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Abstract—Virtual viewpoints synthesis is an essential process
for many immersive applications including Free-viewpoint TV
(FTV). A widely used technique for viewpoints synthesis is Depth-
Image-Based-Rendering (DIBR) technique. However, such tech-
nique may introduce challenging non-uniform spatial-temporal
structure-related distortions. Most of the existing state-of-the-art
quality metrics fail to handle these distortions, especially the
temporal structure inconsistencies observed during the switch
of different viewpoints. To tackle this problem, an elastic metric
and multi-scale trajectory based video quality metric (EM-VQM)
is proposed in this paper. Dense motion trajectory is first used
as a proxy for selecting temporal sensitive regions, where local
geometric distortions might significantly diminish the perceived
quality. Afterwards, the amount of temporal structure incon-
sistencies and unsmooth viewpoints transitions are quantified by
calculating 1) the amount of motion trajectory deformations with
elastic metric and, 2) the spatial-temporal structural dissimilarity.
According to the comprehensive experimental results on two FTV
video datasets, the proposed metric outperforms the state-of-
the-art metrics designed for free-viewpoint videos significantly
and achieves a gain of 12.86% and 16.75% in terms of median
Pearson linear correlation coefficient values on the two datasets
compared to the best one, respectively.

Index Terms—Free-viewpoint video, free-viewpoint TV, elastic
metric, dense motion trajectory, video quality assessment.

I. INTRODUCTION

With the rise of more advanced 3D displays, head-mounted
displays and other advanced equipment, immersive media
applications such as Free-viewpoint TV (FTV), 3DTV, and
Virtual Reality (VR) have become hot topics for media
ecosystems. FTV, which provides user with the ‘flying in
the view’ feeling by letting them navigate freely among
different viewpoints, is one of the most popular scenarios in
the area. In the FTV system, normally, only a limited set
of input views are expected to be available and transmit-
ted among all possible viewing angles that end user could
select. As presented contents are usually synthesized using
Depth-Image-Based Rendering technology (DIBR) [1], [2],
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in addition to compression and smooth transition between
views, reliable synthesis algorithms that are robust to sparser
camera arrangements are critical factors with respect to the
rendered quality. DIBR based algorithms have the tendency
to introduce local non-uniform structure-related distortions.
Following are some detailed introductions of the challenging
spacial/temporal structure-related distortions that could be
introduced by the FTV systems.

Spatial structure-related distortions within FTV system
have the following characteristics: 1) non-uniform and locally
distributed: unlike traditional global uniform artifact, e.g.,
blocking artifacts, in most of the cases, the dominant spatial
distortions of synthesized videos are the local non-uniform
distortions and they distribute mostly around dis-occluded
regions, which could be seen in the reference views but
are occluded in the virtual views [3]. These dis-occluded
regions are commonly located at the boundaries of objects,
i.e., ‘regions of interest’, and thus are more disturbing because
local poor quality regions are with greater possibility to be
perceived by observers than the global acceptable ones [4]; 2)
structure-related local noncontinuous distortions are normally
geometric distortions, which modify/deform the shape of the
objects; 3) acceptable global shifting: DIBR based algorithms
could also introduce global continuous shifting of objects.
Observers are normally more tolerant to this type of distortion
than the local serious one. Nevertheless, this type of distortion
would be over-penalized by pixel to pixel metric like PSNR.

Temporal structure-related distortions within FTV sys-
tem could be categorized into two types. 1) temporal structure-
related distortions within one viewpoint: considering each in-
dividual viewpoint, the spatial geometric distortion aroused by
DIBR process will lead to temporal structure inconsistencies.
Therefore, special temporal flickering in a form of structure
(e.g., object boundaries) fluctuation could be observed within
videos at a certain viewpoint location. For example, Fig. 1
shows the change of the shape of a static object along temporal
axis, i.e., from the first frame f1 to f5. Different degrees of lo-
cal structure-related distortions could be introduced differently
among different viewpoints with different contents. 2) tem-
poral structure-related distortions among viewpoints/unsmooth
transition among viewpoints: considering the scenario of nav-
igating among different viewpoints, local artifacts around dis-
occluded regions, e.g., geometric distortions or inpainting
related distortions, would incur structure inconsistencies from
one view to another. The larger the baseline distance is used
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Fig. 1. Example of temporal trajectory deformation caused by spatial
geometric distortion. tsyn: trajectory from synthesized video; tcom: trajectory
from video contain transitional compression artifacts; tref : trajectory from
reference video.

for synthesis, the more obvious the abrupt/sudden structural
change could be observed when users switch their viewpoints
from one to another. This unsmooth transition among different
viewpoints could be considered as temporal flickering among
viewpoints.

In extreme cases, the entire viewing experience of one
Free Viewpoint Video (FVV) can be ruined by only one
severely distorted region in one synthesized view [5], [6].
Quality assessment is vital for ensuring the quality of the
entire system. Nevertheless, as most of existing image/video
quality metrics have been tuned and designed to handle other
types of distortions, e.g., traditional uniform compression
distortions including blocking artifact, blurriness etc., they are
mostly not suitable for FTV systems. New image/video quality
assessment tools that can deal with these spatial and temporal
structure-related distortions mentioned above are required. To
evaluate the quality of free-viewpoint videos, some image and
video quality assessment metrics have been proposed recently
as introduced in the next section. However, their performances
are limited, there is still a big room to improve.

II. RELATED WORK

A. Limitations of Metrics Designed for Synthesized Views

Image quality assessment metric designed for synthe-
sized views: in order to estimate the quality of synthesized
views, there are many full reference (FR) metrics are pro-
posed. The very first full reference approach that designed for
evaluating the quality of synthesized images is proposed by
Bosc et al. [7] by applying some prior knowledge acquired
through subjective tests (e.g., the common localization of
view-synthesis artifacts along contours) to SSIM. Following
this idea, Conze et al. [8] propose the view synthesis quality
assessment (VSQA) metric, which improves SSIM with three
visibility maps that characterizes the complexity of the im-
ages. Later, the ‘3D synthesized view image quality metric’
(3DswIM) is proposed by Battisti et al. [9]. This metric is
based on statistical features of wavelet sub-bands. In addition,
Tsai and Hang [10] propose a metric based on compensating
the shifts of the objects that appear in synthesized views by
calculating the noise around them. Considering the fact that

using multi-resolution approaches could increase the perfor-
mance of image quality metrics, Sandić-Stanković et al. de-
velop the ‘Morphological Wavelet PSNR’ (MW-PSNR) using
a morphological wavelet decomposition [11]. Later they ex-
tend the work by using a multi-scale decomposition based on
morphological pyramids, which is called ‘Morphological Pyra-
mid PSNR’ (MP-PSNR) [12]. Recently, Stanković et.al. [13]
point out that PSNR is more consistent with human judgment
when it is calculated at higher morphological decomposition
scales. They thus proposed reduced versions of the morpho-
logical multi-scale measures called reduced MP-PSNR and
reduced MW-PSNR correspondingly (denoted as MP-PSNRr
and MW-PSNRr). According to their experimental results,
the reduced versions (i.e., MP-PSNRr and MW-PSNRr) out-
perform the full versions. Li et al. [14] propose LOGs by
considering both the geometric distortions as well as the
sharpness of the images. NIQSV+ [15] is proposed based on
a strong hypothesis that high-quality images are consist of
flat areas separated by edges. Another state-of-the-art image
quality metric is the EM-IQM (i.e., EMspa in this paper) in
[16] that quantifies the spatial structure deformations using
elastic metric.

