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Introduction

We consider the following derivative nonlinear Schrödinger equations iu t + u xx + i|u| 2 u x + b|u| 4 u = 0, (1.1) and iu t + u xx + i|u| 2σ u x = 0, (1.2) where b ∈ R, σ ⩾ 1 and u : R × R → C is unknown function.

The local well posedness and the global well posedness of derivative nonlinear Schrödinger equations were studied in many works (see [START_REF] Bahouri | Global well-posedness for the derivative nonlinear schrödinger equation[END_REF][START_REF] Biagioni | Ill-posedness for the derivative Schrödinger and generalized Benjamin-Ono equations[END_REF][START_REF] Colliander | Global well-posedness for Schrödinger equations with derivative[END_REF][START_REF] Colliander | A rened global well-posedness result for Schrödinger equations with derivative[END_REF][START_REF] Guo | Orbital stability of solitary waves for the nonlinear derivative Schrödinger equation[END_REF][START_REF] Hayashi | On the derivative nonlinear Schrödinger equation[END_REF][START_REF] Hayashi | Finite energy solutions of nonlinear Schrödinger equations of derivative type[END_REF][START_REF] Jenkins | Global existence for the derivative nonlinear Schrödinger equation with arbitrary spectral singularities[END_REF][START_REF] Miao | Global well-posedness for Schrödinger equation with derivative in H 1 2 (R)[END_REF][START_REF] Ozawa | On the nonlinear Schrödinger equations of derivative type[END_REF][START_REF] Takaoka | Well-posedness for the one-dimensional nonlinear Schrödinger equation with the derivative nonlinearity[END_REF][START_REF] Tsutsumi | On solutions of the derivative nonlinear Schrödinger equation. Existence and uniqueness theorem[END_REF][START_REF] Tsutsumi | On solutions of the derivative nonlinear Schrödinger equation[END_REF][START_REF] Wu | Global well-posedness on the derivative nonlinear Schrödinger equation[END_REF][START_REF] Wu | Global well-posedness for the nonlinear Schrödinger equation with derivative in energy space[END_REF] for (1.1) and see e.g [START_REF] Hayashi | Well-posedness for a generalized derivative nonlinear Schrödinger equation[END_REF][START_REF] Santos | Existence and uniqueness of solution for a generalized nonlinear derivative Schrödinger equation[END_REF] for (1.2)). The existence of blow up solutions for (1.1) and (1.2) is an open question.

The equation (1.1) and (1.2) have Hamilton structures and they do not possess the Galilean invariant. The family of solitons of the derivative nonlinear Schrödinger equations have two parameters. A soliton of (1.1) and (1.2) is a solution of form R ω,c (t, x) = e iωt ϕ ω,c (x-ct), where ω > 0 and c 2 < 4ω. The stability and instability of solitons are proved in many works (see [START_REF] Ohta | Instability of solitary waves for nonlinear Schrödinger equations of derivative type[END_REF][START_REF] Kwon | Orbital stability of solitary waves for derivative nonlinear Schrödinger equation[END_REF][START_REF] Hayashi | Potential well theory for the derivative nonlinear Schrödinger equation[END_REF][START_REF] Guo | Orbital stability of solitary waves for the nonlinear derivative Schrödinger equation[END_REF][START_REF] Colin | Stability of solitary waves for derivative nonlinear Schrödinger equation[END_REF] for (1.1) and [START_REF] Liu | Stability of solitary waves for a generalized derivative nonlinear Schrödinger equation[END_REF][START_REF] Guo | Instability of the solitary wave solutions for the generalized derivative nonlinear Schrödinger equation in the critical frequency case[END_REF] for (1.2)).

Multi-soliton is a solution of (1.1), (1.2) which behaves at large time like a sum of nite solitons.

In [START_REF] Van Phan | Construction of multi-solitons and multi kink-solitons of derivative nonlinear Schrödinger equations[END_REF][START_REF] Van Phan | Construction of multi-solitons for a generalized derivative nonlinear Schrödinger equation[END_REF], Tin proved the existence of multi-solitons for (1.1) and (1.2) respectively. The author used xed point method, Strichartz estimates and gauge transformations to obtain the desired results. The stability of multi-solitons was proved in [START_REF] Coz | Stability of multisolitons for the derivative nonlinear Schrödinger equation[END_REF] for (1.1) in the case b = 0 and for (1.2) in the case σ ∈ (1, 2) in [START_REF] Tang | Stability of the sum of two solitary waves for (gDNLS) in the energy space[END_REF] provided all solitons are stable. Roughly speaking, the multi-solitons behave at large time like a sum of stable solitons are stable. We predict that if there is one unstable soliton then multi-soliton is unstable in some sense. This prediction was proved in the case of classical nonlinear Schrödinger equation by the work of Côte-Le Coz [START_REF] Côte | High-speed excited multi-solitons in nonlinear Schrödinger equations[END_REF]. In this paper, using the idea of Côte-Le Coz, we show that if soliton of (1.1) ((1.2)) is linearly unstable then it is orbitally unstable. Moreover, multi-soliton behaving like a sum of one unstable soliton and nite solitons is not unique and unstable.

1.1. Instability of multi-solitons for (1.1). The ow of (1.1) in H 1 (R) satises the following conservation laws.

Energy

E(u) := 1 2 ∥u x ∥ 2 L 2 + 1 4 Im R |u| 2 u x u dx - b 6 ∥u∥ 6 L 6 , Mass Q(u) := 1 2 ∥u∥ 2 L 2 , Momentum P (u) := - 1 2 Im R u x u dx.
For each ω, c ∈ R and u ∈ H 1 (R), we dene S ω,c (u) = E(u) + ωQ(u) + cP (u).

Recall that a soliton of (1.1) is a solution of form R ω,c = e iωt ϕ ω,c (x -ct), for ϕ ω,c is a critical point of S ω,c . Moreover, ϕ ω,c is (up to phase shift and translation) of form

ϕ ω,c = Φ ω,c exp ic 2 x - i 4 x -∞
|Φ ω,c (y)| 2 dy , where Φ ω,c is given by if γ := 1 + 16 3 b > 0,

Φ 2 ω,c (x) = 2(4ω-c 2 ) √ c 2 +γ(4ω-c 2 ) cosh( √ 4ω-c 2 x)-c if -2 √ ω < c < 2 √ ω, 4c (cx) 2 +γ if c = 2 √ ω, (1.3) 
and if γ ⩽ 0 (b ⩽ -3 16 ),

Φ 2 ω,c (x) = 2(4ω -c 2 ) c 2 + γ(4ω -c 2 ) cosh( √ 4ω -c 2 x) -c if -2 √ ω < c < -2s * √ ω,
where s * = s * (γ) = -γ 1-γ .

We note that the following condition on the parameters γ and (ω, c) is a necessary and sucient condition for the existence of non-trivial solutions of (1.1) vanishing at innity (see [START_REF] Berestycki | Nonlinear scalar eld equations. I. Existence of a ground state[END_REF]):

if γ > 0(⇔ b > -3 16 ) then -2 √ ω < c ⩽ 2 √ ω, if γ ⩽ 0(⇔ b ⩽ -3 16 ) then -2 √ ω < c < -2s * √ ω. Dene d(ω, c) = S ω,c (ϕ ω,c ) and H ω,c (v) = (E ′′ (ϕ ω,c ) + ωQ ′′ (ϕ ω,c ) + cP ′′ (ϕ ω,c ))(v) = -∂ xx v + ωv + ic∂ x v -2i∂ x ϕ ω,c Re(ϕ ω,c v) -i|ϕ ω,c |∂ x v -b(|ϕ ω,c | 4 v + 4|ϕ ω,c | 2 ϕ ω,c Re(ϕ ω,c v)).
Let n(H ω,c ) be the number of negative eigenvalue of H ω,c and p(d ′′ (ω, c)) be the number of positive eigenvalue of the matrix d ′′ (ω, c), which is dened by

d ′′ (ω, c) = ∂ 2 ω d(ω, c) ∂ c ∂ ω d(ω, c) ∂ ω ∂ c d(ω, c) ∂ 2 c d(ω, c) = ∂ ω Q(ϕ ω,c ) ∂ c Q(ϕ ω , c) ∂ ω P (ϕ ω,c ) ∂ c P (ϕ ω,c
) .

