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EWMA Charts for Monitoring Zero-inflated Proportions

with Applications in Health-Care

Petros E. MARAVELAKIS 1, Athanasios C. RAKITZIS 2 , Philippe CASTAGLIOLA 3.

Abstract

In the context of public health surveillance, the aim is to monitor the occurrence of health-related

events. Among them, statistical process monitoring focuses very often in the monitoring of rates and

proportions (i.e. values in (0, 1)) such as the proportion of patients with a specific disease. A popular

control chart that is able to detect quickly small to moderate shifts in process parameters is the EWMA

control chart. There are various models that are used to describe values in (0, 1). However, especially in

the case of rare health events, zero-values occur very frequently which, for example, denote the absence of

the disease. In this paper, we study the performance and the statistical design of EWMA control charts

for monitoring proportions that arise in a health-related framework. The proposed chart is based on the

zero-inflated beta distribution, a mixed (discrete-continuous) distribution, suitable for modelling data in

[0, 1). We use a Markov chain method to study the run length distribution of the EWMA chart. Also,

we investigate the statistical design as well as the performance of the proposed charts. Comparisons with

a Shewhart-type chart are also given. Finally, we provide an example for the practical implementation

of the proposed charts.

Keywords: EWMA control chart; Zero-inflated Beta distribution; run length; average run length; propor-

tion of deaths.

1 Introduction

Statistical Process Control (SPC) is a collection of methods that are used to monitor a process and detect

changes in it. The main tool that it is used for this purpose is the control chart. Initially, control charts were

almost solely related to industrial processes and the detection of assignable causes that lead to an increase

on the fraction of nonconforming products. Nowadays, SPC methods are not limited to industry but they

are also used on a variety of scientific disciplines such as medicine, public health, finance, environment and

social networking. See, for example, Woodall (2006), Woodall et al. (2017) and Bersimis et al. (2018).
1Corresponding author, Department of Business Administration, University of Piraeus, Piraeus, 18534, Greece, mar-

avel@unipi.gr
2Department of Statistics & Actuarial-Financial Mathematics, University of the Aegean, Karlovassi, 83200, Greece,

arakitz@aegean.gr
3Université de Nantes & LS2N UMR CNRS 6004, Nantes, France, philippe.castagliola@univ-nantes.fr

1



Mainly, there are three types of control charts: Shewhart, Cumulative Sum (CUSUM) and Exponentially

Weighed Moving Average (EWMA) control charts. Shewhart control charts are able to quickly detect large

shifts in process parameters. CUSUM and EWMA control charts (also known as control charts with memory)

can quickly detect small to moderate shifts. Both are prospective methods with an increased sensitivity in

detecting quickly a sustained shift in the process parameters. Their superiority (compared to Shewhart

charts) is attributed to the fact that they accumulate information over time. See Montgomery (2013), for a

thorough introduction on control charts.

In many practical applications, especially in the areas of medicine and public-health, the common ap-

proach is to monitor the counts of events (e.g. infections, deaths) either within fixed time intervals or within

samples of fixed size or variable size. In the first case, the number of the events is (theoretically) unbounded,

taking values in {0, 1, . . .}. In the second case, the number of events is upper bounded and the upper bound

equals the sample size. Thus, in the first case the usual assumption for the statistical modelling of these

counts is that of the Poisson or the Negative binomial distribution. Consequently, control charts based on

these distributions are used for process monitoring. The c-chart, a Shewhart-type chart, is a simple monitor-

ing scheme that is applied in this case whereas, for more efficient procedures we refer to Rossi et al. (1999),

Rogerson and Yamada (2008), Sparks et al. (2011), Sparks et al. (2010), Alencar et al. (2017), Rakitzis et al.

(2018) and references therein.

In the second case, where the binomial distribution is the common model for the available (bounded)

counts, a simple monitoring scheme that is applied often is the np-chart (also a Shewhart-type chart).

However, instead of monitoring counts from a binomial distribution, sometimes process monitoring is based

on fractions, proportions and rates. These three terms have in common that their values are (in general) on

the interval [0, 1]. Usually, these values are fractions of discrete variables, e.g. the number of infections in

a group of patients. For each individual observation (patient) we record whether a specific event is present

or not. In addition, a fraction could also be a proportion. Also, there are situations (see, for example,

Ho et al. (2019)) where proportions do not result from Bernoulli experiments, such as the proportion of a

drug component of a medicine, the proportion of a specific ingredient in a food product or the proportion

(percentage) of body fat in patient’s body.

Traditionally, the usual p-chart with the standard approach of the 3σ-limits (see, for example, Mont-

gomery (2013)) is used for monitoring proportions. The main assumption is that the number of, say, the

infected patients, within a sample of size n follows the binomial distribution and thus, under certain circum-

stances, the sample proportion follows (approximately) a normal distribution. It goes without saying that in

real problems this approximation is questionable most of the times. Moreover, the np- and p-charts cannot

be applied in cases where the proportions do not result from Bernoulli experiments. It is known that the
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binomial distribution is skewed to the right when the success probability p < 0.5. Thus, for processes with

a low in-control (IC) proportion p0 the normal approximation is not valid, unless the sample size at each

sampling stage is very large. Consequently, in cases like this, the p-chart has an increased false alarm rate

(FAR). In industry, these processes are characterized as high-quality processes (see, for example, Ali et al.

(2016) and references therein) whereas in a medical context these processes are related to rare health-events.

The problem of monitoring a Bernoulli process and the respective “success” probability p has been studied

by several researchers. There are several works on CUSUM and EWMA charts for monitoring proportions; see

Reynolds and Stoumbos (1999), Joner Jr et al. (2008), Sego et al. (2008), Spliid (2010), Weiß and Atzmüller

(2010), Rossi et al. (2016), Neuburger et al. (2017), Daryabari et al. (2019), Aytaçoğlu and Woodall (2020)

and references therein. Szarka and Woodall (2011) provided an extensive review that covers a wide variety

of methods. However, all the above mentioned methods are applicable only in the case of proportions that

are results from Bernoulli experiments.

A way to provide a unified solution that can be used for process monitoring when the available data are

(in general) in [0, 1], is to use the Beta distribution as the theoretical model that describes the stochastic

behaviour of the sample proportions (individual values in [0, 1]). Also, this choice overcomes the problem

of the actual distribution of the sample proportion, without resorting to questionable approximations or

approximations with requirements difficult to meet. This can be attributed to the fact that it is a very flexible

continuous distribution, having a large variety of shapes (see also Kieschnick and McCullough (2003)). Bury

(1999) stated that the Beta distribution can be used to model data in (0, 1), i.e. any real number between

zero and one but neither zero nor one.