All the image metrics mentioned above suffers from at least
one of the drawbacks mentioned below: 1) The human visual
system is sensitive to severe local artifacts [17], [4]. The most
upsetting artifacts in synthesized images are the inconsistent
local geometric distortions instead of the consistent global
uniform distortions. However, most of the existing metrics
process the entire image equally and thus fail to locate and
quantify local geometric distortions properly. Sensitive region
selection should be considered as a pre-process module to
select regions with structure-related distortions. 2) Global
shifting within certain limits is acceptable for human observers
but is punished severely by point-to-point based metrics. Due
to equal-weighted pooling and point-wise comparison, some
image quality assessment metrics mistakenly emphasize the
consistent global shifting artifacts. 3) All of these metrics are
not capable of quantifying the amount of temporal structure-
related distortions.

Video quality assessment metric designed for synthesized
views: The ‘Peak Signal to Perceptible Temporal Noise Ratio’
(PSPTNR) metric, introduced by Zhao and Yu [18], quanti-
fies temporal artifacts that can be perceived by observers in
the background regions of the synthesized videos. Similarly,
Ekmekcioglu et al. [19] propose a video quality metric by
using depth and motion information to locate the degradations.
The state-of-the-art video metric designed for free viewpoint
videos is recently introduced by Liu et al. [20]. Their proposed
metric (Liu-VQM) considers the spatio-temporal activity and
the temporal flickering that appears in synthesized video
sequences. However, none of the aforementioned video quality
metrics is designed to quantify the unsmooth transition among
views (temporal structure inconsistency observed during view
switch). Compared to temporal distortions that could be ob-
served at one viewpoint, during navigation, structure-related
distortions could be amplified and new temporal structure
deformation could be noticed. Therefore, temporal structure-
related distortions are more challenging and should not be
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underestimated.
In summary, a new video quality metric, which is able to

quantify the aforementioned spatial-temporal structure-related
distortions, is in urgent need.

B. So, How to Better Quantify the Spatial-Temporal Structure-
related Distortions?

Elastic Metric (EM), which is first proposed in [21], is
capable of quantifying the deformation between curves and
thus could be the solution for quantifying the aforementioned
specific distortions. It is first utilized in our previous work [16]
to evaluate the quality of synthesized views spatially by
calculating the amount of stretching or bending between
curves/shapes in the reference and synthesized frames. Ex-
ample of the advantage of using elastic metric compared to
PSNR is shown in Fig. 2. By checking patches in Fig. 2 (e)
and (f), it is obvious that the patch in Fig. 2 (e) with the
slightly shifted object is of better visual quality than the one
in Fig. 2 (f) with obvious structure-related distortions (i.e.,
ghosting artifact). However, PSNR (the higher the score the
better the quality) incorrectly indicates that the quality of (f) is
better than (e). In the contrary, elastic metric (i.e., DEM , the
higher the scores the the larger the amount of deformations
between two compared curves) accurately points out that the
blue curve in Fig. 2 (i) is more severely deformed compared
to the red curve in Fig. 2 (g), indicating worse quality. After
being able to quantify the spatial temporal structure-related
distortions, then how to quantify the temporal ones, especially
the ones observed during view switch? In this paper, multi-
scale trajectory is employed along with elastic metric to handle
this challenging problem.

Motion plays a vital role in visual perception of the contents
and the perceived quality of sequence since 1) clues related
to the objects’ shapes are provided; 2) in most cases, visual
attention is tend to be drawn on moving objects [24], [25],
[26]. Human Visual System (HVS) tends to trace the salient
moving objects when viewing a sequence [27], thus distortions
around the moving objects may attract greater attention from
the observers. There are already quality metrics designed based
on this phenomenon [28], [29]. In the case of free view-
point videos generated with synthesized views, apart from the
special spatial distortions as described in [9], the synthesized
videos suffer also from special temporal degradation related
to motions of objects within one viewpoints or navigations
among different viewpoints [20] as summarized in the previous
section. Therefore, the success of one video metric dedicating
to ensuring the quality of the entire FTV system relies on
its capability of modeling and accounting both structure and
motion perception in the HVS.

Motion trajectory, which traces moving objects, provides
human observers with important spatial-temporal information
for perceiving/detecting moving objects, e.g.,velocity, direction
and even spatial information of the objects [30]. Since the
detectability of a moving object could be impacted by the
structural motion information (which could be represented by
the motion trajectories), deformation of trajectory or changes
of structure information along the trajectory that caused by

(a) Reference frame (b) Synthesized frame [22](c) Synthesized frame [23]

(d) Reference patch (e) PSNR=22.2077 (f) PSNR=28.1877

(g) Reference patch (h) DEM=0.0894 (i) DEM=0.3068

Fig. 2. Examples of advantages of using elastic metric compared to pixel-to-
pixel metric PSNR. Rows (from up to down): Reference/Synthesized images;
Patches from images (a)-(c) bounded by red bounding boxes; Extracted
contours of patches (d)-(f). Columns (from left to right): reference image,
synthesized image with synthesis algorithm proposed in [22], synthesized
image with synthesis algorithm proposed in [23].

distortions may affect the way how human detect objects
and thus affect the perceived quality. Hence, on one hand,
considering the characteristics of distortions produced by
DIBR processes, synthesized sequences could be represented
in sets of trajectories and their perceived quality could be
evaluated with the trajectories and neighborhoods along them.
For example, as shown in Fig. 1, due to the change of shape of
the object, the trajectory of the synthesized sequence tsyn that
traces one of the key point on the shape is deformed compared
with the one of the reference sequence tref , while the one of
the sequence that contain only common compression artifact
remains almost unchanged. If one could quantify the amount
of deformation of trajectories caused by related processes, the
quality of the synthesized videos could be indicated. Since
motion trajectories within sequence could be considered as
open-curves, elastic metric is of potential to be used as a
measure to quantify the deformation between the trajectory in
a synthesized sequence and the one in the original sequence.
On the other hand, as spatial-temporal distortions mainly
happen around dis-occluded regions and distortions within
the regions of moving objects are less tolerant for observers,
the process of detecting meaningful moving trajectories could
serve as a way to select severe distorted regions.