The stability/instability of solitons R ω,c can be given by the abstract theory of Grillakis-Shatah-Strauss [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF][START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF]. We have the following result.

Theorem 1.1.

p(d ′′ (ω, c)) ⩽ n(H ω,c ).
Furthermore, under the condition that d is non-degenerate at (ω, c):

(i) If p(d ′′ (ω, c)) = n(H ω,c ) then R ω,c is orbitally stable; (ii) If n(H ω,c ) -p(d ′′ (ω, c)) is odd then R ω,c is orbitally unstable. Let K ∈ N, K > 1.
For each 1 ⩽ j ⩽ K, let (θ j , x j ) ∈ R 2 and (c j , ω j ) satisfy the condition of existence of soliton. For each j ∈ {1, 2, .., K}, we set R j (t, x) = e iθj R ωj ,cj (t, x -x j ).

(1.4)

We dene for each j, h j = 4ω j -c 2 j . As in [29, Lemma 4.1],

|R j (t, x)| ≲ e -h j 2 |x-cj t| .

(1.5)

The prole of a multi-soliton is a sum of the form:

R = K j=1 R j .
(1.6)

A solution of (1.1) is called a multi-soliton if ∥u(t) -R(t)∥ H 1 → 0 as t → ∞.
Since solutions of (1.1) are invariant by phase shift and translation, we may assume that θ 1 = x 1 = 0 without loss of generality. For convenience, we denote ϕ j = ϕ ωj ,cj for all j and ϕ = ϕ 1 . Then R 1 (t, x) = e iω1t ϕ(x -c 1 t). We have

-ϕ xx + ω 1 ϕ + ic 1 ϕ x -i|ϕ| 2 ϕ x -b|ϕ| 4 ϕ = 0. (1.7)
Let u(t, x) be a solution of (1.1) and set u = e iω1t (ϕ(x -

c 1 t) + v(t, x -c 1 t)). Using (1.7), we have 0 = iu t + u xx + i|u| 2 u x + b|u| 4 u = i(iω 1 e iω1t (ϕ + v) + e iω1t (-c 1 ϕ x + v t -c 1 v x )) + e iω1t (ϕ xx + v xx ) + e iω1t i|ϕ + v| 2 (ϕ x + v x ) + be iω1t |ϕ + v| 4 (ϕ + v) = e iω1t (-ω 1 v + iv t -ic 1 v x + v xx + i(|ϕ + v| 2 (ϕ x + v x ) -|ϕ| 2 ϕ x ) + b(|ϕ + v| 4 (ϕ + v) -|ϕ| 4 ϕ)) = e iωt i(v t + L C (v) + M C (v)),
where L C is linearized operator around R 1 and is dened by

L C (v) = -iv xx + iω 1 v -c 1 v x + 2Re(ϕv)ϕ x + |ϕ| 2 v x -ib(|ϕ| 4 v + 4|ϕ| 2 ϕRe(ϕv)), (1.8)
and the quadratic term in v, M C is dened by

M C (v) = 2Re(ϕv)v x + |v| 2 ϕ x + |v| 2 v x -ib(ϕ + v)(4Re(ϕv) 2 + 2|v| 2 |ϕ| 2 + 4|v| 2 Re(ϕv) + |v| 4 ).
We may check that L C = iH ω1,c1 . We need the following assumption.

L C has an eigenvalue λ ∈ C such that ρ := Reλ > 0.

(A1)

Our rst goal is to prove that if soliton is linearly unstable then it is orbitally unstable. To do this, we prove the following result. Theorem 1.2. Assume that (A1) holds. Then there exists a function Y (t) such that ∥Y (t)∥ H 2 ⩽ Ce -ρt and e ρt ∥Y (t)∥ H 2 is non-zero and periodic (where ρ is given by (A1)) and Y (t) is a solution to the linearized ow around R 1 . For all a ∈ R, there exist T 0 ∈ R large enough, a constant C > 0 and a solution u a to (1.1) dened on [T 0 , ∞) such that

∥u a (t) -R 1 (t) -aY (t)∥ H 2 ⩽ Ce -2ρt , ∀t ⩾ T 0 .
As a consequence of 1.2, we prove that under (A1), R 1 is orbitally unstable. We prove the following result.

Corollary 1.3. Under the hypothesis of Theorem 1.2, R 1 is orbitally unstable in the following sense. There exist ε > 0, (T n ) ⊂ R -, (u 0,n ) ⊂ H 2 (R) and solution (u n ) of (A1) dened on [T n , 0] with u n (0) = u 0,n such that

lim n→∞ ∥u 0,n -R 1 (0)∥ H 2 = 0 and inf y∈R,θ∈R ∥u n (T n ) -e iθ ϕ(• -y)∥ L 2 ⩾ ε ∀n ∈ N.
Under the assumption of Theorem 1.2, we prove the existence of a one parameter family of multi-solitons. This implies that multi-soliton is not unique. Moreover, we prove instability for high relative speed of multi-solitons. Theorem 1.4. Let K ∈ N, K > 1. For each j = 1, ..., K, let (θ j , x j ) ∈ R 2 and (c j , ω j ) satisfy the condition of existence of soliton and R j be dened by (1.4). Let h * = inf inf j h j , 2α, where α is the given constant in Proposition 3.1 and v * = 1 9 min{|c j -c k | : j, k = 1, ..., K, j ̸ = k}. Assume that (A1) holds. There exists v ♮ > 0 such that if v * > v ♮ then the following holds. There exist Y (t) such that ∥Y (t)∥ H 2 ⩽ Ce -ρt and e ρt ∥Y (t)∥ H 2 is non-zero and periodic, where ρ is given by (A1) and Y (t) is a solution to the linearized ow around R 1 . For all a ∈ R, there exist T 0 ∈ R large enough, a solution u a to (1.1), and a constant C > 0 such that

u a (t) - K j=1 R j (t) -aY (t) H 2 ⩽ Ce -2ρt .
Corollary 1.5. Let R be the multi-soliton prole dened by (1.6). Under the hypotheses of Theorem 1.4, the multi-soliton around R satises the following instability property. There exists ε > 0, such that for all n ∈ N \ {0} and for T > 0 large enough the following holds. There exist are unstable forward in time. However, not like in [START_REF] Côte | High-speed excited multi-solitons in nonlinear Schrödinger equations[END_REF] for classical nonlinear Schrödinger equation, in our case (A1) does not imply that L ϕ C has an eigenvalue with positive real part.

I n , J n ∈ R, J n < I n < -T and a solution w n ∈ C([J n , I n ], H 2 (R)) to (1.1) such that lim n→∞ ∥w n (I n ) -R(I n )∥ H 2 = 0, and inf y j ∈ R, θ j ∈ R j = 1, ..., K w n (J n ) - K j=1 ϕ j (• -y j )e iθj L 2 ⩾ ε.
From [10, Theorem 5.1], if d ′′ (ω 1 , c 1 ) is non-singular and n(H ω1,c1 ) -p(d ′′ (ω 1 , c 1 )) odd then -iH ω1,c1 has at least one pair of real non-zero eigenvalues ±λ. In that case, (A1) holds. We have the following result.

Theorem 1.7. Assume that d ′′ (ω 1 , c 1 ) is non-singular and n(H ω1,c1 ) -p(d ′′ (ω 1 , c 1 )) odd. Then the conclusions of Corollary 1.3 and Corollary 1.5 hold. Remark 1.8. From the works of Colin-Ohta [START_REF] Colin | Stability of solitary waves for derivative nonlinear Schrödinger equation[END_REF], Ohta [START_REF] Ohta | Instability of solitary waves for nonlinear Schrödinger equations of derivative type[END_REF] and Hauashi [START_REF] Hayashi | Potential well theory for the derivative nonlinear Schrödinger equation[END_REF], we see that p(d

′′ (ω, c)) = 1 if b = 0 or b < 0 or b > 0 and -2 √ ω < c < 2κ √ ω; p(d ′′ (ω, c)) = 0 if b > 0 and 2κ √ ω < c < 2 √ ω for some constant κ = κ(b) ∈ (0, 1). We predict that n(H ω,c ) = 1 for all b and the condition n(H ω1,c1 ) -p(d ′′ (ω 1 , c 1 )) odd is replaced by p(d ′′ (ω 1 , c 1 )) = 0.
1.2. Instability of multi-solitons for (1.2). In this section, for simplicity, we use the same notation in Section 1.1.

