER performs better than Scavenger by an average of
27.6%. Finally, we observe that RISCLESS generates the high-
est profits compared to other approaches. RISCLESS improves
the profits compared to ReLeaSER by 8%, 8.3%, and 31.5%
corresponding to PC-1, PC-2, and University respectively.
These results are explained by the two following metrics

7https://aws.amazon.com/ec2/instance-types/t2/
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namely SLA violation time and the amount of reclaimed
resources.

2) SLA violation time: Fig.5 shows the cumulative time
during which the SLA is violated. The time is summed over
all days of the six months of the evaluation period for each
datacenter.

We observe that RISCLESS violates SLA less than Re-
LeaSER, Scavenger, and the Fixed approach. RISCLESS
reduces the cumulative violation time when compared to
ReLeaSER by 54%, 46.2% and 10% corresponding to PC-1,
PC-2, and University respectively. These results show that the
utilization of stable resources can decrease the SLA violation
time. This partly explains the improvements in the profits seen
previously.

3) The amount of reclaimed ephemeral resources: in
this section we compute the average utilization of ephemeral
resources by the different strategies. We do not take into ac-
count the ephemeral resources that were allocated but removed
(i.e., lost resources) because regular customers reclaimed them
back. The difference between the maximum reclaimable re-
sources and the allocated resources by a strategy in increased
by the safety margin and by the removed resources. Also recall
that we supposed that customers requests correspond to the
maximum reclaimable resources (see Section IV-A2).

Fig.6 shows the average amount of used ephemeral re-
sources per day (over the six months of evaluation) for each
datacenter. This amount is measured as the cumulative number
of allocated resource units each time step throughout the day.
The red line in each figure shows the maximum reclaimable
resources.

We observe that the Fixed approach utilizes the least
ephemeral resources which can be explained by the safety
margin used. ReLeaSER uses around 2% fewer resources
when compared to Scavenger but still manages to generate
more profits. This is mainly thanks to the reduction in the
SLA violation time. We also observe that RISCLESS uses
more ephemeral resources per day for all datacenters. When
compared to Scavenger, RISCLESS improves the utilization
by 12.8%, 10.9%, and 34.8% corresponding to PC-1, PC-2,
and University datacenters respectively. The approaches that
use a safety margin reduce the amount of usable resources (as
compared to the maximum reclaimable resources) to avoid
SLA violations. However, using stable resources to absorb
the potential loss of volatile resources allows RISCLESS
to optimize its utilization. RISCLESS uses 92%, 98%, and
93% of the maximum reclaimable resources (i.e., ephemeral)
corresponding PC-1, PC-2, and University datacenters while
having the least of SLA violations.

In summary, the results of this experiment show that
RISCLESS improves resource utilization and reduces SLA
violations resulting in better profits for CPs. The use of on-
demand stable resources allows compensating for the possible
loss of the allocated ephemeral resources. This guarantees, in
most cases, the SLA for customers.

2) RQ-2. Percentage of stable resources:: in this section,
we analyze the results from the previous experiment concern-
ing the percentage of stable resources used. The goal is to

TABLE III: The Average volatility rate and the percentage of
stable resources used per day for different datacenters

PC-1 PC-2 University
Volatility rate 0.83 0.69 0.75

Stable resources used (%) 9.21% 4.63% 8.33%

extract some of the environment variables (e.g., volatility rate)
that affect the utilization of stable resources. This analysis can
give CPs an idea of how many resources to reserve alongside
the ephemeral ones in order to reduce SLA violations and
increase their profits. Table III specifies, for each datacenter,
the average volatility rate per day of the ephemeral resources
(computed by the Volatility Calculator), as well as the percent-
age of stable resources used compared to the total allocated
resources.