Multi-scale approaches, which transfer signals into a
form of multi-scale representation, could be used to quantify
structure loss caused by synthesized related artifacts. On one
hand, the perceivability of videos’ details is decided not only
by the observer’s visual system, but also by the viewing
conditions (e.g., display resolution and viewing distance) [31]
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Fig. 3. Overall framework of the proposed EM-VQM metric.

Therefore, it is more reasonable to employ multi-scale strategy
for quality assessment to take different subjective factors
and configurations into account as claimed in [32]. On the
another hand, as pointed out in [31], vision at a glance
reflects high-level mechanism. Observers normally obtain the
structure of the content first before looking into the details
with scrutiny. In another word, structure of one content could
be obtained from a lower resolution, while the details could
be obtained through a higher resolution. The concept of multi-
scale strategy is in line with human visual mechanism. There-
fore, dissimilarity between the synthesis and reference videos
calculated in different scales could be used differently depends
on the subjective configurations/parameters to improve quality
assessment metrics.

Based on the discussion above, in order to better eval-
uate the quality of free view-point videos by considering
the characteristics of the spatial-temporal structure related
distortions, an elastic metric and multi-scale trajectory based
video quality assessment metric (EM-VQM) is proposed in
this paper. The contributions of this paper are three-folds: 1)
multi-scale motion trajectory is used as a proxy for temporal
sensitive regions selection; 2) elastic metric is used to quanti-
fied the amount of motion trajectory deformations; 3) motion-
structure-related descriptors are extracted along the multi-scale
motion trajectories and used to quantify the spatial-temporal
structural dissimilarities between the reference and synthesized
videos.

The remainder of this paper is organized as follows. In Sec-
tion III, the proposed model is introduced in detail. Then, the
experimental results and analysis are presented in Section IV.
Finally, conclusions are given in Section V.

III. THE PROPOSED MODEL

The proposed elastic metric based video quality assessment
metric is composed of two parts, including one part for
quantifying the spatial structural degradation (Section III-A)
and another part for quantifying temporal structural degrada-
tion (Section III-B). After computing the amount of spatial
and temporal structure-related distortions at multi-scales sepa-
rately, they are aggregated (Section III-C) to predict the overall
quality score of one synthesized videos as illustrated in Fig. 3.

A. Quantify Spatial Structural Degradation

1) Spatial sensitive regions selection using key point match-
ing: Unlike traditional distortions, which scatter over the en-
tire frames, synthesized distortions distribute sparsely/locally

Feature points 
Detection

Feature points 
Detection

Feature points 
Matching

Contour 
Extraction

Contour 
Extraction

Elastic Metric

Spatial Pooling

refP

synP

refC

synC

+

+

refI synI

spaEM

refP synP

refC synC

EMD

(a)

(b) (c)

(d) (e)

(f) (g)

Fig. 4. Diagram of spatial structural degradation quantification. (a) Example
of SURF feature points matching, where matched SURF feature points within
reference and synthesized frames are connected with yellow color lines. (b)
Selected sensitive patches, i.e., patches centering at the matched SURF feature
points bounded by green color boxes, plotted on the error map. (c) Error map
obtained by comparing the reference and the synthesized frames (the darker
the color the more severe the distortions within the regions). (d) Example
of one sensitive region (patch) in the reference frame, whose center is one
SURF feature point labeled with a red color cross. (e) Contour extracted
from the patch. (f) Example of one sensitive region (patch) in the synthesized
frame, whose center is one SURF feature point labeled with a green cross.
(g) Contour extracted from the patch.

and thus need to be selected and dealt with particularly.
Structural descriptor Speeded Up Robust Features (SURF) [33]
is of the ability to detect important structure key points within
images/videos. Since local synthesized artifacts are likely
to appear around these key-points regions and draw greater
attention from the human observers, SURF point detection
and matching is used for sensitive regions selection, where
geometric distortions are less acceptable for observers. It is
worth mentioning that, SURF points matching could also
compensate the global objects shifting artifacts and avoid over
penalizing the acceptable uniform artifact as described and
confirmed in our previous work [16].

2) Curve extraction based on patch segmentation: In order
to check the magnitudes/amount of spatial-structural defor-
mations after synthesis using elastic metric, curves need to
be first extracted in an efficient way. After the process of
local regions selection and matching, the SLIC superpixel
approach [34] is then used to segment the matched patches
Pori and Psyn centering at matched key points. Then, the
boundaries of the segmented super-pixels set SPori and SPsyn
are extracted as the closed curves, which will be proceeded for
latter comparison. Afterwards, the fast superpixels matching
algorithm proposed in our previous work [16] is used to further
obtain the set matched closed curves (Cori, Csyn).

3) Spatial curves comparison using elastic metric: The
amount of spatial structural deformation is computed by com-
paring each matched closed curves (ciori, c

j
syn) ⊂ (Cori, Csyn)

obtained in the previous subsection using the elastic metric
proposed in [21], [35]. A curve is first parameterized as c
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with k ∈ K as the parameter. It is defined as

c : K → (x, y) ∈ Rn, (1)

where (x, y) represents the the coordinates of each point of
curve. In general, K = [0, 1]. For closed curves, K = S1.
The parameterized curve could be then represented using the
Square-Root Velocity (SRV) function defined as q : K →
(x, y) ∈ Rn, where

q(k) ≡ F (ċ(k)) = ċ(k)/
√
‖ċ(k)‖, (2)

where ‖ · ‖ is the Euclidean 2-norm in Rn and ċ = dc
dk . The

original curve could be derived reversely with the following
equation

c(k) =

∫ k

0

q(s)‖q(s)‖ds. (3)

Later, φ : K → R, with φ(k) = ln(‖ċ(k)‖) and θ :
K → Sn−1, with θ(k) = ċ(k)/‖ċ(k)‖ are further defined
by Srivastava et al. in [35] to quantify curve deformations.
Based on these definition, a riemannian metric named ‘Elastic
Metric’ DEM on the tangent space τ of Φ × Θ could be
then defined based on the computation of the following inner
product:

DEM = 〈(u1, v1), (u2, v2)〉(φ,θ)

= a2
∫
D

u1(k)u2(k)eφ(k)dk + b2
∫
D

v1(k)v2(k)eφ(k)dk,

(4)

where 〈·〉 denotes the standard dot product in Rn and (u1, v1),
(u2, v2) ∈ τφ,θ(Φ×Θ). As explained in [21], [35], u1 and
u2 in the first integral are variations of the log speed φ of
the curves, while v1 and v2 in the second integral are the
variations of the direction θ of the curves. The first and
second integrals could be interpreted to measure the amount of
‘stretching’ and ‘bending’ correspondingly and a2,b2 are two
parameters chosen to penalize these two types of deformations.
To calculate Eq. (4) more efficiently, the SRV formulationin
Eq. (2) are used and adjusted in terms of (φ, θ) by defin-
ing q(k) = e

1
2φ(k)θ(k). Afterwards, the tangent vectors to

L2(K,Rn) at q is obtained with r = 1
2e

1
2φuθ + e

1
2φv. For

two elements r1 and r2 of τφ,θ(Φ×Θ), computing the L2-
metric (elastic metric) of them yields

DEM (ciori, c
j
syn) = 〈r1, r2〉

=

∫
K

〈1
2
e

1
2φu1θ + e

1
2φv1,

1

2
e

1
2φu1θ + e

1
2φv2〉dk

=

∫
K

(
1

4
eθu1u2 + eθ〈v1, v2〉)dk.