The ow of (1.2) in H 1 (R) satises the following conservation laws.

Energy E(u) := 1 2 ∥u x ∥ 2 L 2 + 1 2(σ + 1) Im R |u| 2σ u x u dx, Mass Q(u) := 1 2 ∥u∥ 2 L 2 , Momentum P (u) := - 1 2 Im R u x u dx. For each ω, c ∈ R and u ∈ H 1 (R), we dene S ω,c (u) = E(u) + ωQ(u) + cP (u). A soliton of (1.2) is a solution of form R ω,c (t, x) = e iωt ϕ ω,c (x -ct), for ϕ ω,c is a critical point of S ω,c . Moreover, ϕ ω,c is (up to phase shift and translation) of form ϕ ω,c (x) = Φ ω (x) exp ic 2 x - 1 2σ + 2 x -∞ Φ 2σ ω,c (y) dy ,
where ω > c 2 4 and

Φ 2σ ω,c (y) = (σ + 1)(4ω -c 2 ) 2 √ ω cosh(σ √ 4ω -c 2 y) -c 2 √ ω . For each ω, c ∈ R, let d(ω, c), H ω,c , n(H ω,c ), p(d ′′ (ω, c
)) be dened as in Section 1.1. Similar in the case (1.1), Stability/instability of solitons of (A2) obeys Theorem 1.1. In [START_REF] Liu | Stability of solitary waves for a generalized derivative nonlinear Schrödinger equation[END_REF], the authors proved

that n(H ω,c ) = 1 for all σ > 0. Thus, R ω,c is orbitally stable if p(d ′′ (ω, c)) = 1 and orbitally unstable if p(d ′′ (ω, c)) = 0. Let K ∈ N, K > 1.
For each 1 ⩽ j ⩽ K, let (θ j , x j ) ∈ R 2 and (c j , ω j ) satisfy the condition of existence of soliton. For each j ∈ {1, 2, .., K}, we set

R j (t, x) = e iθj R ωj ,cj (t, x -x j ).
We dene for each j, h j = 4ω j -c 2 j . As in [30, Lemma 3.1],

|R j (t, x)| ≲ e -h j 2 |x-cj t| .
The prole of a multi-soliton is a sum of the form:

R = K j=1 R j .
(1.9)

Since (1.2) is invariant under phase shift and translation, we may assume that θ 1 = x 1 = 0. For convenience, we denote ϕ j = ϕ ωj ,cj and ϕ = ϕ 1 . By an elementary calculation, we see that the linearized operator around R 1 of (1.2) is the following. 1) .

L C (v) = -iv xx + iω 1 v -c 1 v x + v x |ϕ| 2σ + 2σϕ x Re(ϕv)|ϕ| 2(σ-
We may check that L C = iH ω1,c1 . We need the following assumption.

L C has an eigenvalue λ ∈ C such that ρ := Reλ > 0.

(A2)

We have the following result.

Theorem 1.9. Let σ = 1 or σ = 2 or σ ⩾ 5

2 . Under (A2), R 1 is orbitally unstable by the same sense as in Corollary 1.3.

Moreover, we have the following result. Theorem 1.10. Let σ = 1 or σ = 2 or σ ⩾ 5 2 . Let R be the multi-solitons prole dened by (1.9). Assume that (A2) holds. Then the multi-soliton around R is unstable by the same sense as in Corollary 1.5.

Using [10, Theorem 5.1], we have if d ′′ (ω 1 , c 1 ) is non-singular and p(d ′′ (ω, c)) = 0 then -iH ω1,c1 has onr pair of real non-zero eigenvalue ±λ. In that case, (A2) holds. Thus, we have the following result.* Theorem 1.11. Let σ = 1 or σ = 2 or σ ⩾ 5 2 and R 1 be such that d ′′ (ω 1 , c 1 ) is non-singular and p(d ′′ (ω 1 , c 1 )) = 0 then the conclusions of Theorem 1.9 and Theorem 1.10 hold. Remark 1.12. Dene

φ(t, x) = exp i 2 x -∞ |u(t, y)| 2 dy u(t, x), ψ = ∂ x φ - i 2 |φ| 2σ φ.
From [30, page 6], if u solves (1.2) then (φ, ψ) solves

Lφ = P (φ, ψ), Lψ = Q(φ, ψ),
where P, Q are dened by

P (φ, ψ) = iσ|φ| 2(σ-1) φ 2 ψ -σ(σ -1)φ x -∞ |φ| 2(σ-2) Im(ψ 2 φ 2 ) dy, Q(φ, ψ) = -iσ|φ| 2(σ-1) ψ 2 φ -σ(σ -1)ψ x -∞ |φ| 2(σ-2) Im(ψ 2 φ 2 ) dy.
Since [30, Remark 1.2], the conditions σ = 1 or σ = 2 or σ ⩾ 5 2 ensure that P (φ, ψ) and Q(φ, ψ) are Lipschitz continuous on bounded set of H 1 (R) × H 1 (R). This is important point in the proof of Theorem 1.9, 1.10. Remark 1.13. From the work of Liu-Simpson-Sulem [START_REF] Liu | Stability of solitary waves for a generalized derivative nonlinear Schrödinger equation[END_REF], we have if σ ⩾ 2 or σ ∈ (1, 2) and

2z 0 √ ω < c < 2 √ ω then p(d ′′ (ω, c)) = 0 and if σ ∈ (0, 1) or σ ∈ (1, 2) and -2 √ ω < c < 2z 0 √ ω then p(d ′′ (ω, c)) = 1.
The proofs of Theorem 1.9 and 1.10 are similar the proofs of Corollary 1.3 and Corollary 1.5 respectively. In this paper, we admit this and we only focus on the proofs of the results in Section 1.1.

Proof of main results

As said above, we only prove the results in Section 1.1. The results in Section 1.2 are proved by similar argument.

2.1. Construction of approximation proles. For convenience, we use the same notation as in [START_REF] Côte | High-speed excited multi-solitons in nonlinear Schrödinger equations[END_REF]. We identify C with R 2 and use the notation a

+ ib = a b (a, b ∈ R). Given v ∈ C, we
denote v + is its real part and v -is its imaginary part. To avoid confusion, we denote with an index whether we consider the operator with C-, R 2 -, or C 2 -valued functions. Let L C be dened by (1.8). We dene

L C (v) = -iv xx + 2Re(R 1 v)R 1x + |R 1 | 2 v x -ib(|R 1 | 4 v + 4|R| 2 RRe(Rv)),
and the nonlinear operators

N C (v) = 2Re(R 1 v)v x + |v| 2 R 1x + |v| 2 v x -ib (R 1 + v)(4Re(R 1 v) 2 + 2|v| 2 |R 1 | 2 + 4|v| 2 Re(R 1 v + |v| 4 ) + 4|R 1 | 2 vRe(R 1 v) M C (v) = e -iω1t N C (e iω1t v) = 2Re(ϕv)v x + |v| 2 ϕ x + |v| 2 v x -ib(ϕ + v)(4Re(ϕv) 2 + 2|v| 2 |ϕ| 2 + 4|v| 2 Re(ϕv) + |v| 4 ) -4ib|ϕ| 2 vRe(ϕv).
We have