Gupta and Nadarajah (2004) presented a number of applications of the Beta distribution and it seems

that these authors are the first who considered an application using control charts. Sant’ Anna and ten

Caten (2012) used Shewhart control charts based on the Beta distribution to monitor fraction data, as an

alternative method for monitoring proportions (instead of the p chart).

It is not unusual in medical and health-related applications the occurrence of an excessive number of

zeros. Each zero is related to e.g. the absence of the (health) event. Consequently, on the data that are

available from health-related processes, there will be percentages, fractions or rates equal to zero. Under this

perspective, we expect to monitor data in the range [0, 1) and the Beta distribution is not an appropriate

model. Therefore, we seek for a mixed (discrete-continuous) distribution to model [0, 1) data.

Recently, de Araujo Lima-Filho et al. (2019) studied upper one-sided Shewhart-type control charts based

on the zero-one-inflated Beta distribution of Ospina and Ferrari (2010). Also, the authors considered cases

where there is an excessive number of zeros in the data and developed Shewhart charts based on the zero-

inflated Beta (BEZI) distribution. In the case of control charts for attributes data (or counts data, which
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are realizations from a discrete probability distribution, like the Poisson or the binomial distribution), zero-

inflated models have become popular as more appropriate models when there is an excessive number of zeros

in the data. For an up-to-date review of the area, see Mahmood and Xie (2019). It is worth mentioning

that with the term attributes we refer to quality characteristics that cannot be conveniently represented

numerically (e.g. smoker/non-smoker, infected/not infected etc). Usually, these characteristics are classified

in two or more categories, with the most common classification (in a broad sense) being that of “conforming”

and “nonconforming”, according to the specifications of these characteristics. Further details on control

charts for attributes can be found in Montgomery (2013).

So far, only Shewart-type charts have been studied in the case of Beta and zero-inflated Beta distribution.

As already said, Shewhart charts are not sensitive in the detection of small shifts in the process mean level.

Therefore, in this paper we study in detail the EWMA chart for monitoring proportions of health-related

events when there is an excessive number of zero values in the data. The chart is based on the BEZI

distribution and we will refer to it as the BEZI-EWMA chart. As a memory-type chart, it is expected to

have, better performance than the corresponding Shewhart chart in the detection of small and moderate

shifts in process parameters. In addition, it needs to be investigated if the performance of the BEZI-EWMA

chart is affected by the presence of zeros, especially when the number of zeros is excessively high. Even

though the CUSUM chart is more popular in health-related applications, the EWMA control charts have

also been occasionally used in public health surveillance, especially in detecting disease outbreaks (Sparks

et al. (2011), Chen et al. (2020)).

The outline of the paper is the following. In Section 2, we provide in brief the properties of the BEZI

distribution. In Section 3, we present the Shewhart and EWMA charts based on the zero-inflated Beta

distribution. In Section 4, we provide the results of an extensive numerical study, regarding the performance

of the BEZI-EWMA chart. We present also comparisons between the Shewhart and the EWMA charts for

BEZI processes. An example of the use of the proposed charts is given in Section 5. Finally, in Section 6,

we give some conclusions, recommendations and topics for future research. The details on the Markov chain

method that it is used for the computation of the run length properties of the BEZI-EWMA chart are given

in the Appendix.

2 The Zero-inflated Beta Distribution

The Beta distribution is a flexible continuous distribution that can be used to model fractions, proportions

and characteristics that take values in the interval (0, 1). The probability density function (pdf) of a random
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variable (rv) W following the standard Beta distribution Beta(u1, u2) is given by

fBeta(w |u1, u2 ) =
Γ(u1 + u2)

Γ(u1)Γ(u2)
wu1−1(1− w)u2−1, (1)

where 0 < w < 1, u1 > 0, u2 > 0 and Γ(u) =
∫∞
0
xu−1e−xdx is the Gamma function at point u > 0. The

mean and the variance of the beta distribution are respectively given by

E(W ) =
u1

u1 + u2
, V ar(W ) =

u1u2
(u1 + u2)2(u1 + u2 + 1)

.

Ferrari and Cribari-Neto (2004) proposed a re-parametrization of the pdf given in equation (1) offering

an attractive simplification. Let

µ =
u1

u1 + u2
and φ = (u1 + u2). (2)

Then the pdf, the mean and the variance of the beta distribution Beta(µ, φ) are, respectively, equal to

fBeta(w |µ, φ ) =
Γ(φ)

Γ(µφ)Γ((1− µ)φ)
wµφ−1(1− w)(1−µ)φ−1, 0 < w < 1, (3)

E(W ) = µ and V ar(W ) =
µ(1− µ)

(1 + φ)
, (4)

where µ ∈ (0, 1) is the mean of W . Also, φ is known as the precision parameter since it can be used to

control the variance of W . From equation (4) we deduce that as φ increases, the variance of the Beta(µ, φ)

distribution decreases.

As already mentioned, fractional data, rates and proportions may (in general) have values in the interval

[0, 1]. Therefore, the Beta distribution cannot be used to model data of that kind. A more suitable model is

that of the zero-inflated Beta (BEZI) distribution (Ospina and Ferrari (2010)). The pdf and the cumulative

distribution function (cdf) of a rv W following the BEZI distribution with parameters µ, φ and ν (i.e.

W ∼ BEZI(µ, φ, ν)) are, respectively, equal to

fBEZI(w |µ, φ, ν ) =


ν, if w = 0

(1− ν)fBeta(w |µ, φ ), if 0 < w < 1

(5)

FBEZI(w |µ, φ, ν ) = νI[0,1](w) + (1− ν)FBeta(w |µ, φ ), w ∈ R, (6)

where ν ∈ (0, 1) is the probability that W equals zero, fBeta(w |µ, φ ) and FBeta(w |µ, φ ) are the pdf and the

cdf of the Beta distribution defined in Ferrari and Cribari-Neto (2004), with µ ∈ (0, 1) and φ > 1. Note also
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that ν is the inflating (or mixture) parameter of the BEZI distribution while IA(x) is the indicator function,

which equals one if x ∈ A and one otherwise. Moreover, the mean and the variance of W are, respectively,

equal to

E(W ) = µ(1− ν) and V ar(W ) = (1− ν)

(
µ(1− µ)

(1 + φ)
+ νµ2

)
. (7)

Let W1,W2, . . . ,Wm be a random sample from a BEZI(µ, φ, ν) distribution. Then, using the maximum

likelihood estimation (MLE) method, the estimates µ̂, φ̂, ν̂ are obtained by maximizing numerically the

log-likelihood function log(L(θ)), which is given by (see Ospina and Ferrari (2010))

`(θ) = log(L(θ)) = `1(ν) + `2(µ, φ),

where θ = (µ, φ, ν) and

`1(ν) = T1 · log(ν) + (n− T1) · log(1− ν),

`2(µ, φ) = (n− T1) · log

(
Γ(φ)

Γ(µφ)Γ((1− µ)φ)

)
+ T2 · (µφ− 1) + T3 · ((1− µ)φ− 1),

with T1 =
∑m
i=1 I{0}(wi), T2 =

∑
i:wi∈(0,1) log(wi) and T3 =

∑
i:wi∈(0,1) log(1 − wi). The summation for

T2 and T3 is made for all wi values in the sample (i = 1, 2, . . . ,m) that are greater than zero and less than

one. Then, ν̂ = T1/m, while the MLE µ̂, φ̂ of µ, φ can be found only numerically. Note also that the ML

estimates of θ are directly computed with R (R Core Team (2021)) by using the package gamlss (Rigby and

Stasinopoulos (2005)).