(5)

4) Spatial Pooling: The DEM calculates local elastic dis-
similarity between each pair of matched closed curves from
the reference and synthesized images based on region selection
and elastic metric described in the previous section. As dis-
cussed in previous sections, human observers tend to perceive
‘poor’ regions than the ‘good’ ones within an image. For DIBR
based synthesized images, the sensitive disoccluded regions
are the ‘poor’ regions and should be penalized during the
quality assessment.

As the curves are only extracted from the selected regions,

where the annoying local distortions mainly appear, there is
no need to apply other specific pooling strategies for pooling
the elastic dissimilarity scores. Moreover, due to local regions
selection, artifacts in local important disoccluded regions
are penalized sufficiently, and at the same time, the global
consistent artifacts are not over penalized. Hence, the final
objective score is calculated by simply summing out all the
elastic dissimilarities values, which is defined as

EMspa =
∑

DEM (ciori, c
j
syn), (6)

where (ciori, c
j
syn) ⊂ (Cori, Csyn).

B. Quantify Temporal Structural Degradation

In this section, details of how to quantify the non-uniform
temporal structure-related distortions are given. The frame-
work is summarized in Fig. 5. As motion trajectory reveals
important structural-motion information, distortions along mo-
tion trajectory are thus easier to be noticed by observers. Based
on this fact, multi-scale trajectory representation is exploited
in this work to quantify local structure related distortions
that affect the quality of the synthesized sequence. In the
proposed scheme, given one synthesized video Vsyn and its
reference video Vref , they are firstly represented as a set
of multi-scale trajectories T ssyn and V sref respectively (i.e.
trajectory at different scales), where s indicates a certain
scale. Considering the characteristics of DIBR based syn-
thesis techniques, the neighborhoods around the trajectories
could be considered as the candidates regions, where local
non-uniform distortion may appear and severely degrade the
quality of the entire sequence. With the multi-scale trajectory
representation, spatial-temporal structure-related features, in
the form of histograms, i.e., Hs

syn and Hs
ref , along the

trajectories are extracted. Finally, deformations of the object
structures in the form of deformations of trajectories, i.e. TEM ,
could be quantified using elastic metric with T ssyn and T sref ,
while the structural losses along trajectories, i.e. TSL, could
be quantified with the temporal-structure features/histograms
Hs
syn and Hs

ref .
To check the performance of the proposed temporal struc-

tural distortion estimator, the obtained TEM , TSL are com-
bined as a new video quality assessment metric, which is
denoted as EMtem. It has to be emphasized that, the final
proposed EM-vQM is obtained by integrating TEM , TSL,
and EMspa using SVR as illustrated in Fig. 3 instead of
combing EMspa and EMtmp. Details of the computation of
spatial-temporal structural dissimilarity between a synthesized
sequence and its reference, i.e., TEM , TSL, are given below.

1) Multi-scale motion trajectory representation as spatial-
temporal distortion regions selection: Dense motions tra-
jectory, which is first proposed in [36] by Wang et al., is
first utilized in this work to represent free-viewpoint videos.
It is a spatial-temporal representation for video with multi-
scale dense trajectories and descriptors of structural-motion
boundary along the trajectories.

After generating the multi-scales version of the video V
with S spatial scales, feature points are sampled on each
spatial scale s ∈ {1, ..., S} with a sampling step W . In this
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Fig. 5. Framework of temporal structural degradation quantification.

work, seven scales are considered. Each spatial scale increases
with a factor of 1/

√
2 as done in [36]. Considering that most

of the local disturbing geometric distortions are commonly
located around the boundaries of the objects (i.e., the dis-
occluded regions) instead of homogeneous texture regions,
points within regions that do not contain any structure are
removed. Later, sampled points on each spatial scales are then
tracked by using Large Displacement Optical Flow algorithm
(LDOF) proposed in [37]. Then, each trajectory ts obtained
in a certain scale s could be represented as a sequence of
points (p1, ..., pfi , ..., pl) with a length of l (l is set as 15
in this paper). In ts, pfi is a feature point at frame fi,
which is spatially-temporally related to features points in
previous and latter frames, i.e., pfi−1 and pfi+1 , according
to the calculated optical components. As human observers
are more sensitive to moving structural regions, e.g., moving
objects, static trajectories that do not contain any motion are
pruned. It is worth mentioning that the process of generating
trajectories could be served as a proxy to select candidate
sensitive regions, as local synthesized distortions that distribute
around the moving objects attract most of the attention from
the observers. Example is shown in Fig. 6, where it can be
observed that most of the error regions have been covered by
the detected motion trajectories.

2) Temporal-structure-related trajectory descriptor: In or-
der to better quantify the changes of spatial-temporal struc-
tural information along trajectories due to synthesis process,
with respect to the reference, three motion-structure related
descriptors [37] are extracted for each trajectory. More specif-
ically, they are Histogram of Oriented gradient (HOG) [38],
Histogram of Optical Flow (HOF) [39] and Motion Boundary
Histogram (MBH) [40] extracted within a spatial-temporal
volume that is aligned with one trajectory Ts as illustrated
in Fig. 7. MBH is computed with the the derivatives of both
the horizontal and vertical elements of one optical flow, which
further ends up into two histograms for each component as
MBHh and MBHv normalized with L2 norm. Therefore,
for each trajectory at a scale s, four spatial-temporal structural

histograms, including Hs
HOG, Hs

HOF , Hs
MBHx and Hs

MBHy ,
are obtained after feature extraction procedure.

Multi-scale motion trajectory representation as spatialtem-
poral distortion regions selection:

3) Temporal structure dissimilarity: After getting the tra-
jectory representations along with the extracted features, tra-
jectories at each scale in the synthesized and reference se-
quences are first matched according to the averaged horizontal
and vertical coordinates of the trajectories. Only the matched
trajectory pairs (tsori, t

s
syn) in the matched trajectory set Tm

would be maintained for latter deformation quantification and
structure loss computation. To quantify temporal degradation
by considering the two typical temporal distortions mentioned
in Section I, two main aspects are taken into consideration.