L R 2 v + v - = Re(L C (v)) Im(L C (v)) = v - xx -ω 1 v --c 1 v + x + 2(v + ϕ + + v -ϕ -)ϕ + x + |ϕ| 2 v + x + b|ϕ| 4 v -+ 4b|ϕ| 2 ϕ -(ϕ + v + + ϕ -v -) -v + xx + ω 1 v + -c 1 v - x + 2(v + ϕ + + v -ϕ -)ϕ - x + |ϕ| 2 v - x -b|ϕ| 4 v + -4b|ϕ| 2 ϕ + (ϕ + v + + ϕ -v -) = -c 1 ∂ x + 2ϕ + x ϕ -+ |ϕ| 2 ∂ x + 4b|ϕ| 2 ϕ + ϕ - ∂ xx -ω 1 + 2ϕ -ϕ + x + b|ϕ| 4 + 4b|ϕ| 2 (ϕ -) 2 -∂ xx + ω 1 + 2ϕ - x ϕ + -b|ϕ| 4 -4b|ϕ| 2 (ϕ + ) 2 -c 1 ∂ x + 2ϕ -ϕ - x + |ϕ| 2 ∂ x -4b|ϕ| 2 ϕ + ϕ - v + v - We see that L R 2 is an R-linear operator on H 2 (R, R 2 ) → L 2 (R, R 2 ). To have some eigenfunctions, we extend L R 2 to L C 2 : H 2 (R, C 2 ) → L 2 (R, C 2 ), which is a C-linear operator. Dene v = e ic 1 2
x ṽ and ϕ = e ic 1 2 x φ. By an elementary calculation, we have

L C (v) = L C (e ic 1 2 x ṽ) = e ic 1 2 x L φ C (ṽ), where L φ C (ṽ) = -iṽ xx + i ω 1 - c 2 1 4 ṽ + 2Re( φṽ) ic 1 2 φ -φx -2ib| φ| 2 φ + | φ| 2 ic 1 2 + ṽx -ib| φ| 4 ṽ. Thus, L φ C 2 equals to   W 1,1 + W 1,2 ∂ x ∂ xx -w 1 - c 2 1 4 + W 2 -∂ xx + ω 1 - c 2 1 4 + W 3 W 4,1 + W 4,2 ∂ x ,   .
where 

W 1,1 = φ+ -c 1 2 φ-+ φ+ x + 2b| φ| 2 φ-, W 1,2 = | φ| 2 , W 2 = φ-- c 1 2 φ-+ φ+ x + 2b| φ| 2 φ-- c 1 2 | φ| 2 + b| φ| 4 W 3 = φ+ c 1 2 φ+ + φ+ x -2b| φ| 2 φ+ + c 1 2 | φ| 2 -b| φ| 4 W 4,1 = φ-c 1 2 φ+ + ∂ x φ--2b| φ| 2 φ+ W 4,2 = | φ| 2 . Thus, W 1,1 , W 1,2 , W 2 , W 3 , W 4,1 , W
L φ R 2 ṽ+ ṽ-= Re(L φ C (ṽ)) Im(L φ C (ṽ)) = Re(e -ic 1 2 x L ϕ C (v)) Im(e -ic 1 2 x L ϕ C (v)) = cos c1 2 x sin c1 2 x -sin c1 2 x cos c1 2 x Re(L ϕ C (v)) Im(L ϕ C (v)) = cos c1 2 x sin c1 2 x -sin c1 2 x cos c1 2 x L R 2 v + v - = cos c1 2 x sin c1 2 x -sin c1 2 x cos c1 2 x L R 2 cos c1 2 x sin c1 2 x -sin c1 2 x cos c1 2 x -1 ṽ+ ṽ-.
This implies that the spectrum set and the resolvent set of L C (L C 2 ) are same to the spectrum set and the resolvent set of L φ

C (L φ C 2 ).
Let α > 0 be the decay rate given by Proposition 3.1 for eigenfunctions of L with eigenvalue λ (see (A1)). Taking a small value of α, we assume that α ∈ 0, h1 2 , where

h 1 = 4ω 1 -c 2 1 . For K = R, R 2 , C or C 2 , denote H(K) = {v ∈ H ∞ (R, K)|e α|x| |∂ a x v| ∈ L ∞ (R)
for any a ∈ N}.

(2.1)

We have the following properties of L C 2 .

Proposition 2.1.

(i) The eigenvalue λ = ρ + iθ can be chosen with maximal real part. We denote

Z(x) = Z + (x) Z -(x) ∈ H 2 (R, C), an associated eigenfunction. (ii) ϕ ∈ H(R 2 ) and Z ∈ H(C 2 ). (iii) Let µ / ∈ Sp(L R 2 ) and A ∈ H(C 2 ).
There exists a solution X ∈ H(C 2 ) to (L -µI)X = A and (L -µI) -1 is a continuous operator on H(C 2 ).

Since L C 2 and L φ C 2 are conjugates of each other, we only need to prove Proposition 2.1 for L φ

C 2 .
Proof. (i) We see that if λ is an eigenvalue of L C with eigenfunction v then λ is an eigenvalue of

L C 2 with eigenfunction v -iv
. Thus, from (A1), there exists an eigenvalue of L φ

C 2 with positive real part. Since L φ C 2 is a compact perturbation of 0 ∂ xx - h 2 1 4 -∂ xx + h 2 1 4 0 , the essential spectrum of L φ C 2 is the set iy : y ∈ R, |y| ⩾ h 2 1 4
and there exists an eigenvalue λ with maximal real part.

(ii) It is well known that ϕ and its derivative are exponentially decay with decay rate h1

2 . Combining with the fact that ϕ solves an elliptic equation, we have ϕ ∈ H(R 2 ). Since L φ C 2 Z = λZ, using Proposition 3.1 (i), we have Z ∈ H(C 2 ).

(iii) This part follows from Proposition 3.1 (ii).

□

We need the following denition. Denition 2.2. Let ξ ∈ C ∞ (R + , H ∞ (R)) and χ : R + → (0, ∞). Then we denote

ξ(t) = O(χ(t)) as t → ∞, if, for all s ⩾ 0, there exists C(s) > 0 such that ∀t ⩾ 0, ∥ξ(t)∥ H s ⩽ C(s)χ(t). Dene Y 1 := Re(Z) = Re(Z + ) Re(Z -) and Y 2 := Im(Z) = Im(Z + ) Im(Z -) . Then Y 1 , Y 2 ∈ H(R 2 ),
and

L R 2 Y 1 = ρY 1 -θY 2 , L R 2 Y 2 = θY 1 + ρY 2 . (2.2) Denote Y (t) = e -ρt (cos(θt)Y 1 + sin(θt)Y 2 ). (2.3) 
Lemma 2.3. The function Y (t) solves the following equation.

∂ t Y + L R 2 Y = 0.
Proof. The desired result follows from (2.2) and the denition of Y (2.3). For detail proof, we refer reader to [7, Lemma 21].

□

Proposition 2.4. Let N 0 ∈ N and a ∈ R. Then there exists a prole

W N0 ∈ C ∞ ([0, ∞), H(R 2 )),
such that

∂ t W N0 + L R 2 W N0 = M R 2 (W N0 ) + O(e -ρ(N0+1)t ),
as t → ∞ and W N0 (t) = aY (t) + O(e -2ρt ).

For simplicity, in the proof of this proposition, we write W for W 0 . We look for W in the following form

W (t, x) = N0 k=1 e -ρkt (A j,k (x) cos(jθt) + B j,k (x) sin(jθt)) , where A j,k = A + j,k A - j,k and B j,k = B + j,K B - j,k
are some functions in H(R 2 ) which are determined later.

We have the following expression of M R 2 (W ).

Lemma 2.5. We have

M R 2 (W ) = N0 κ=2 e -κρt κ j=0 ( Ã j,κ (x) cos(jθt) + B j,κ (x) sin(jθt)) + O(e -(N0+1)ρt ),
where à j,κ , B j,κ depend on A l,n , B l,n and

∂ x A l,n , ∂ x B l,n only for l ⩽ n ⩽ κ -1.
Proof. Remark that there exists a polynomial

P N0 ∈ H(R 2 )[X, Y, Z, T ] with coecients in H(R 2 )
and valuation at least 2, such that 

M R 2 (W ) = P N0 (v + , v -, v + x , v - x ) + O(|v| N0+1 ) = N0 m=2 1 p1=0 1 p2=0 m-p1-p2 j=0 P j,p1,p2,m (x)v j + ∂ x v p1 + ∂ x v p2 -v m-j-p1-p2 - Q j,p1,p2,m (x)v j + ∂ x v p1 + ∂ x v p2 -v m-j-p1-p2 - + O(v N0+1 ).
□ Dene V N0 1 (t, x) := e iω1t W N0 (t, x -c 1 t), U N0 1 (t, x) := R 1 (t, x) + V N0 1 (t, x).
Then we dene

Err N0 1 (t, x) := i∂ t U N0 1 + ∂ xx U N0 1 + i|U N0 1 | 2 ∂ x U N0 1 + b|U N0 1 | 4 U N0 1 (2.4) = i∂ t V 1 N0 + ∂ xx V N0 1 + i(|R 1 (t) + V N0 1 | 2 ∂ x (R 1 (t) + V N0 1 ) -|R 1 (t)| 2 ∂ x R 1 (t)) + b(|R 1 (t) + V N0 1 | 4 (R 1 (t) + V N0 1 ) -|R 1 (t)| 4 R 1 (t)) = i(∂ t V N0 1 + L C V N0 1 + N C (V N0 1 
)).