3 Control Charts for Monitoring a BEZI Process

In this section, we present a Shewhart and an EWMA chart for monitoring a BEZI process. For the rest

of the paper we assume that when the process is IC, process parameters equal µ0, φ0, ν0. Therefore, the

proposed charts are suitable for monitoring the process in real-time, or for a Phase II analysis, as it is

sometimes called the real-time monitoring of a process. During Phase II analysis, the values of the process

parameters are known. In this work, we assume that they have been obtained from previous studies or they

have been accurately estimated from an IC preliminary sample that has been collected from the process.

The estimation of the IC values of the process parameters is the purpose of the Phase I analysis. During

the Phase I analysis, the control chart is applied retrospectively on the process and the aim is to determine
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the values of the process parameters as well as the control limits that will be used during Phase II analysis.

Further details on the difference between Phase I and Phase II can be found in Montgomery (2013). When

assignable causes are present (i.e. out-of-control process, OOC), then at least one of the parameters has

shifted to an OOC value µ1, φ1, ν1 that is µ1 6= µ0 and/or φ1 6= φ0 and/or ν1 6= ν0.

For shifts in µ and ν, we assume that µ1 = δµ0 and ν1 = τν0, for δ ∈ (0, 1/µ0) and τ ∈ (0, 1/ν0). When

δ = τ = 1, the process is IC. We denote as µ0,W the IC process mean, which is given by equation (7) for

µ = µ0, ν = ν0. In a similar manner, for µ = µ1, ν = ν1, we obtain the OOC process mean µ1,W . Also, it is

worth mentioning that for δ ∈ (0, 1) and τ = 1 or for τ ∈ (0, 1) and δ = 1 it is µ1,W < µ0,W and a decrease

has occurred in the process mean level. On the other hand, for δ ∈ (1, 1/µ0) and τ = 1 or for τ ∈ (1, 1/ν0)

and δ = 1 it is µ1,W > µ0,W and an increase has occurred in the process mean level.

Note also that in this work we will not consider shifts in φ and thus we simply assume that φ0 = φ1 = φ.

The aim in practice is to detect changes in the process mean level µ0,W , which is actually the IC value of

the proportion under study. From equation (7) we see that changes in φ do not affect its value.

3.1 BEZI-Shewhart Chart

Next, we present a Shewhart chart with probability limits for monitoring a BEZI process. Further details

can be found in de Araujo Lima-Filho et al. (2019). Let α be the desired FAR. Also, we assume that when

the proportions are results of Bernoulli experiments, at each sampling stage i ≥ 1, we collect a sample of size

ni and then we compute the valueWi = Xi/ni, where Xi is the number of events (e.g. deaths) in a sample of

size ni (e.g. patients). Otherwise, if proportions are not results of Bernoulli experiments, at sampling stage

i ≥ 1, we record a value Wi ∈ [0, 1), which is plotted on the chart. For example, the percentage of alcohol in

patient’s body where the zero value denotes its absence. For both cases we assume that Wi follows a BEZI

distribution.

Then, by using the distribution of proportion W (introduced in Section 2), we setup the BEZI-Shewhart

control chart. This chart can detect shifts in either parameter µ or ν of a BEZI model. Here, the aim is

to detect increasing shifts on the process mean level. Generally speaking, for a given FAR α and equal tail

probability limits, the upper control limit UCLSH and the lower control limit LCLSH of a BEZI-Shewhart

chart are determined by the following equations

P (W ≤ UCLSH) = FBEZI(UCLSH |µ0, φ0, ν0 ) = 1− α/2

P (W ≤ LCLSH) = FBEZI(LCLSH |µ0, φ0, ν0 ) = α/2,

where FBEZI(· |µ0, φ0, ν0 ) is the cdf of the BEZI distribution, in the case of an IC process. Moreover,
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following the proposal in de Araujo Lima-Filho et al. (2019), if the probability ν0 for zero value is ν0 ≥ α/2,

then only an upper control limit has to be determined. In that case, UCLSH is given by

P (W ≤ UCLSH) = FBEZI(UCLSH |µ0, φ0, ν0 ) = 1− α. (8)

Next, we proceed only with UCLSH .

Clearly, from (8) we deduce that UCLSH = F−1BEZI(1 − α |µ0, φ, ν0 ), where F−1BEZI(· |µ0, φ, ν0 ) is the

inverse cdf of the BEZI distribution for an IC process. Once the UCLSH is determined, successive obser-

vations (Wi values) from the BEZI process are plotted on an upper one-sided control chart that signals if

a proportion is greater than the upper control limit, i.e. when for the first time Wi > UCLSH . This is an

indication of an increase in the true proportion of the events.

3.2 BEZI-EWMA Chart

The EWMA control chart (Roberts (1959)) for monitoring the proportion of health-related events uses the

following EWMA statistic

Zi = λWi + (1− λ)Zi−1, i = 1, 2, ... (9)

where Wi is the sample proportion at each sampling stage, Z0 = µ0,W ≡ µ0(1 − ν0) and 0 < λ ≤ 1 is the

smoothing parameter. The context is the same as for the case of the BEZI-Shewhart chart. The BEZI-

EWMA chart gives an OOC signal at sample i ≥ 1 if Zi < LCL or if Zi > UCL where LCL and UCL are

the lower and the upper control limits of the chart. Both limits are placed symmetrically in distance L (in

standard deviation units) from the IC process mean level, i.e.

UCL/LCL = µ0,W ± Lσ0,W
√
λ/(2− λ). (10)

Note also that the limits given in (10) are also known as steady-state EWMA limits (see, for example, Human

et al. (2011)). The UCL, LCL values (or, equivalently, the λ and L) are properly selected through a design

study so that the BEZI-EWMA chart has the desired FAR and it is sensitive enough in the detection of

specific shifts in process parameters. If for the given values of λ and L, the LCL < 0, then it is set equal to

zero. Consequently, the chart is upper-sided and can detect only increases in the process mean level.