First, since temporal evolution of spatial local structure-
related distortions might result in deformation of motion
trajectories within the sequences, e.g., the motion trajectory
distributed along boundaries of foreground objects might fluc-
tuate and result in changes of the shape of the trajectory. These
changes of trajectories in term of global motion trajectory
deformations could be quantified by using elastic metric
described in Section III-A3. More specifically, the entire
deformable changes of trajectories between the synthesized
and their reference sequences on all the scales TEM (Tm) is
defined by accumulating all the elastic errors between the
trajectories:

T sEM (Tm) =

∑Ns
t

(tsori,t
s
syn)∈Tm

DEM (tsori, t
s
syn)

Ns
t

, (7)

where Ns
t is the number of matched trajectory pairs

(tsori, t
s
syn) ∈ Tm at scale s. Since TEM (·) compute the

amount of deformations between trajectories, ideally, it is able
to capture not only the temporal structure-related distortions
within viewpoints (at one viewpoint position) but also the one
among the viewpoints (smoothness of the transition among
viewpoints).

As it has been pointed out in previous sections, structure-
related distortions along the motion trajectories are the most
disturbing temporal degradation, which could cause incon-
sistent transition of frames within and among viewpoints.
Therefore, similar to the spatial elastic pooling stage (Section
III-A4), here the temporal deformation errors between each
pair of matched trajectories are simply summed up to get the
temporal deformation score TEM with Eq.( 7). By doing so,
temporal structure-related severe deformation could be well
captured, while the global uniform distortions would not be
over-penalized.

Second, to further quantify the non-contentiousness of tran-
sition of structure from one frame to another, structural statisti-
cal dissimilarities along trajectories are computed with the four
extracted motion descriptors. More specifically, the temporal
structural statistical loss TSL is defined as the structural
dissimilarity calculated based on computing distance between
matched extracted features vectors set (Hi,s

ref , H
i,s
syn) ∈ Hm
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(a) (b)

Fig. 6. Example of temporal sensitive regions selection: (a) Example of dense motion trajectory, where red points represents the key points in the current
frame and the green lines connect the key points at the current frames with the ones in the previous frame. (b) Error map between frames extracted from the
reference and synthesized views, where the darker color the more severe the distortions are within the regions.

Motion Trajectory

Spatial-Temporal 
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Trajectory

Temporal-Structure 
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Extracted from the 
Spatial-Temporal 
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𝐻𝐻𝑂𝐺 𝐻𝐻𝑂𝐹 𝐻𝑀𝐵𝐻𝑥,𝑦

𝑀

𝑀

𝑙

𝑚 × 𝑛

Fig. 7. Illustration of temporal-structure related trajectory descriptors extrac-
tion along motion trajectories.

from the matched trajectory set Tm at scale s:

T ijSL(Hm) =

∑Ns
t

(Hi,s
ref ,H

i,s
syn)∈Hm

Dj(H
i,s
ref , H

i,s
syn)

Ns
t

, (8)

where H1,s = Hs
HOG, H2,s = Hs

HOF , H3,s = Hs
MBHx and

H4,s = Hs
MBHy indicates the four motion descriptors and Dj

denotes one type of distance measures. In this paper, mainly
four distance measures including D1 using Jensen-Shannon
divergence (JSD), D2 = Euclidean distance, D3 = Cosine
distance and D4 = Minkowski Summation, are considered for
calculating the temporal structural dissimilarity along matched
trajectory base on the corresponding feature (Hi,s

syn, H
i,s
ori).

C. Spatial-Temporal Scores Aggregation
Finally, in order to predict the final objective score, the

Support Vector Machine Regression (SVR) is utilized to
aggregate the calculated spatial elastic error EMspa, tempo-
ral elastic error TEM and the 16 temporal structural errors

T ijSL, i, j = 1, ..., 4 at all scales with a linear kernel. As totally
seven scales are considered in this paper, the final dimension
of vector representing each free-viewpoint video is 120, i.e.,
7 scales × (16 dimension for TSL + 1 dimension for TEM )
+ 1 dimension for EMspa. The SVR model training process
is done according to [41], [42], [43] by employing a 1000-
fold cross-validation. More specifically, for each dataset, it is
randomly divided into 80% of the videos for training and 20%
for testing, without overlap between them.

IV. EXPERIMENTAL RESULT

A. Datasets

The performance of the proposed metrics are evaluated on
two datasets, including the IRCCyN/IVC DIBR Videos [3] and
the Free-Viewpoint Synthesized Video [44] dataset. In general,
the first dataset contains synthesized sequences at a certain
viewpoint, while the second dataset contains sequences that
mimic a time-free navigation among different viewpoints. The
virtual scan paths of the sequences in the two datasets are
illustrated in Fig. 8. These two datasets contain two types of
synthesized temporal structure related distortionsas mentioned
in Section I, i.e., 1) temporal structure inconsistencies at one
viewpoint position and 2) unsmooth structure transition among
different viewpoints, respectively. Therefore, they are selected
together to benchmark the quality metrics designed for syn-
thesized views. Detailed introductions of the two datasets are
given below.

IRCCyN/IVC DIBR Videos (IVC-DIBR) [3]: The IVC-
DIBR database consists of 102 videos in resolution of 1024×
768 generated with three multi-view plus depth contents. This
database is designed for the evaluation of the reliability of
DIBR algorithms by assessing the quality of the synthesized
virtual views. Totally seven DIBR related algorithms, which
are denoted as A1-A7 [2], [22], [45], [46], [47], [48], are used
to obtain 4 new virtual viewpoints for each content. It contains
only synthesis related spatial-temporal artifacts within view-
points, as there are no navigation among different viewpoints
to mimic free navigation. Apart from the 9 reference sequences
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virtual view 
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time

virtual view 

position

Virtual view

transmitted views
encoded depth map

Fig. 8. Explanation of sequences’ scan paths within the two datasets, where the red curves represent the virtual navigation scan-paths, the dark blue camera
icons represent the reference views, the light blue camera icons represent the synthesized virtual views, and the gray camera icons represent the depth maps
of the corresponding views. (a) IVC database: sequences contain temporal structure inconsistencies at one viewpoint position. (b) FVV database: sequences
contain unsmooth structure transition among different viewpoint positions.

and the 84 synthesized virtual viewpoints, there are also 9
sequences that contain only traditional compression artifacts
by encoding the texture (only videos, without compressing the
depth maps) of the reference sequences. Since the purpose
of this experiment is to verify the performance of metrics
dedicated for capturing of related artifacts, these 9 sequences
are excluded from the experiment to stress the capability of
under-test metrics.