Remarking that V N0 1 (t, x) = e iω1t W N0 (t, x -c 1 t) and R 1 (t, x) = e iω1t ϕ(x -c 1 t), we have ∂ t V 1 N0 = e iω1t (iω 1 W N0 + ∂ t W N0 -c∂ x W N0 ) L C V N0 1 = e iω1t 2Re(ϕW N0 )∂ x ϕ + |ϕ| 2 ∂ x W N0 -i∂ xx W N0 -ib(|ϕ| 4 W N0 + 4|ϕ| 2 ϕRe(ϕW N0 )) N C (V N0 1 ) = e iω1t M C (W N0 ).
Thus,

Err N0 1 (t, x) = i(∂ t V N0 1 + L C V N0 1 + N C (V N0 1 )) = ie iω1t (∂ t W N0 + L C W N0 + M C (W N0 )). By Proposition 2.4, Err N0 1 (t, x) = O(e -ρ(N0+1)t ). Moreover, W N0 (t) = aY (t) + O(e -2ρt ) and then V N0 1 (t, x) = ae iω1t Y (t, x -c 1 t) + O(e -2ρt
), where Y (t) is dened by (2.3). This implies that, for all s ⩾ 0, there exists C(N 0 , s) such that ∀t ⩾ 0, ∥V N0 1 ∥ H s ⩽ C(N 0 , s)e -ρt .

(2.5) 2.2. Proof of Theorems 1.2 and 1.4.

Proof of Theorem 1.2. Let N 0 to be determined later. Dene

φ(t, x) = exp i 2 x -∞ |u(t, y)| 2 dy u(t, x) ψ = exp i 2 x -∞ |u(t, y)| 2 dy ∂ x u(t, x) = ∂ x φ - i 2 |φ| 2 φ, h(t, x) = exp i 2 x -∞ |U N0 1 | dy U N0 1 (t, x), k = exp i 2 x -∞ |U N0 1 | dy ∂ x U N0 1 (t, x) = ∂ x h - i 2 |h| 2 h.
From [29, page 8], we see that if u solves (1.1) then (φ, ψ) solves the following system

Lφ = P (φ, ψ), Lψ = Q(φ, ψ), (2.6) 
where L = i∂ t + ∂ xx and

P (φ, ψ) = iφ 2 ψ -b|φ| 4 φ, Q(φ, ψ) = -iψ 2 φ -3b|φ| 4 ψ -2b|φ| 2 φ 2 ψ.
From (2.4), by similar arguments in [29, page 9], we have h, k solves the following system

Lh = P (h, k) + Err N0 1 (1), Lk = Q(h, k) + Err N0 1 (2), (2.7) 
where

Err N0 1 (1) = Err N0 1 exp i 2 x -∞ |U N0 1 | 2 dy -h x -∞ Im(Err N0 1 U N0 1 ) dy Err N0 1 (2) = ∂ x Err N0 1 (1) -i|h| 2 Err N0 1 (1) + i 2 h 2 Err N0 1 (1).
Since Err N0

1

= O(e -ρ(N0+1)t ), we have (Err N0 1 (1), Err N0 1 (2)) = O(e -ρ(N0+1)t ). We do a xed point around q := (h, k) of (2.6). Set w := ( φ, ψ) = (φ, ψ) -(h, k), F (φ, ψ) = (P (φ, ψ), Q(φ, ψ))

and

Ẽrr N0 1 = (Err N0 1 (1), Err N0 1 (2)) = O(e -ρ(N0+1)t ). We have ψ = ∂ x φ - i 2 (| φ + h| 2 ( φ + h) -|h| 2 h).
(2.8)

Moreover, w solves the following system L w = F ( w + q) -F (q) -Ẽrr N0 1 .

(2.9)

In Duhamel form, w satises, for t ⩽ s

w(s) = S(s -t)w(t) -i s t S(s -τ )(F ( w + q) -F (q) -Ẽrr N0 1 )(τ ) dτ. Thus, S(-s)w(s) = S(-t)w(t) -i s t S(-τ )(F ( w + q) -F (q) -Ẽrr N0 1 )(τ ) dτ.
We nd w such that w(t) → 0 as t → ∞. Letting s → ∞ as w(s) → 0, we need to nd w satisfying the xed point equation

w(t) = i ∞ t S(t -τ )(F ( w + q) -F (q) -Ẽrr N0 1 )(τ ) dτ.
We dene the map

Φ : v → Φ(v) = i ∞ t S(t -τ )(F (v + q) -F (q) -Ẽrr N0 1 )(τ ) dτ.
Let B, T 0 to be determined later.

For w ∈ C([T 0 , ∞), H 2 (R) × H 2 (R)), dene ∥ w∥ X T 0 ,N 0 = sup t⩾T0 e ρ(N0+1)t ∥ w(t)∥ H 2 ×H 2 , for (∥ w (t)∥ H 2 ×H 2 = ∥ φ∥ H 2 + ∥ ψ∥ H 2 )
to be norm of the Banach space

X T0,N0 := { w ∈ C((T 0 , ∞), H 2 (R) × H 2 (R))|∥ w∥ X T 0 ,N 0 < ∞}. Dene X T0,N0 (B) := { w ∈ X T0,N0 |∥ w∥ X T 0 ,N 0 ⩽ B}.
We will nd a xed point of Φ in X T0,N0 (B). By (2.5), we can assume T 0 is large enough such that Be -ρ(N0+1)T0 ⩽ 1, and ∥V N0 1 ∥ H 3 ⩽ 1.

(2.10)

We see that

∥q∥ H 2 ×H 2 = ∥h∥ H 2 + ∥k∥ H 2 ⩽ C(∥U N0 1 ∥ H 3 + ∥U N0 1 ∥ 3 H 3 ) ⩽ C(∥V N0 1 ∥ H 3 + ∥V N0 1 ∥ 3 H 3 + ∥R 1 ∥ H3 + ∥R 1 ∥ 3 H 3 ) ⩽ C(2 + ∥ϕ∥ H 3 + ∥ϕ∥ 3 H 3 ). Dene r = C(2 + ∥ϕ∥ H 3 + ∥ϕ∥ 3 H 3 ) + 1. Due to smoothness of F , there exists a constant K such that ∀a, b ∈ B H 2 ×H 2 (r), ∥F (a) -F (b)∥ H 2 ×H 2 ⩽ K∥a -b∥ H 2 ×H 2 .
In particular,

∥F (q + v) -F (q)∥ H 2 ×H 2 ⩽ K∥v∥ H 2 ×H 2 .
For any v ∈ X T0,N0 (B), we have

∥Φ(v)∥ H 2 ×H 2 = ∞ t S(t -τ )(F (v + q) -F (q) -Ẽrr N0 1 )(τ ) dτ H 2 ×H 2 ⩽ ∞ t (∥F (v + q) -F (q)∥ H 2 ×H 2 + ∥ Ẽrr N0 1 ∥ H 2 ×H 2 ) dτ ⩽ ∞ t (K∥v∥ H 2 ×H 2 + C(N 0 )e -ρ(N0+1)τ ) dτ ⩽ KB + C(N 0 ) (N 0 + 1)ρ e -ρ(N0+1)t .
Choose N 0 large enough such that K (N0+1)ρ ⩽ 1 2 and choose B = 2C(N0) (N0+1)ρ . Finally, choose T 0 large enough such that (2.10) holds. Hence, we have

∥Φ(v)(t)∥ H 2 ×H 2 ⩽ Be -ρ(N0+1)t .
This implies that Φ maps X T0,N0 (B) to itself. Now, we prove that Φ is a contraction in X T0,N0 (B).