According to Sparks (2017), the EWMA statistic (see equation (9)) can be viewed as a weighted average

of all the observed data from the beginning of process monitoring, which are available at time point i. This
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is the reason why it is able to detect moderate and persistent shifts of the monitoring process. The EWMA

chart has the advantage that it is easy to interpret and can be optimized by selecting the appropriate values

for λ and L when the IC parameter value µ0,W is known and the shifts δ and/or τ are known, as well.

3.3 Performance of Control Charts

Control charts are evaluated by the properties of their run length (RL) distribution. The RL is defined as

the number of points plotted on the chart, until it triggers for the first time an OOC signal. For example,

for the BEZI-EWMA chart, the RL is defined as

RL = min{i ≥ 1|Zi 6∈ [LCL,UCL]},

where UCL and LCL are given in (10).

In the case of the upper one-sided BEZI-Shewhart chart, the RL = min{i ≥ 1|Wi > UCLSH} and it is a

geometric rv, since it expresses the number of points plotted on the chart (i.e. the number of trials) until the

chart gives an OOC signal for the first time (i.e. until the first success). Its parameter (success probability)

is pout = P (Wi > UCLSH) = 1−FBEZI(UCLSH |µ, φ, ν ). Therefore, the pdf and the cdf of RL are defined

for l = 1, 2, . . . and they are equal to

fRL(l) = pout(1− pout)l−1, FRL(l) = 1− (1− pout)l.

Consequently, the average run length (ARL) of the upper one-sided BEZI-Shewhart chart equals ARL =

1/pout, the standard deviation of the run length distribution (SDRL) equals SDRL =
√

1− pout/pout while,

the γ-percentile point RLγ (γ ∈ (0, 1)) of RL, is given by

RLγ =

⌈
ln (1− γ)

ln (1− pout)

⌉
,

where d. . .e denotes the rounded-up integer. For γ = 0.5, we obtain the 0.5-percentile point RL0.5 or the

median run length (MRL). Clearly, when (µ, φ, ν) = (µ0, φ0, ν0) the pout = α, where α is the FAR of

the chart and hence, all RL-based metrics are referred to the IC case. When (µ, φ, ν) = (µ1, φ1, ν1), the

pout = 1 − β where β is the type-II error of the chart and hence, all RL-based metrics are referred to the

OOC case.

The computation of the RL properties of the BEZI-EWMA control chart is feasible through the use of

the Markov chain methodology, which was originally proposed by Brook and Evans (1972) (see also Saccucci
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and Lucas (1990), Fu and Lou (2003), Bersimis et al. (2014) and references therein). Further details can be

found in the Appendix.

For λ = 1, the BEZI-EWMA chart coincides with the BEZI-Shewhart chart of de Araujo Lima-Filho

et al. (2019). Also, for λ = 1 and ν = 0, the BEZI-EWMA chart coincides with the Beta chart of Sant’Anna

and ten Caten (2012). Moreover, given λ, L and for ν = 0, the BEZI-EWMA chart is the Beta-EWMA

chart, which is a memory-type chart for monitoring proportions following a Beta distribution. After some

necessary modifications, the same methodology that is described in this work can be used for studying a

Beta-EWMA chart. Further details are left to the readers.

4 Numerical Study

In this section, we present the results of an extensive numerical study, regarding the performance of the

BEZI control charts. When the process operates at the IC state, the ARL (SDRL) will be denoted as ARL0

(SDRL0) while in the case of an OOC process, it will be denoted as ARL1 (SDRL1). Given the values of

µ0, φ0, ν0 and the values for the design parameters of each chart (i.e., UCLSH or (λ, L)) the ARL0 has a

specific value.

Next, we assume two possible types of shifts in process parameters: One shift on µ and one shift on

ν. More specifically, we assume that when the process operates in an OOC state, µ1 = δµ0, δ > 1 or

ν1 = τν0, 0 < τ < 1. When exactly one of these two shifts occurs, the mean µ0,W (see equation (7)) of

the BEZI process shifts from the IC value µ0,W = µ0(1 − ν0) to an OOC value µ1,W > µ0,W , where either

µ1,W = δµ0(1− ν0) or µ1,W = µ0(1− τν0). As already said, we assume that the precision parameter equals

φ and remains unchanged. Note also that in the work of de Araujo Lima-Filho et al. (2019)), the authors

did not consider separate shifts in each of the process parameters but they just considered an additive shift

in the IC process mean level.

For a fair comparison (in terms of ARL) between the different control charts, we have to set the IC

ARL at the same pre-specified value. Then, given the values for µ0, φ0, ν0 and ARL0 we determine

the values of the design parameters of each chart. Clearly, for the upper one-sided BEZI-Shewhart chart,

UCLSH = F−1BEZI

(
1− 1

ARL0
|µ0, φ, ν0

)
. For the determination of the design parameters (λ, L) of the BEZI-

EWMA chart, the related procedure is as follows:

step 1. Choose the values for φ, µ0, ν0 and ARL0.

step 2. Choose the value of λ ∈ (0, 1) and determine the unique L value that gives an IC ARL value equal to

ARL0.
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In general, small values for λ are recommended, with common values being in the interval [0.05, 0.30].

In this work we choose λ to be one of the values {0.05, 0.10, 0.20, 0.30}. Then, for each λ, we determine L

value with a 3 decimals accuracy (for faster convergence of the implemented algorithms) so that the IC ARL

value equals the target ARL0 value.

Next, we present the findings of an extensive numerical study regarding the statistical design and per-

formance of the BEZI-Shewhart and the BEZI-EWMA charts. We consider several IC BEZI processes with

different levels of zero-inflation as well as different levels of precision (in terms of φ). In the complete nu-

merical study we considered φ ∈ {5, 10, 50, 100, 400}, µ0 ∈ {0.01, 0.05, 0.1}, ν0 ∈ {0.2, 0.5, 0.8}. The aim is

to examine the performance of the charts under various different BEZI processes and assess the impact of

the parameters and the different shifts on δ and τ . The IC process mean level is µ0(1− ν0) and varies from

0.002 to 0.08. Due to space economy, we only present in Figures 1-4 eight different IC scenarios (cases),

regarding the ARL performance of the charts. These scenarios are given in Table 1, column “Case”. All

charts have the same IC ARL value ARL0 ≈ 370.4. For shifts only in µ0, we considered δ ∈ [1, 4] and τ = 1,

while for shifts only in ν0, we considered τ ∈ [0.25, 1] and δ = 1. For the same scenarios, we evaluated the

performance of the Shewhart and EWMA charts in terms of the OOC measures SDRL, MRL and RL0.95.

However, due to space economy, the respective figures are given in the Supplementary Material.