Free-Viewpoint Synthesized Video database (FVV) [44]:
The FVV database is composed of 264 videos sequences in
resolution of 1024 × 768 / 1920 × 1080 generated with six
multi-view plus depth original sequences. The database is re-
leased to evaluate the impacts of depth map coding algorithms
on the perceived quality of the synthesized views. Since depth
maps are important during the DIBR based rendering process,
seven codecs and three bitrates are adopted to encode the depth
map for later synthesis process. These seven algorithms in-
clude (C1) 3D-HEVC [49], (C2) MVC [50], (C3) HM 6.1 [51],
(C4) JPEG2000 [52], (C5) lossless-edge based codec [53],
(C6) proposed in [54] using color frames’ correlations, and
(C7) Z-LAR-RP [55] using local information. After generating
the synthesized viewpoints between the reference views with
a certain configuration, sequences are then constructed with
100 key frames extracted from the synthesized viewpoints by
navigating from one view to another from the left to the right
and then turning around. As thus, sequences in this database
contain only synthesis related spatial-temporal artifacts among
viewpoints. Unlike [56], since blending is important in the
process of DIBR based algorithm, the experiment is conducted
on the entire database instead of excluding the one generated
with blending mode.

B. Performance Evaluation Methodologies

It is emphasized in [11], [12], that commonly used im-
age/video quality assessment metrics fail to quantify the
synthesis related distortions. Therefore, the proposed metrics
are only compared to the state of the art metrics designed

for synthesized views in FTV scenarios as introduced in
Section II-A, including: 1) 3DswIM [9], 2) MW-PSNR [11],
3) MP-PSNR [12], their reduced versions 4) MW-PSNRr [13],
5) MP-PSNRr [13], 6) the spatial-temporal activity distortion
indicator (Liu-activity) proposed in [20], 7) the flicker distor-
tion indicator (Liu-flicker) proposed in [20], 8) and the video
quality metric (Liu-VQM) proposed in [20] that combines
Liu-activity and Liu-flicker. The predicted score of IQM, i.e.,
metrics 1)-5) and EMspa, for one sequence are calculated by
averaging the scores of all the frames.

Except for EMtem and EM-VQM (since SVR is already
utilized), a non-linear logistic function recommended by [57]
is employed to map the objective scores OBJ(i) predicted by
the ith quality metric to the subjective quality scores before
the performance evaluation. It is defined as

OBJmap(i) =
β1

1 + e−β2 × (OBJ(i)− β3)
. (9)

As described in Section III-C, support vector regression is
employed to obtain the predicted quality scores of EMtem

and EM-VQM, and the performances are computed throughout
a 1000-fold cross-validation as recommended in [41]. More
specifically, the median and average Pearson linear Correlation
Coefficient (PCCm and PCCa), median and average Spearman
rank order Correlation Coefficient (SCCm and SCCa), as well
as median and average Root Mean Squared Error (RMSEm
and RMSEa) between subjective and objective scores are
reported across the 1000 runs for performance evaluation. For
fair comparison, all the compared metrics are evaluated with
the same 1000-fold cross validation, where PCC, SCC and
RMSE are calculated with OBJmap(i) of the ith compared
metric computed on 20% test dataset for each fold.

Apart from the frequently used performance evaluation
methodologies, in order to better evaluate the performance
of different metrics the methodology proposed by Krasula et
al. [58], [59] is also used. In their model, it is assumed that
the capability of an objective metric depends its capabilities
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TABLE I
PERFORMANCE COMPARISON OF THE PROPOSED METRIC WITH STATE-OF-THE-ART METRICS.

Dataset IVC-DIBR FVV
Metric PCCm SCCm RMSEm PCCa SCCa RMSEa PCCm SCCm RMSEm PCCa SCCa RMSEa

Image Quality Assessment Metrics (IQM) Designed for Synthesized Views
3Dswim 0.7188 0.6415 0.4394 0.6998 0.6224 0.4392 0.5587 0.5831 0.5289 0.5599 0.5786 0.5253
MW-PSNR 0.5586 0.4736 0.5085 0.5305 0.4342 0.5141 0.4762 0.3769 0.5620 0.4628 0.3633 0.5653
MW-PSNRr 0.5801 0.5292 0.5019 0.5435 0.4726 0.5082 0.4751 0.3811 0.5620 0.4579 0.3684 0.5667
MP-PSNR 0.6148 0.5791 0.4807 0.5938 0.5359 0.4849 0.4932 0.3912 0.5549 0.4730 0.3696 0.5577
MP-PSNRr 0.5693 0.5329 0.5116 0.5532 0.4907 0.5101 0.4750 0.3791 0.5661 0.4606 0.3667 0.5664
EMspa 0.7200 0.6262 0.4409 0.6961 0.6059 0.4395 0.5589 0.5679 0.5345 0.5510 0.5635 0.5270

Video Quality Assessment Metrics (VQM) Designed for Synthesized Views
Liu-activity 0.7595 0.6440 0.3978 0.7237 0.6190 0.4175 0.6413 0.6468 0.4891 0.6315 0.6159 0.4872
Liu-flicker 0.5561 0.4796 0.5192 0.5470 0.4670 0.5207 0.6465 0.6463 0.4871 0.6340 0.6297 0.4880
Liu-VQM 0.7316 0.6464 0.4188 0.6988 0.6308 0.4366 0.6676 0.6716 0.4843 0.6448 0.6233 0.4788
EMtem 0.8201 0.8091 0.3021 0.7964 0.7836 0.3114 0.7756 0.7562 0.3868 0.7469 0.7464 0.4017
EM-VQM 0.8257 0.8102 0.3008 0.8060 0.7914 0.3077 0.7794 0.7627 0.3778 0.7566 0.7545 0.3949

TABLE II
STATISTIC SIGNIFICANCE RESULTS BASED ON THE 1000 TIMES CROSS PERFORMANCE EVALUATION. FOR SYMBOLS IN EACH ENTRY OF THE TABLE
CORRESPOND TO IVC-DIBR AND FVV DATA SET IN ORDER, i.e., IVC-DIBR\FVV. THE VALUE ‘1’ INDICATES THE QUALITY METRIC IN THE ROW
OUTPERFORM SIGNIFICANTLY THE ONE IN THE COLUMN, WHILE ‘-1’ INDICATES THE OPPOSITE CASE, AND ‘0’ INDICATES THAT THE TWO QUALITY

METRICS PERFORM EQUIVALENTLY.