Let v 1 , v 2 ∈ X T0,N0 (B), we have Φ(v 1 )(t) -Φ(v 2 )(t) = i ∞ t S(t -s)(F (v 1 + q) -F (v 2 + q))(s) ds.
Thus,

e ρ(N0+1)t ∥Φ(v 1 )(t) -Φ(v 2 )(t)∥ H 2 ×H 2 = e ρ(N0+1)t ∞ t S(t -s)(F (v 1 + q) -F (v 2 + q))(s) ds H 2 ×H 2 ⩽ e ρ(N0+1)t ∞ t ∥F (v 1 + q)(s) -F (v 2 + q)(s)∥ H 2 ×H 2 ds ⩽ e ρ(N0+1)t ∞ t K∥v 1 -v 2 ∥ H 2 ×H 2 ds ⩽ Ke ρ(N0+1)t ∞ t e -ρ(N0+1)s ∥v 1 -v 2 ∥ X T 0 ,N 0 ds ⩽ Ke ρ(N0+1)t ∥v 1 -v 2 ∥ X T 0 ,N 0 e -ρ(N0+1)t (N 0 + 1)ρ ⩽ K (N 0 + 1)ρ ∥v 1 -v 2 ∥ X T 0 ,N 0 .
Taking supremum over t ⩾ T 0 , we have

∥Φ(v 1 ) -Φ(v 2 )∥ X T 0 ,N 0 ⩽ K (N 0 + 1)ρ ∥v 1 -v 2 ∥ X T 0 ,N 0 ⩽ 1 2 ∥v 1 -v 2 ∥ X T 0 ,N 0 .
Hence, Φ is a contraction on X T0,N0 (B) and Φ has a xed point w.

Next, we prove that the solution w = ( φ, ψ) of (2.9) satises the relation

(2.8) if N 0 is large enough. Dene v = ∂ x φ -i 2 |φ| 2 φ and ṽ = v -k = ∂ x φ -i 2 (| φ + h| 2 ( φ + h) -|h| 2 h).
We need to prove that ψ = ṽ. By similar argument as in [START_REF] Van Phan | Construction of multi-solitons and multi kink-solitons of derivative nonlinear Schrödinger equations[END_REF], we have

L ψ -Lṽ = ( ψ -ṽ)A( ψ, ṽ, φ, h, k) + ψ -ṽB( ψ, ṽ, φ, h, k) -i( φ + h) 2 ∂ x ( ψ -ṽ), where A = -i( ψ + ṽ + 2k)( φ + h) -3b| φ + h| 4 - 1 2 | φ + h| 4 B = -2b| φ + h| 2 ( φ + h) 2 -2i( φ + h) ṽ + k + i 2 | φ + h| 2 ( φ + h) -| φ + h| 2 ( φ + h) 2 . Thus, ∥ ψ(t) -ṽ(t)∥ 2 L 2 ≲ ∥ ψ(N ) -ṽ(N )∥ 2 L 2 exp N t (∥A∥ L ∞ + ∥B∥ L ∞ + ∥∂ x ( φ + h) 2 ∥ L ∞ ) ds , ≲ ∥ ψ(N ) -ṽ(N )∥ 2 L 2 exp ((N -t)(∥A∥ L ∞ L ∞ + ∥B∥ L ∞ L ∞ + ... +2(∥ φ∥ L ∞ + ∥h∥ L ∞ )(∥∂ x φ∥ L ∞ + ∥∂ x h∥ L ∞ ))) ≲ e -2ρ(N0+1)N e (N -t)C * , for N ≫ t,
where C * depends on R 1 (by using the bounded of ∥ φ∥ H 2 + ∥ ψ∥ H 1 + ∥h∥ H 2 + ∥k∥ H 1 ). Choosing N 0 large enough and letting N → ∞ we obtain ψ = ṽ and hence (2.8) holds. Thus, we prove that there exists a solution ( φ, ψ) of (2.9) such that ψ

= ∂ x φ -i 2 (| φ + h| 2 ( φ + h) -|h| 2 h). Dene φ = φ + h, ψ = ψ + k. Hence, (φ, ψ) solves (2.6) and ψ = ∂ x φ -i 2 |φ| 2 φ. Setting u(t, x) = exp - i 2 x -∞ |φ(t, y)| 2 dy φ(t, x),
we have u solves (1.1). Moreover,

∥u -U N0 1 ∥ H 2 = exp -i 2 x -∞ |φ(y)| 2 dy φ -exp -i 2 x -∞ |h(y)| 2 dy h H 2 ≲ ∥φ -h∥ H 2 = ∥ φ∥ H 2 ⩽ Ce -ρ(N0+1)t , for t ⩾ T 0 . Thus, u(t) = R 1 (t) + V N0 1 (t) + O(e -2ρt
), for t large enough. This completes the proof of Theorem

□

Proof of Theorem 1.4. Let v ♮ to be xed later and assume that v * > v ♮ . Let N 0 to be dened later and a ∈ R. Let V N0 1 (t), U N0 1 (t) and error term Err N0 1 (t) associated to R 1 (t) and an eigenvalue λ = ρ + iθ of L C . We look for a solution to (1.1) of the form u(t) = U N0 1 (t) + j⩾2 R j (t) + w(t).

We use similar argument in the proof of Theorem 1.2. We dene

φ(t, x) = exp i 2 x -∞ |u(t, y)| 2 dy u(t, x), ψ = ∂ x φ - i 2 |φ| 2 φ, and h(t, x) = exp   i 2 x -∞ |U N0 1 (t, y) + j⩾2 R j (t, y)| 2 dy   (U N0 1 (t, x) + j⩾2 R j (t, x)), k = ∂ x h - i 2 |h| 2 h.
We see that if u solves (1.1) then (φ, ψ) solves (2.6). Let f (u) = i|u| 2 u x + b|u| 4 u and L be the Schrödinger operator dened as in the proof of Theorem

1.2. Dene Err N0 2 : = L(U N0 1 + j⩾2 R j ) + f (U N0 1 + j⩾2 R j )
Thus, by choosing v ♮ ≫ (N 0 + 1)ρ and Lemma 3.6, we have Dene x j (t) = c j t + x j . Recall that R j (t, x) = e iωj t e iθj ϕ j (x -x j (t)). For t < 0 small enough, x j (t) is far away from x 1 (t) for each j ⩾ 2.

Err N0 2 = LU N0 1 + f (U N0 1 ) + j⩾2 (LR j + f (R j )) + (f (U N0 1 + j⩾2 R j ) -f (U N0 1 ) - j⩾2 f (R j )) = Err N0 1 + (f (U N0 1 + j⩾2 R j ) -f (U N0 1 ) - j⩾2 f (R j )) = O(e -ρ(N0+1)t ) + O(e -h * v * t ) = O(e -ρ(N0+1)t ), If T * > -∞ then w n is a blow up solution. Consider the case T * = -∞. Note that u n ∈ C([T n , 0], H 2 (R)) and [0, T n ] is compact, the set {u n (t)|t ∈ [0, T n ]} is compact in H 2 (R).
Denote J = I + T n and

z(t) = w n (t) -   ũn (t) + K j=2 R j (t)   .
Let F = (P, Q) be given as in the proof of Theorem 1.2. Dene

φ n (t, x) = w n (t, x) exp i 2 x -∞ |w n (t, y)| 2 dy , ψ n = ∂ x φ n - i 2 |φ| 2 φ n , h n (t, x) = (ũ n (t, x) + K j=2 R j (t, x)) exp   i 2 x -∞ |ũ n + K j=2 R j | 2 dy   , k n = ∂ x h n - i 2 |h n | 2 h n , wn = (φ n , ψ n ) -(h n , k n ), q = (h n , k n ).
Recall that f (u) = i|u| 2 u x + b|u| 4 u. We have for t ∈ [I + T n , I]