(Please Insert Table 1 around Here)

Table 1: IC scenarios for BEZI processes - Selected Cases

Case φ µ0 ν0 µ0,W

1 10 0.01 0.2 0.008
2 50 0.05 0.5 0.025
3 100 0.05 0.2 0.040
4 400 0.10 0.8 0.020
5 5 0.10 0.5 0.050
6 50 0.01 0.2 0.008
7 100 0.10 0.8 0.020
8 400 0.05 0.8 0.010

(Please Insert Figures 1 through 4 around Here)
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Figures 1-4 reveal that the BEZI-EWMA chart outperforms the BEZI-Shewhart chart in almost all the

considered cases, especially in the case of shifts only in ν0. For shifts only in µ0, the BEZI-Shewhart is

preferable than the BEZI-EWMA in the cases with large φ values (e.g., φ = 100 or 400). The ARL profiles

in Cases 1, 5 and 6 reveal that the BEZI-EWMA chart with λ = 0.05 is the best chart in detecting shifts

either only in µ0 or only in ν0. Similar results are given for Case 2 but for very small decreasing shifts in

ν0 (i.e., τ ≥ 0.8) the BEZI-EWMA chart with λ = 0.10 has the best performance. The results from Case 3

suggest to use λ = 0.30 for decreasing shifts τ ≥ 0.8 in ν0. For shifts only in µ0, the BEZI-EWMA charts

with λ ∈ {0.05, 0.10, 0.20, 0.30} have comparable and similar performance to each other, better than the

ARL performance of the BEZI-Shewhart chart, for shifts δ ≤ 2. Finally, the results for Cases 4, 7 and 8

show that the BEZI-EWMA chart with λ = 0.05 is the best chart for shifts τ ≤ 0.60 in ν0 while for shifts

only in µ0, the BEZI-Shewhart chart outperforms the BEZI-EWMA chart, even for δ ≤ 2.5.

In addition, the results of our numerical analysis reveal that there are several cases, especially for small

φ values, with ν0 = 0.2 or 0.5 (cases of small to moderate excess of zero values), and for small shifts (e.g.

δ ≤ 1.2 or τ ≥ 0.7), where the respective ARL1 values are greater than 200 or even 300. See, for example,

Cases 1, 3 and 6. Compared to the IC value ARL0 ≈ 370.4, we deduce from the ARL1 value that the chart

is not able to detect quickly this type of change in the process mean level. Therefore, in cases like this, we

suggest practitioners to evaluate the performance of the control chart by also taking into account the values

of other RL-based metrics, like the MRL or the 0.95-percentile point RL0.95.

Concerning the performance of the proposed charts under the SDRL (see Figures 1-4 in Supplementary

Material), the BEZI-EWMA chart with λ = 0.05 has the minimum SDRL for almost all shifts in µ0 or in

ν0. This is the case in Cases 1, 5 and 6. A small SDRL value shows a stable performance for a chart.

Also, the results in Cases 4, 7 and 8 show that for shifts only in µ0, the minimum SDRL is attained by the

BEZI-Shewhart chart, for almost all the shifts δ while for shifts only in ν0, the minimum SDRL is attained

by the BEZI-EWMA chart. Finally, in Case 2 we notice that the BEZI-EWMA chart with λ = 0.05 is the

one with the smaller SDRL values, for shifts δ ≤ 2.5 in µ0 while for shifts only in ν0, the BEZI-EWMA with

λ = 0.10 attains the minimum SDRL for shifts τ ≥ 0.8. Finally, the results for Case 3 show that for shifts

only in µ0, the SDRL for all the considered BEZI-EWMA charts are similar and comparable to each other,

whereas for shifts only in ν0, the BEZI-EWMA chart with λ = 0.05 attains the minimum SDRL value for

τ < 0.8. Similar conclusions can be drawn for the performance of the charts in terms of MRL and RL0.95.

See Figures 5-8 and 9-12 in Supplementary Material.

By taking into account the results of our numerical analysis, we suggest the use of the BEZI-EWMA

chart with λ = 0.05 or 0.10, especially for small φ values (e.g., φ < 50). When we are interested in detecting

shifts only in ν0, this is also valid for larger φ values. For larger φ values, the BEZI-EWMA chart with larger
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Figure 1: ARL comparison between BEZI-Shewhart and EWMA charts, Cases 1 and 2
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Figure 2: ARL comparison between BEZI-Shewhart and EWMA charts, Cases 3 and 4
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Figure 3: ARL comparison between BEZI-Shewhart and EWMA charts, Cases 5 and 6
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Figure 4: ARL comparison between BEZI-Shewhart and EWMA charts, Cases 7 and 8
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λ values, such as 0.30 or 0.20, has better performance than a BEZI-EWMA chart with λ = 0.05 or 0.10.

However, as our analysis showed, in these cases, the BEZI-Shewhart chart has better performance, even for

small shifts in µ0. Since the BEZI-Shewhart chart is much simpler in implementation and interpretation

than the BEZI-EWMA chart, we suggest its use in these cases.

In order to analyse further the sensitivity of the considered charts against various OOC scenarios, we

conducted also a simulation study. Specifically, we considered as a baseline model the case µ0 = 0.05,

ν0 = 0.5, φ = 50 and five different charts: The upper one-sided BEZI-Shewhart chart with UCL = 0.15779

as well as the BEZI-EWMA chart with (λ, L) ∈ {(0.05, 2.476), (0.10, 2.759), (0.20, 3.166), (0.30, 3.412)}.

The corresponding limits are (LCL,UCL) ∈ {(0.01191, 0.03809), (0.00410, 0.04590), (−0.00985, 0.05985),

(−0.02234, 0.07234)}. For the charts with LCL < 0, only an upper control limit is used and the LCL is set

equal to 0. Also, the lines in Table 2 with λ = 0.05, 0.10, 0.20, 0.30 refer to the respective BEZI-EWMA

charts while the line λ = 1 refers to the upper one-sided BEZI-Shewhart chart.

Then, we simulated seven different BEZI processes, which are:

• Scenario 1: (µ0, φ, ν0) = (0.05, 50, 0.5) and µ0,W = 0.025, i.e. the baseline or true model.

• Scenario 2: (µ0, φ, ν0) = (0.05, 50, 0.8) and µ0,W = 0.01, i.e. the probability of zero-occurrence has

been increased and the process mean level has been decreased.

• Scenario 3: (µ0, φ, ν0) = (0.05, 50, 0.2) and µ0,W = 0.04, i.e. the probability of zero-occurrence has

been decreased and the process mean level has been increased.

• Scenario 4: (µ0, φ, ν0) = (0.05, 400, 0.5) and µ0,W = 0.025, i.e. parameter φ has been increased but the

process mean level remains the same.

• Scenario 5: (µ0, φ, ν0) = (0.1, 100, 0.5) and µ0,W = 0.05, i.e. parameters φ and µ0 have been increased

and the process mean level has been increased as well.