3DS MW-PS MW-PS MP-PS MP-PS Liu-act Liu-fli Liu- EMspa EMtem
EM

wIM NRr NRf NRr NRf ivity cker final -VQA
3DSwIM - 1\1 1\1 1\1 1\1 -1\-1 1\-1 0\-1 0\0 -1\-1 -1\-1

MW-PSNRf -1\-1 - 0\0 -1\0 -1\0 -1\-1 0\-1 -1\-1 -1\-1 -1\-1 -1\-1
MW-PSNRr -1\-1 0\0 - -1\-1 0\0 -1\-1 0\-1 -1\-1 -1\-1 -1\-1 -1\-1
MP-PSNRf -1\-1 1\0 1\1 - 1\1 -1\-1 1\-1 -1\-1 -1\-1 -1\-1 -1\-1
MP-PSNRr -1\-1 1\0 0\0 -1\-1 - -1\-1 0\-1 -1\-1 -1\-1 -1\-1 -1\-1
Liu-activity 1\1 1\1 1\1 1\1 1\1 - 1\0 1\0 1\1 -1\-1 -1\-1
Liu-flicker -1\1 0\1 0\1 -1\1 0\1 -1\0 - -1\0 -1\1 -1\-1 -1\-1
Liu-VQM 0\1 1\1 1\1 1\1 1\1 -1\0 1\0 - 0\1 -1\-1 -1\-1

EMspa 0\0 1\1 1\1 1\1 1\1 -1\-1 1\-1 0\-1 - -1\-1 -1\-1
EMtem 1\1 1\1 1\1 1\1 1\1 1\1 1\1 1\1 1\1 - -1\0

EM-VQM 1\1 1\1 1\1 1\1 1\1 1\1 1\1 1\1 1\1 1\0 -

of making reliable decisions about 1) when comparing two
stimuli, whether they are qualitatively different and 2) if the
are, which of them is of higher quality . The ‘Krasula’ model
is based on determining the classification capabilities of the
objective models considering ‘Better or Worse’ and ‘Different
or Similar’ scenarios.

More specifically, the capability of one objective metric
to distinguish similar from significantly different pairs and
the capability to indicate one stimulus is better/worse than
another could determined by employing the receiver operating
characteristic (ROC) analysis. Then, the performance of the
metric can be verified with the area under the ROC curve
(AUC) for both the ‘Better or Worse’ and ‘Different or Similar’
analysis, i.e., AUCDS and AUCBW , the higher the AUC
values the better metric in categorizing significantly different
pairs from the similar ones as well as telling one stimulus is
better/worse compared to another. (Readers are recommended
to refer to [58], [59] for more detailed information.)

C. Performance Comparison Results

1) Performance evaluation using commonly used evaluation
methodologies: Comprehensive performance evaluations of
the proposed metrics are reported in this subsection. The 1000-
fold cross validations results of the metrics on both the IVC-
DIBR and FVV datasets are summarized in TABLE I

In general, according to the table, the proposed EM-VQM
achieves the best performance on both the IVC-DIBR and the
FVV datasets. It has a gain of 12.86% in PCCm values on
IVC-DIBR dataset and a gain of 16.75% in PCCm values
on IVC-DIBR dataset compared to the state-of-the-art video
quality metric designed for synthesized videos, i.e., Liu-VQM.
It could also be observed from the table that the objective
scores predicted by most of the image quality metrics have
poor correlations with subjective scores, specially on the FVV
dataset. Synthesis related temporal distortions are difficult for
image quality metrics to capture. Interestingly, 1) the perfor-
mance of Liu-Flicker, which quantifies the amount of temporal
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flicker perform much better on the FVV dataset; 2) the overall
performances of the quality models on FVV datasets are
worse than the ones on the IVC-DIBR dataset. It could be
indicated from these two observations that the second type of
structure related temporal distortions in FTV scenarios, i.e., the
unsmooth transition among viewpoints, are more challenging.
By comparing the performance of EMtem and EM-VAM on
the two datasets, it could be noticed that integrating EMspa

does not improve the performance significantly. EMtem play
the most important role in predicting the perceived quality.

The scatter plots of the tested quality metrics are illustrated
in Fig. 9 and Fig. 10 respectively. For EMtem and EM-VQM,
the model that yields the median PCC values was used to plot
the figures.

In general, the quality scores predicted by both EMtem

and EM-VQM are more consistent with DMOS compared
to other image/video quality models, as most of the points
shown in Fig. 9 are compactly distributed along the diagonal.
It could be observed from Fig. 9 (a)-(d) that, the four point-
wise PSNR based metrics tend to predict the same quality
scores for sequences generated using synthesis algorithms
A1. Sequences obtained using this algorithms mainly contain
acceptable global shifting distortions. However, it is obvious
that MP-PSNR, MP-PSNRr, MW-PSNR, and MW-PSNRr
over-penalize these distortions. From Fig. 9 (g), most of the
sequences in IVC-DIBR dataset are predicted with scores in
a range of [2, 3]. That is because the magnitudes of flicker
distortions within sequences are similar, the Liu-flicker metric
could not well quantify the temporal structure inconsistencies
caused by synthesis algorithms. This also explains why the
performance of Liu-VQM does not outperform Liu-activity
as shown in TABLE I (since Liu-VQM is composed of Liu-
activity and Liu-flicker).

According to Fig. 10, the objective scores predicted by
EMtem and EM-VQM are better aligned with the DMOS on
the FVV dataset compared to the other metrics. By observing
Fig. 10 (a)-(i), it could be noticed that the points are gathered
as a cluster in an objective score range of [2, 3], and they are
poorly in predicting sequences with high/bad quality.

2) Statistical significant test: To examine the significance
of the performances between each two tested quality metrics,
student’s t-test is conducted. More specifically, the 1000-fold
PCC values obtained during the cross performance evaluation
described above for each tested metric are used as input for t-
test. The results are concluded in Table II with a significance
level of 0.05, where ‘1’ represents that the performance of
the under-test metric in row outperforms the one in column
significantly, ‘-1’ represents the opposite situation and ‘0’
represents that there is no significant difference. According
to the table, both the proposed EMtem and EM-VQM signif-
icantly outperform all the other metrics on the two datasets.
In addition, EM-VQM is significantly superior to EMtem on
IVC-DIBR dataset, but not on the FVV dataset. It reveals
the fact that EMspa plays an important role in predicting the
perceived quality score on IVC-DIBR dataset but not on the
FVV dataset. Temporal distortions among viewpoints are more
challenging for existing metrics, and model that considers
temporal structure due to views’ switch, e.g., EMtem, should

TABLE III
PERFORMANCE COMPARISON OF THE PROPOSED METRIC WITH

STATE-OF-THE-ART METRICS USING THE KRASULA MODEL

Dataset IVC-DIBR FVV
Metric ADS ABW ADS ABW

IQM
3Dswim 0.548 0.830 0.541 0.775

MW-PSNR 0.537 0.704 0.498 0.641
MW-PSNRr 0.522 0.717 0.499 0.642
MP-PSNR 0.531 0.754 0.499 0.648
MP-PSNRr 0.521 0.739 0.501 0.648

EMspa 0.494 0.830 0.497 0.761
VQM

Liu-activity 0.547 0.701 0.523 0.784
Liu-flicker 0.473 0.677 0.514 0.793
Liu-VQM 0.507 0.704 0.525 0.795

EMtem 0.593 0.934 0.542 0.919
EM-VQM 0.602 0.946 0.543 0.921

be considered.
3) Performance evaluation using Krasula methodology:

The performance results of the metrics using the evaluation
methodologies proposed by Krasula et al. are reported in
TABLE III. For EMtem and EM-VQM, the SVR model
that obtains the median PCC values during the 1000-folds
cross validation is utilized for the calculation of AUCDS and
AUCBW as introduced in Section IV-B. It could be observed
from the table that the proposed EM-VQM obtains the best
performances, in terms of AUCDS and AUCBW values among
the compared metrics. Among the compared metrics, the EM-
VQM is the best in 1) distinguishing pairs of stimuli that are of
similar/significantly different quality; 2) indicating sequences
are of better/worse quality than others.