L(ũ n + K j=2 R j ) + f (ũ n + K j=2 R j ) = f (ũ n + K j=2 R j ) -f (ũ n ) - K j=2 f (R j ) = j⩾2 O(ũ n R j ) + j̸ =k̸ =1 O(R j R k ) ⩽ Cη(I), as I → -∞.
We see that wn (I) = 0. As in the proof of Theorem 1.2, we deduce that wn solves wn = i t I S(t -s)(F ( wn ) + q) -F (q) + Err)(s) ds,

where ∥Err(s)∥ H 1 ×H 1 ⩽ Cη(I). Sine F is lipschitz continuous on bounded set of H 1 (R) × H 1 (R), we have ∥ wn (t)∥ H 1 ×H 1 ⩽ C t I (∥ wn (s)∥ H 1 ×H 1 + η(I)) ds ⩽ C t I ∥ wn (s)∥ H 1 ×H 1 ds + Cη(I)(t -I).
Hence, by Grönwall inequality, we have

∥ wn (t)∥ H 1 ×H 1 ⩽ Cη(I)(t -I)e C(t-I) ⩽ C n η(I), ∀t ∈ [J, I].
Thus, for t ∈ [J, I]

∥φ n -h n ∥ H 2 ≲ ∥ wn (t)∥ H 1 ×H 1 ⩽ C n η(I)
Remark that ũn (J) = u n (T n ). This implies that for all n, we have

w n (J) -u n (T n ) - K j=2 R j (J) H 2 ≲ ∥φ n -h n ∥ H 2 ⩽ C n η(I). Choose I n such that C n η(I n ) < ε 3 , J n = I n + T n . We have ∥z(J n )∥ H 2 ⩽ ε 3 .
Given y j , γ j , c j (t) = ω j t + θ j we have

w(J n ) - K j=1 ϕ j (• -y j )e iγj L 2 ⩾ u n (T n ) + K j=2 R j (J n ) - K j=1 ϕ j (• -y j )e iγj L 2 -w n (J n ) -u n (T n ) - K j=2 R j (J n ) L 2 ⩾ u n (T n ) -ϕ(• -y 1 )e iγ1 + K j=2 ϕ j (• -x j (J n )e icj (Jn) -ϕ j (• -y j )e iγj L 2 - ε 3 .
If inf yj ,γj w(J n ) -K j=1 ϕ j (• -y j )e iγj L 2 > ε for innite many n then we obtain the desired result. We assume that for n large enough, inf yj ,γj

w(J n ) - K j=1 ϕ j (• -y j )e iγj L 2 ⩽ ε.
Choosing y j , γ j near minimizer such that

w n (J n ) - K j=1 ϕ j (• -y j )e iγj L 2 ⩽ 2ε.
Consider L 2 -norm on balls B(x j (J n ), R) around each R j , j ⩾ 2. By localized of each ϕ j and u n (T n ) = ũn (J n ), for J n small enough, we have

2ε + ε ⩾ u n (T n ) -ϕ(• -y 1 )e iγ1 + ϕ j (• -x j (J n ))e icj (Jn) - K j=2 ϕ j (• -y j )e iγj L 2 (B(xj (Jn),R)) ⩾ ϕ j (• -x j (J n ))e icj (Jn) - K j=1 ϕ j (• -y j )e iγj L 2 (B(xj (Jn),R))
, ∀j ⩾ 2.

Thus, each j ⩾ 2 there exists y k(j) ̸ = 1 near x j (J n ). Hence, each j ⩾ 2, there exists only one y k(j) near x j (J n ). Since ϕ j ̸ = ϕ k , for j ̸ = k we have k(j) = j for all j ⩾ 2 i.e y k -x k (J n ) = O(1), for all j ⩾ 2 uniformly in n. This implies that

K j=2 ϕ j (• -x j (J n ))e icj (Jn) -ϕ j (• -y j )e iγj L 2 = O In→-∞ (1) ⩽ ε 3 . Thus, inf yj ∈R;γj ∈R w n (J n ) - K j=1 ϕ j (• -y j )e iγj L 2 ⩾ w n (J n ) - K j=1 ϕ j (• -y j )e iγj L 2 (B(0,M )) ⩾ ∥u n (T n ) -ϕ(• -y 1 )e iγ1 ∥ L 2 (B(0,M )) - 2ε 3 ⩾ ε - 2ε 3 = ε 3 ,
where we use Corollary 1.3. Moreover,

w n (I n ) - K j=1 R j (I n ) H 2 → 0, Since g -τ (x) = 1 2 √ ρ sin θ 2 e -ρ 1 2 sin( θ 2 )|x| ,
we obtain the desired result.

□

The following regularity result on eigenfunctions is trivial. Lemma 3.3. Under the assumptions of Proposition 3.1, the functions u, v ∈ H ∞ (R, C) and

lim |x|→∞ (|u(x)| + |v(x)| + |∂ x u(x)| + |∂ x v(x)|) = 0.
For the rest of the proof, we work with the following operator

L ′ = iP LP -1 = ∂ xx - h 2 1 4 + W1,1 ∂ x + W1,2 W2,1 ∂ x + W2,2 W3,1 ∂ x + W3,2 -∂ xx + h 2 1 4 + W4,1 ∂ x + W4, 2 
, where P = 1 i 1 -i and W1,1 = i 2 W 1,2 + i 2 W 4,2 W1,2 = i 2 W 1,1 + 1 2 W 2 - 1 2 W 3 + i 2 W 4 W2,1 = i 2 W 2,1 - i 2 W 4,2 W2,2 = i 2 W 1,1 - i 2 W 2 - 1 2 W 3 - i 2 W 4,1 W3,1 = i 2 W 1,2 - i 2 W 4,2 W3,2 = i 2 W 1,1 + 1 2 W 2 + 1 2 W 3 - i 2 W 4,1 W4,1 = i 2 W 1,2 + i 2 W 4,2 W4,2 = i 2 W 1,1 - 1 2 W 2 + 1 2 W 3 + i 2 W 4,1 .
Thus, Wi,j ∈ H(C) for each i = 1, ..., 4 and j = 1, 2. Then the spectrum of L ′ is Sp(L ′ ) = iSp(L).

We see that if λ is an eigenvalue of L with eigenvector

U then λ ′ = iλ is an eigenvalue of L ′ with eigenvector U ′ = u ′ v ′ = P U . Write L ′ -λ ′ I = H + K, where H := ∂ xx - h 2 1 4 -λ ′ 0 0 -∂ xx + h 2 1 4 -λ ′ and K := W1,1 ∂ x + W1,2 W2,1 ∂ x + W2,2 W3,1 ∂ x + W3,2 W4,1 ∂ x + W4,2 . Dene F := f 1 f 2 := KU ′ = ( W1,1 ∂ x + W1,2 )u ′ + ( W2,1 ∂ x + W2,2 )v ′ ( W3,1 ∂ x + W3,2 )u ′ + ( W4,1 ∂ x + W4,2 )v ′ .
We have

u ′ = g - h 2 1 4 -λ ′ * (-f 1 ) v ′ = g λ ′ - h 2 1 4 * f 2 . Let µ 1 = - h 2 1 4 -λ ′ and µ 2 = λ ′ - h 2 1 4 . Since λ / ∈ iy, y ∈ R, |y| ⩾ h 2 1 
4 , we have µ 1 , µ 2 satisfy the assumption of Lemma 3.2. Let τ 1 , τ 2 be given as in Lemma 3.2 and set τ := min{τ 1 , τ 2 }. Dene

F := f1 f2 = |f 1 | |f 2 | and G := g1 g2 = |∂ x f 1 | |∂ x f 2 |
ũ := g -τ * f1 and ṽ = g -τ * f2 ũ1 := g -τ * g1 and ṽ1 = g -τ * g2 .

Lemma 3.4. There exists

C > 0 such that |u ′ | ⩽ C ũ and |v ′ | ⩽ C ṽ, |∂ x u ′ | ⩽ C ũ1 and |∂ x v ′ | ⩽ C ũ2 .
Proof. From Lemma 3. Proof. Set f := f1 + f2 + g1 + g2 . We have w ∈ C 0 (R). Indeed, w solves

-∂ xx w + τ w = f, (3.2) 
and from f ∈ L 2 (R), this implies w ∈ H 2 (R) and then w ∈ C 0 (R). Now, we prove that there exists R > 0 such that for all x ∈ R with |x| > R we have τ w(x) -f (x) w(x) ⩾ τ 2 . Thus, we only need to prove that w(x) ⩽ ψ(x) for |x| > R. We prove by contradiction. Assume that w(x 0 ) > ψ(x 0 ) for some |x 0 | > R. Dene Ω := {x ∈ R, w(x) > ψ(x)}.