• Scenario 6: (µ0, φ, ν0) = (0.1, 50, 0.8) and µ0,W = 0.02, i.e. parameters µ0 and ν0 have been increased

and the process mean level has been decreased.

• Scenario 7: (µ0, φ, ν0) = (0.025, 50, 0.0) and µ0,W = 0.025, i.e. parameter µ0 has been decreased, ν0

equals zero (case of Beta distribution) and the process mean level equals the one of the IC model.

For each scenario, we simulated 100 000 BEZI processes and applied the five charts that have been

developed under the baseline model introduced above. Then, we estimated (from the 100 000 run-length

values) the ARL for various shifts in process parameters. These values are given in the entries of Table 2.

The standard error of the estimation, i.e. SDRL/
√

105, is below 1.
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Then, we modified the in-control parameter values (Scenarios 2-7) and applied again the five charts in

order to assess the robustness of the proposed charts on deviations from the IC model. The results from

the simulation study revealed that if the parameter ν0 is actually larger or smaller than expected, then the

BEZI-EWMA chart either has an increased FAR (cases λ = 0.05 and 0.10 in Scenarios 2 and 3) or it is very

small, with very large IC ARL values (cases λ = 0.20 and 0.30 in Scenarios 2 and 3). Note also that if φ

value is actually much larger than expected (Scenario 4), then the IC ARL value becomes very large and

the BEZI-EWMA chart is not very sensitive in the detection of small shifts in µ0 or in ν0, especially for

λ ≥ 0.20. However, for λ = 0.05 or 0.10, the BEZI-EWMA, even in this case, has good ability to detect

small shifts only in µ0.

When only ν0 does not change (case of Scenario 5), the chart has an increased FAR. In this scenario, the

actual IC process mean µ0,W is twice the IC mean of the baseline model in Scenario 1 and the BEZI-EWMA

chart signals almost immediately. In Scenario 6, both µ0 and ν0 are larger than expected, resulting in an IC

mean slightly smaller than the IC mean in Scenario 1. However, the BEZI-EWMA chart has an increased

FAR, especially for small or large λ values.

In the last scenario, it is not possible to observe zero values in the data and even the IC mean equals

the IC mean in Scenario 1, the BEZI-EWMA charts have an increased IC ARL, which also affects their

ability in the detection of small shifts in µ0. Only for large increasing shifts in µ0, the OOC ARL values are

comparable to that obtained under the baseline model and only for λ = 0.05. Also, in this scenario ν0 = 0

and for τ = 0.8 or 0.5, ν1 = τν0 = 0, i.e., no changes occur to ν0 and the respective entries are marked with

“−”.

Similar conclusions are also derived for the robustness of the BEZI-Shewhart chart, when the actual IC

values of the process parameters have not been determined properly. In Scenario 4, the BEZI-Shewhart

cannot detect any of the shifts in the values of the process parameters. In Scenario 2, the IC ARL value is

approximately three times the desired one and this has also an effect on its OOC performance; the respective

OOC ARL values are much larger, compared to the ones for the baseline model. For the remaining scenarios

(3, 5 and 6), the BEZI-Shewhart chart has an increased FAR (equivalently, the IC ARL is lower than the

desired value). When the true model is that of the Beta distribution (Scenario 7), the IC performance of

the BEZI-Shewhart is similar to that of the BEZI-EWMA chart. However, its OOC performance is much

more affected, even for large shifts to µ0. Due to the presence of zero values, the BEZI model is over-

dispersed, compared to the Beta model. The variance of the BEZI(0.05, 50, 0.5) distribution equals 0.001

091 whereas the variance for the Beta distribution with µ0 = 0.025 and φ = 50 equals 0.000 478. We

attribute the difference in the ARL values of the proposed charts to the difference between the variances of

the BEZI(0.05, 50, 0.5) (Scenario 1) and BEZI(0.025, 50, 0) (Scenario 7) models.
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(Please Insert Table 2 around Here)

Table 2: ARL values for the BEZI-EWMA chart with λ ∈ {0.05, 0.10, 0.20, 0.30} and BEZI-Shewhart charts
(λ = 1.00) for various shifts in µ0 or in ν0 and for seven different BEZI processes.

Scenario 1 λ (δ = 1, τ = 1) (δ = 1.2, τ = 1) (δ = 1.5, τ = 1) (δ = 1, τ = 0.8) (δ = 1, τ = 0.5)
(µ0, φ, ν0) = (0.05, 50, 0.5) 0.05 372.41 98.18 33.00 122.44 38.93

µ0,W = 0.025 0.10 373.12 94.75 30.83 131.19 44.83
0.20 370.87 107.87 33.85 170.10 68.88
0.30 371.56 120.00 37.74 204.11 96.16
1 370.54 175.45 68.65 308.78 247.02

Scenario 2 λ (δ = 1, τ = 1) (δ = 1.2, τ = 1) (δ = 1.5, τ = 1) (δ = 1, τ = 0.8) (δ = 1, τ = 0.5)
(µ0, φ, ν0) = (0.05, 50, 0.8) 0.05 1.63 2.20 3.62 7.99 28.67

µ0,W = 0.01 0.10 49.86 67.30 94.98 654.48 140.42
0.20 14 213.86 3 138.67 652.62 1 458.22 174.79
0.30 5 467.50 1 678.88 420.98 1 046.24 205.50
1 926.34 438.64 171.63 514.63 308.78

Scenario 3 λ (δ = 1, τ = 1) (δ = 1.2, τ = 1) (δ = 1.5, τ = 1) (δ = 1, τ = 0.8) (δ = 1, τ = 0.5)
(µ0, φ, ν0) = (0.05, 50, 0.2) 0.05 2.23 1.59 1.38 1.78 1.35

µ0,W = 0.04 0.10 21.64 9.09 4.54 17.32 12.72
0.20 48.68 18.50 7.95 40.01 30.41
0.30 74.59 27.35 10.44 63.33 50.13
1 231.59 109.66 42.91 220.56 205.85

Scenario 4 λ (δ = 1, τ = 1) (δ = 1.2, τ = 1) (δ = 1.5, τ = 1) (δ = 1, τ = 0.8) (δ = 1, τ = 0.5)
(µ0, φ, ν0) = (0.05, 400, 0.5) 0.05 2 439.20 155.18 34.83 283.82 45.55

µ0,W = 0.025 0.10 > 106 246.11 36.82 1 069.76 99.86
0.20 594192.2 1 580.35 59.94 85 325.51 7 555.76
0.30 > 106 25 572 147.25 > 106 > 106

1 > 106 > 106 > 106 > 106 > 106

Scenario 5 λ (δ = 1, τ = 1) (δ = 1.2, τ = 1) (δ = 1.5, τ = 1) (δ = 1, τ = 0.8) (δ = 1, τ = 0.5)
(µ0, φ, ν0) = (0.1, 100, 0.5) 0.05 1.00 1.00 1.00 1.00 1.00