4) Benchmarking synthesis algorithms and depth map
codecs: As one of the most important functionalities of an
image/video quality metric is to benchmark the performance
of the system considering relative techniques. In FTV system,
depth maps codecs and synthesis algorithms are two of the
most important techniques. More reliable synthesis algorithms
and codecs could provide better free-viewpoint videos. From
this point of view, the performances of using the objective
quality metrics for benchmarking the synthesis algorithms, i.e.,
A1-A7, in IVC-DIBR dataset and the seven depth map codecs,
i.e., C1-C7, in FVV dataset are also evaluated. More specifi-
cally, the DMOS values of sequences obtained using each syn-
thesis algorithm/depth map codes are averaged to compute the
ground truth ranking. Similarly, the predicted ranking of A1-
A7/C1-C7 using the image/video quality assessment metrics
are also obtained based on the mean predicted scores of each
synthesis algorithm/depth map codec. The results are shown in
TABLE IV. Comparing the ranking of A1-A7 predicted by the
quality metrics with the one predicted by DMOS, the proposed
EMtem and EM-VQM achieve the most consistent rankings.
For EM-VQM, only A6 is shifted two positions forward and
the positions of A4, A5 are switched. For EMtem, only A6
is shifted one position forward and the positions of A4, A5
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(a) MP-PSNR (b) MP-PSNRr (c) MW-PSNR (d) MW-PSNRr

(e) 3DSWIM (f) Liu-activtiy (g) Liu-flicker (h) Liu-VQM

(i) EMspa (j) EMtem (k) EM-VQM

Fig. 9. Scatter plots of all quality metrics’ scores versus DMOS on IVC-DIBR database [3]. Sequences that generated with different synthesis algorithms
(i.e., A1-A7) are labeled with different shapes and colors (better seen in color).

(a) MP-PSNR (b) MP-PSNRr (c) MW-PSNR (d) MW-PSNRr

(e) 3DSWIM (f) Liu-activity (g) Liu-flicker (h) Liu-VQM

(i) EMspa (j) EMtem (k) EM-VQM

Fig. 10. Scatter plots of all quality metrics’ scores versus DMOS on FVV database [44]. Sequences that generated with different depth coding algorithms
(i.e., C1-C7) are labeled with different shapes and colors (better seen in color).
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TABLE IV
RANKING OF THE SEVEN SYNTHESIS ALGORITHMS IN IVC-DIBR DATASET AND THE SEVEN DEPTH MAP CODECS IN FVV DATASET RANKED WITH

RESPECT TO THE DMOS VALUES AND PREDICTED OBJECTIVE SCORES CALCULATED WITH THE IMAGE/VIDEO QUALITY METRICS DESIGNED FOR
SYNTHESIZED VIEWS. FROM LEFT TO RIGHT, THE RANKING OF THE SYNTHESIS ALGORITHMS/DEPTH MAP CODECS DECREASES.

Dataset IVC-DIBR FVV
DMOS A1 A2 A3 A6 A4 A5 A7 C7 C6 C3 C2 C1 C4 C5

3DSWIM A6 A5 A1 A4 A2 A3 A7 C7 C3 C2 C6 C4 C5 C1
MW-PSNR A4 A5 A6 A3 A2 A1 A7 C6 C7 C5 C1 C3 C2 C4
MW-PSNRr A4 A5 A6 A3 A2 A1 A7 C6 C7 C5 C1 C3 C2 C4
MP-PSNR A4 A5 A6 A3 A2 A1 A7 C6 C7 C5 C1 C3 C2 C4
MP-PSNRr A4 A5 A6 A3 A2 A1 A7 C7 C6 C5 C1 C3 C2 C4
Liu-activity A4 A6 A1 A5 A3 A2 A7 C7 C1 C3 C2 C6 C4 C5
Liu-flicker A6 A4 A5 A2 A3 A7 A1 C7 C1 C6 C3 C5 C2 C4
Liu-VQM A6 A4 A1 A5 A3 A2 A7 C7 C1 C3 C6 C2 C5 C4

EMspa A4 A3 A6 A5 A2 A1 A7 C7 C3 C1 C2 C4 C6 C5
EMtem A1 A2 A6 A4 A3 A5 A7 C7 C6 C3 C2 C1 C5 C4

EM-VQM A1 A6 A2 A3 A5 A4 A7 C7 C3 C2 C6 C1 C4 C5

are switched. For most of the image quality metrics, the poor
performing algorithms are ranked with higher positions, while
the better performing ones are ranked lower. For the state-of-
the-art DIBR-oriented video quality metric Liu-VQM, except
for A7, the rest are all inconsistent with the ground truth.
Comparing the ranking of C1-C7 indicated by the objective
models with the ground truth, the two proposed metrics
provide again the most consistent rankings. For EMtem, only
the positions of C4 and C5 are switched. For EM-VQM, the
position of C6 is shifted slightly forward. Liu-activity also only
incorrectly switches the position of C1 and C6, but the distance
between these two codecs is far according to the ground truth.
All the other compared metrics fail to provide a more correct
ranking with less than three inconsistent rankings.

V. CONCLUSIONS

To evaluate the quality of FVV in FTV system, in this
work, we present a multi-scale motion trajectory based video
quality assessment metric by quantifying the elastic changes.
Specifically, to quantify the two dominant temporal structure-
related distortions contained in nowadays synthesized views,
i.e., the object deformation observed at a certain viewpoint and
the structure inconsistencies observed during view switches,
we calculated the amount of 1) deformation changes of spatial
structure, 2) deformation changes of motion trajectories, and
3) the statistical change of motion-structure descriptors along
the trajectories within reference and the synthesized videos.
Then they are aggregated by SVR to predict the perceived
quality. Experiments have been conducted on two databases
which contain the two aforementioned temporal structure-
related distortions. The results show that the proposed EM-
VQM is superior to the state-of-the-art video quality metrics
designed for FVV.
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