Then Ω is not empty and for all x ∈ Ω, we have |x| > R and for all x ∈ ∂Ω we have w(x) = ψ(x). This implies the desired result.

□

Proof of Proposition 3.1. (i) By using Lemma 3.3, 3.4 and 3.5, it is easy to imply that (3.1) holds.

Since u, v solves a system of elliptic equations and (3.1), u, v and their derivative are exponentially decaying at rate α. This implies the desired result.

(ii) Since λ / ∈ Sp(L), there exists X ∈ H 2 (R, C 2 ) such that (L -λId)X = A. Dene L ′ = iP LP -1 , X ′ = P X, λ ′ = iλ and A ′ = iP A then (L ′ -λ ′ Id)X ′ = A ′ .

Recall that L ′ -λ ′ = H + K. Set Y = y 1 y 2 := KX ′ , A ′ = a 1 a 2 and X ′ = x 1 x 2

. We have 

x 1 = g - h 2 

Remark 1 . 6 .

 16 Replacing ϕ by ϕ in the denition of L C , we obtain the new operator denoted by L ϕ C . By similar argument in [7, Proof of Corollary 2], we may prove that if L ϕ C has a eigenvalue with positive real part then the soliton R 1 (in Corollary 1.3) and the multi-soliton R (in Corollary 1.5)

2 ,

 2 |g µ1 | ⩽ Cg -τ1 ⩽ Cg -τ for some C > 0. Thus,|u ′ | = |g µ1 * (-f 1 )| ⩽ Cg -τ * f1 = C ũ, |∂ x u ′ | = |g µ1 * ∂ x (-f 1 )| ⩽ Cg -τ * g1 = C ũ1 .Similarly, we have |v ′ | ⩽ C ṽ and |∂ x v ′ | ⩽ C ṽ1 for some C > 0. This completes the proof. □ Lemma 3.5. Set w := ũ + ṽ + ũ1 + ṽ1 . There exist C > 0 and α > 0 such that w(x) ⩽ Ce -α|x| , ∀x ∈ R. The proof of Lemma 3.5 follows closely the proof of [8, Theorem 1.1] or [7, Lemma 29].

2 j=1|

 2 Wi,j | + |∂ x Wi,j |. Since u ′ solves (-∂ xx -µ 1 )u ′ = f 1 , we have |∂ xx u ′ | ⩽ C(|u ′ | + |f 1 |) ⩽ C(|u ′ | + |v ′ | + |∂ x u ′ | + |∂ x v ′ |), for some C > 0. Similarly, |∂ xx v ′ | ⩽ C(|v ′ | + |f 2 |) ⩽ C(|u ′ | + |v ′ | + |∂ x u ′ | + |∂ x v ′ |). Combining Lemma 3.4, we have f = f1 + f2 + g1 + g2 ⩽ T (x)(|u ′ | + |v ′ | + |∂ x u ′ | + |∂ x v ′ | + |∂ xx u ′ | + |∂ xx v ′ |) ⩽ CT (x)(|u ′ | + |v ′ | + |∂ x u ′ | + |∂ x v ′ |) = CT (x)w.

2 ,

 2 Thus, τ w(x) -f (x) w(x) ⩾ τ -CT (x) ⩾ τ for |x| > R large enough, by decaying of the function T . This proves (3.3). Note that w ⩾ 0. Since w ∈ C 0 (R) ∩ H 2 (R), there exists C R such that for all x ∈ R with |x| < R, we have 0 ⩽ w ⩽ C R . Dene ψ(x) := C R e -τ 2 (|x|-R) . We have -∂ xx ψ + τ 2 ψ ⩾ 0 on R \ {0}, w(x) -ψ(x) ⩽ 0 on {x ∈ R, |x| < R}.

  Moreover, by (3.2),(3.3) and (3.4), we have∂ xx (w -ψ) = ∂ xx w -∂ xx ψ = τ w -f -∂ xx ψ = τ w -f w w -∂ xx ψ ⩾ τ 2 (w -ψ) > 0.By maximal principle, this implies that w -ψ ⩽ 0 on Ω, a contradiction. Thus, for all x ∈ R we have w(x) ⩽ ψ(x) = C R e -

  4,2 are exponentially decaying at innity.

	Moreover,

  Thus, sup t∈[0,Tn] ∥u n (t)∥ H 2 (|x|⩾R) → 0 as R → ∞. Hence, by the localized of R j , there exists a function η(I) such that η(I) → 0 as I → -∞ and

	∀t ∈ [I + T n , I]	∥ũ n (t)R j (t)∥ H 2 ⩽ η(I).
	j⩾2	
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Thus, by an elementary calculation, we have q = (h, k) solve Lq = F (q) + Ẽrr N0 2 ,

where F = (P, Q) is given as in the proof of Theorem 1.2 and Ẽrr N0 2 = O(e -ρ(N0+1)t ). Dene w = ( φ, ψ) = (φ, ψ) -(h, k). Then w solves L w = F ( w + q) -F (q) -Ẽrr N0 2 .

(2.11)

By similar argument in the proof of Theorem 1.2, there exists a solution w of (2.11) such that sup t⩾T0 e ρ(N0+1)t ∥ w(t)∥ H 2 ×H 2 ⩽ B, for some T 0 , N 0 , B. From this and the Grönwall inequality, we may prove that 

We have the following lemma.

Lemma 2.6. There exist ε > 0, t 0 ⩾ T 0 and M ⩾ 0 such that

Proof. The proof of this lemma is similar the proof of [7, Lemma 31].

□

Proof of Corollary 1.3. Take a sequence (S n ) such that S n → ∞ as n → ∞, and dene T n = t 0 -S n and

Thus,

and hence

Due to Lemma 2.6, we deduce that for all n ∈ N, we have inf y∈R,θ∈R

which is the desired result.

□

Proof of Corollary 1.5. Let T > 0, M be given by Lemma 2.6 and ε, (u n ), (T n ) be given by

By decreasing I if possible, we assume that ω 1 I = 0(2π). We have ∥ũ n as n → ∞. Thus, we obtain the desired result. □

Appendix

In this section, we consider an operator L :

We prove the following result.

We have the following results.

(i) There exist C > 0 and α > 0 such that for all x ∈ R we have

∈ Sp(L) and take A ∈ H(C 2 ). Then there exists X ∈ H(C 2 ) such that (L -λId)X = A.

To prove Proposition 3.1, we study the fundamental solutions to Helmholtz equations. For a given µ ∈ C, a fundamental solution to Helmholtz equation in R is a solution of

For µ = ρe iθ with ρ ⩾ 0 and θ ∈ (0, 2π], we dene

We have the following result (see [START_REF] Côte | High-speed excited multi-solitons in nonlinear Schrödinger equations[END_REF]Lemma 26]).

Lemma 3.2. Let µ ∈ C \ {R + }. Then there exist τ > 0 and C > 0 such that

In particular, g µ is exponentially decaying at innity with decay rate

4 * y 2 are exponentially decaying with decay rate α. Moreover, for each multi-index a we have

This implies the decay of their derivatives of X ′ .

This completes the proof of Proposition 3.1.

□

Lemma 3.6. Let U N0

1 , (R j ) (j = 1, ..., K) be proles given as in the proof of Theorem 1.4 and f (u) = i|u| 2 u x + b|u| 4 u. Then

where h * and v * are dened as in Theorem 1.4.

Proof. For j ̸ = k, since (1.5), we have

as t large enough. By similar argument, we obtain the similar estimates of the interaction of the derivatives of R j and R k . Recall that U N0 Thus, we deduce that ∥R j (t)V N0 1 (t)∥ L 2 ⩽ e -h * v * |t| , for t large enough. Similarly, we obtain the similar estimates of the interaction of the derivatives of R j (j ⩾ 2) and V N0 1 . Moreover, we have

This implies the desired result.

□