µ0,W = 0.05 0.10 3.13 2.52 2.21 2.07 1.41
0.20 7.83 4.64 3.04 4.93 2.96
0.30 11.19 5.99 3.58 7.18 4.34
1 51.27 15.95 5.13 42.72 34.18

Scenario 6 λ (δ = 1, τ = 1) (δ = 1.2, τ = 1) (δ = 1.5, τ = 1) (δ = 1, τ = 0.8) (δ = 1, τ = 0.5)
(µ0, φ, ν0) = (0.1, 50, 0.8) 0.05 61.14 55.03 36.09 37.74 12.48

µ0,W = 0.02 0.10 98.13 60.24 31.88 30.71 25.77
0.20 121.04 54.25 26.14 27.18 9.16
0.30 92.26 43.65 21.34 25.79 9.29
1 52.04 25.83 12.39 28.91 17.35

Scenario 7 λ (δ = 1, τ = 1) (δ = 1.2, τ = 1) (δ = 1.5, τ = 1) (δ = 1, τ = 0.8) (δ = 1, τ = 0.5)
(µ0, φ, ν0) = (0.025, 50, 0) 0.05 4 045.68 280.16 44.83 − −

µ0,W = 0.025 0.10 3 631.73 448.59 63.57 − −
0.20 3 605.37 804.82 134.03 − −
0.30 3 289.02 992.59 214.46 − −
1 2 408.72 1 316.12 592.09 − −
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5 An Illustrative Example

In the literature of statistical modelling, the BEZI distribution has been applied (among others) for the

statistical modelling of the percentage of qualified nurses in Brazilian municipalities (Ospina and Ferrari

(2010)), the proportions of deaths caused by traffic accidents (Ospina and Ferrari (2012)), the reading skills

of children in primary schools (Smithson and Verkuilen (2006), Liu and Eugenio (2018)), the proportion of

rapid eye movement sleep time (Ahmadi et al. (2008)), the diet composition in fatty acid signature analysis

(Stewart (2013)) and in word frequency analysis (Burch and Egbert (2020)).

In this section, we demonstrate the practical implementation of the BEZI-Shewhart and EWMA charts

with simulated data. Ospina and Ferrari (2012) illustrated the utility of the BEZI distribution in analysing

the mortality due to traffic accidents in 200 Brazilian municipalities in 2002. The results from their analysis

revealed that 39% of reported deaths were not caused by traffic accidents, while the expected proportion

of deaths is 0.05 with standard deviation equal to 0.07. Based on these findings, we consider the following

simulated data (see Tables 3-5, read by row) which refer to, say, the weekly proportions of deaths by traffic

accidents. The baseline model is the BEZI(0.08, 15, 0.4) which is very close to the one estimated by Ospina

and Ferrari (2012). Specifically, we assume a probability ν0 = 0.4 for a death that was not caused by a traffic

accident while the expected weekly proportion of deaths caused by traffic accidents equals 0.048, by applying

equation (7) for ν = 0.4 and µ = 0.08. This is the IC process mean level µ0,W . Also, for ν = 0.4, µ = 0.08,

φ = 15 and by applying equation (7), we deduce that the IC variance of the BEZI process equals 0.00430.

Therefore, both IC mean and variance are very close to the values 0.05 and 0.0049 = 0.072, estimated by

Ospina and Ferrari (2012). The values in Table 3 have been simulated from a BEZI(0.08, 15, 0.4) distribution

and they represent the IC period. Also, we simulated two different OOC scenarios. In the first (Table 4)

there is an increase in proportion of deaths due to an increase in µ0 while in the second, the increase in

proportion is due to a decrease in ν0 (Table 5). All the available data are given with a four decimals accuracy

Table 3: Proportion of weekly deaths caused by traffic accidents, IC data

Week 1 2 3 4 5 6 7 8 9 10
Proportion 0.0816 0 0.0267 0.0716 0.0577 0 0.0674 0.0085 0 0.0100

Week 11 12 13 14 15 16 17 18 19 20
Proportion 0.1764 0 0 0.0257 0.0175 0.0802 0 0.1433 0 0.0251

Week 21 22 23 24 25 26 27 28 29 30
Proportion 0 0.0702 0.0130 0.0720 0 0 0.0243 0.0330 0.0680 0.0618

Week 31 32 33 34 35 36 37 38 39 40
Proportion 0.0029 0.1796 0.1804 0 0 0 0.1701 0 0 0.0342

Week 41 42 43 44 45 46 47 48 49 50
Proportion 0.2332 0.0300 0.1053 0 0.0753 0.0571 0.0541 0 0 0.2127
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Table 4: Proportion of weekly deaths caused by traffic accidents, OOC data, increase in µ0

Week 1 2 3 4 5 6 7 8 9 10
Proportion 0.0902 0.0408 0 0 0.1579 0.0869 0.1336 0.1751 0.0144 0.1986

Week 11 12 13 14 15 16 17 18 19 20
Proportion 0 0.0115 0.0452 0 0.0735 0.0372 0 0.0390 0 0.0391

Table 5: Proportion of weekly deaths caused by traffic accidents, OOC data, decrease in ν0

Week 1 2 3 4 5 6 7 8 9 10
Proportion 0.0461 0.0890 0.0138 0 0.1620 0.0208 0.0829 0.0279 0.0089 0.1487

Week 11 12 13 14 15 16 17 18 19 20
Proportion 0 0.0031 0.0246 0.0234 0.0670 0.1595 0.1126 0.2864 0.1619 0.1532

Next, we proceed with the determination of the control limits for the BEZI-Shewhart and the BEZI-

EWMA chart. For illustrative purposes, we choose ARL0 ≈ 100. This means that even if there is not an

increase in the weekly proportion of deaths caused by traffic accidents, an OOC signal will be generated

every 100 points, on average. Since the data are on a weekly basis, we expect a (false) signal for an increase

in the proportion of deaths within (approximately) two years (based on 52 weeks per year). The control

limit for the upper one-sided BEZI-Shewhart chart is UCLSH = 0.27762.

By applying the methodology described in Section 4, we determine the value L for λ ∈ {0.05, 0.10, 0.20, 0.30}.

We mention that, in practice, there are cases for which we do not know anything about the magnitude of

possible (if any) shifts in the process parameters. Therefore, we apply four different BEZI-EWMA charts,

with various values for λ. The empirical rule is that Shewhart charts are applied for sudden shifts of large

magnitude in process parameter(s) whereas EWMA charts are preferable for shifts of small magnitude. As

already said at the end of the previous section, values λ = 0.05 or 0.10 are good in the detection of small

shifts in the process parameters; for larger shifts, the BEZI-EWMA chart with λ = 0.20 or 0.30 has a better

performance.