We can observe that PC-1 has the highest volatility rate
and the highest percentage of stable resources. Meanwhile,
PC-2 has the lowest volatility rate and stable resources. We
observe that RISCLESS uses less than 10% of stable resources
for all the tested datacenters. This translates to the use of 8
vCPU and 32 Gb of memory of stable resources on average
for our datacenters (see both Table II and Table III). Note
that this analysis can be affected by multiple variables (i.e.,
average resource utilization, volatility rate, the number of
customers’ requests, etc.) and may not generalize to others.
It can be observed that the more volatile the resources of a
datacenter are, the more stable resources are used (however, a
correlation is not conclusive from only 3 measures.). Indeed,
the probability of losing ephemeral resources is expressed by
their volatility rate. This rate is used by our model that decides
when and how much stable resources to use in order to make
up for the eventual loss of resources.

V. RELATED WORK

Previous studies about optimizing the utilization of
ephemeral resources with SLA guarantees can be classified
into two categories:
1) Safety margin-based approaches: safety margin was

used in [3], [5], [7], [11], [12] with a fixed percentage
of safety margin. Even though the fixed method does
reduce SLA violations, it can be improved considerably
alongside resource utilization since customers’ workloads
are not stable. Hence, a dynamic safety margin was used
in Scavenger [6] and ReLeaSER [13]. It improved con-
siderably the utilization of ephemeral resources while re-
ducing customers’ SLA violations. That being said, when
resource volatility is high, the safety margin strategies
may not perform well. Indeed, the higher the volatility,
the larger the safety margin, the less ephemeral resources
are exploited.

2) Stable and ephemeral resources: other studies [14]–
[19] tried to improve customers SLA by utilizing stable
on-demand resources on top of the ephemeral ones. The
stable resources can be used for saving data in the case
of data processing applications. It can also be useful for
running prioritized jobs that have to be otherwise re-
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Fig. 5: Cumulative violation time of SLA over the 6-months period of traces
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Fig. 6: Average cumulative amount of ephemeral resources used per day

executed due to the lost resources. Similarly, Elastigroup8

is a commercialized service that offers to customers auto-
mated infrastructure scaling at a lower price by combining
volatile and stable resources. However, the aforemen-
tioned solutions mainly focus on Amazon Spot Instance
which is less volatile than the reclaimed resources. Fur-
thermore, the customers using these resources receive a
notification from Amazon prior to the actual interruption.
This signal can be used as a convenient moment for
allocating stable resources. In addition, the use cases of
these solutions are generally limited to data processing
applications.

Our contribution falls into the second category. The main
difference is that we operate with reclaimed resources which
are highly volatile compared to Amazon Spot Instance. In our

8https://spot.io/products/elastigroup/

case, a notification of eviction does not exist. Thus guarantee-
ing SLA while maximizing CPs’ profits is a challenge that we
tackled using a strategy based on Reinforcement Learning.

VI. CONCLUSION AND FUTURE WORK

In order to enhance Cloud resource utilization, CPs are lean-
ing towards exploiting their unused resources. In this context,
researchers try to find a resource allocation strategy that allows
the recovery of unused resources and their exploitation without
impacting customers’ SLA. Although the proposed solutions
do perform reasonably well, they fell short in optimizing either
resource utilization or SLA guarantees. Through this paper,
we proposed RISCLESS, a strategy that makes it possible to
exploit ephemeral resources while reducing SLA violations.
Our approach is based on RL as a decision-making model.
It combines ephemeral resources with on-demand stable re-
sources in order to offer SLA guarantees while reducing costs.

https://spot.io/products/elastigroup/


The experimental evaluation results showed that RISCLESS
had allowed for more thorough exploitation of ephemeral re-
sources with a reduction in SLA violations, which significantly
increased CPs’ profits from the resale of resources.

As future work, we plan to include other resource metrics
such as network and I/O. We also plan to improve the Volatility
Calculator module to account for the amount of violated
resources. Finally, we plan to incorporate Safe RL [34] which
is a technique used to improve the learning process and
avoid random decisions that could have a negative impact on
customers.
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