The values of the pairs (λ, L) are {(0.05, 1.838), (0.10, 2.076), (0.20, 2.458), (0.30, 2.762)} with the re-

spective control limits equal to (LCL,UCL) ∈ {(0.02871, 0.06729), (0.01679, 0.07921), (−0.00571, 0.10171),

(−0.02806, 0.12406)}. We note here that when LCL < 0, we set it equal to 0.

All the five charts, for each of the different OOC situations, are given in Figures 5 and 6. The dashed

line represents the center line of each chart. In the case of the BEZI-Shewhart chart it is the median of the
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IC BEZI distribution while, in the case of the BEZI-EWMA chart, it is the expected value of the IC BEZI

distribution. The median of IC BEZI distribution is approximately equal to 0.01962. It is not difficult to

see that none of the charts gives a false alarm signal because none of the points from one to 50 (IC period)

is beyond the control limits. The BEZI-Shewhart chart does not give an OOC signal when there is a shift

in µ0 while, except for the case λ = 0.30, the BEZI-EWMA charts give an OOC signal at point 58, for the

first time. This OOC situation corresponds to a (simulated) shift δ = 1.2 and probably, it is not of large

magnitude to be detected by the Shewhart chart.

When there is a shift in ν0, then all charts declare the process as OOC for the first time at point 68.

This OOC situation corresponds to a (simulated) shift τ = 0.5, which is of large magnitude. However, not

only the Shewhart chart but also the EWMA charts, detect this shift.

(Please Insert Figures 5 and 6 around Here)
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Figure 5: Phase II BEZI-Shewhart and BEZI-EWMA charts for the simulated data in Tables 3 and 4
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Figure 6: Phase II BEZI-Shewhart and BEZI-EWMA charts for the simulated data in Tables 3 and 5
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6 Conclusions

In this work we studied the EWMA chart in the monitoring of proportions with an excessive number of zero

values. We assumed that the process is modelled according to a zero-inflated Beta (BEZI) distribution. This

setup is common in various types of processes, especially in health-related ones. The BEZI-EWMA chart is

compared with the BEZI-Shewhart chart and demonstrates a significantly improved performance, in terms

of several measures based on the run length distribution. For a small IC value for the precision parameter

φ, the BEZI-EWMA chart outperforms (in terms of ARL1) the BEZI-Shewhart, especially when there is a

shift only in parameter ν. As φ increases (and the other IC parameter values µ0, ν0 remain the same), the

reduction achieved in the ARL1 values can be up to 45%, for shifts δ = 1.2 or τ = 0.8. However, for very

large φ values, the picture is reversed and the BEZI-Shewhart has better performance than the BEZI-EWMA

chart, especially in the detection of shifts only in µ0 parameter. For BEZI processes with a high probability

of zero values, the performance of both charts is affected, as well. As a general guideline for practitioners,

we suggest the use of BEZI-EWMA chart with λ = 0.05 or 0.10, for the detection of shifts only in µ0 or only

in ν0. For large φ values (e.g. φ ≥ 100) we suggest either the use of the BEZI-EWMA chart with λ = 0.20 or

0.30 or even the BEZI-Shewhart chart, especially when we want to detect changes only in µ0 and the value

ν0 > 0.5.

A simulation study was conducted in order to assess the robustness and the sensitivity of the proposed

charts when the true in-control model differs from the assumed one. The results showed that deviations,

even small ones, have a significant effect on the performance of the chart, especially in cases of increases in

φ or when at least both of the process parameters have not been determined correctly. Therefore, the (true)

in-control values of the process parameters need to be determined carefully. For this purpose, a detailed

Phase I analysis needs to be conducted first. Moreover, since in practice the process parameters are rarely

known and before applying the control chart they have to be estimated, a separate study is necessary on the

effect of estimated parameters on the chart’s performance. For all these topics, research is undergoing and

the results will be presented in a future paper.

A limitation of the present study is that we consider shifts in exactly one of the parameters µ or φ of the

process. We believe that the case of simultaneous shifts in process parameters has to be treated with at least

two control charts, one for each parameter. It is important not only to detect the change but also identify

(if possible) which of the parameter(s) have changed. Under this framework, the detection of changes in φ

can be also studied. However, multiple schemes have to be designed and applied simultaneously. A useful

technique to that direction is the CUSUM chart based on the likelihood ratio statistic.

Finally, the R codes for verifying the results presented in this paper are available at
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https://github.com/arakitz/BEZIcharts
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Appendix A

In the current Appendix, we provide the details of the Markov chain technique that was employed for the

study of the BEZI-EWMA chart. Let us consider (in general) a two-sided BEZI-EWMA chart with control

limits LCL, UCL and LCL < UCL. In order to apply the Markov chain technique, we divide first the

interval [LCL,UCL] into 2m+ 1 subintervals (Hj −∆, Hj + ∆], j ∈ {1, . . . ,m+ 1, . . . , 2m+ 1}, centered at

Hj =
LCL+ UCL

2
+ 2j∆

where 2∆ = (UCL − LCL)/(2m + 1). The transient states of the Markov chain are represented using the

subinterval (Hj−∆, Hj +∆]. If Zi ∈ (Hj−∆, Hj +∆] then we deduce that at sample i, the Markov chain is

in the transient state j for sample i. Moreover, if for every j ∈ {1, 2, . . . , 2m+ 1} the Zi 6∈ (Hj −∆, Hj + ∆]

then we deduce that the Markov chain has reached the absorbing state (−∞, LCL] ∪ [UCL,+∞). Clearly,

when the Markov chain reaches the absorbing state, the BEZI-EWMA chart gives an OOC signal. Also, we

assume that Hj is the representative value of state j ∈ {1, . . . ,m+ 1, . . . , 2m+ 1}.

The transition probability matrix P of this discrete-time Markov chain is written in the form

P =

 Q r

0ᵀ 1


where Q is the (2m + 1, 2m + 1) matrix of transient probabilities qi,j , r = 1 −Q1 (i.e., row probabilities

sum to 1), 0ᵀ = (0, 0, . . . , 0) and 1 = (1, 1, . . . , 1)ᵀ. The form of matrix Q is the following:
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Q =



q1,1 · · · q1,m q1,m+1 · · · q1,2m+1

...
...

...
...

...
...

qm,1 · · · qm,m qm,m+1 · · · qm,2m+1

qm+1,1 · · · qm+1,m qm+1,m+1 · · · qm+1,2m+1

...
...

...
...

...
...

q2m+1,1 · · · q2m+1,m q2m+1,m+1 · · · q2m+1,2m+1


. (A.1)

The computation of the transition probabilities between the transient states of the Markov chain can be

done by using the relation

qj,k = P (Zi ∈ (Hk −∆, Hk + ∆]|Zi−1 = Hj), j, k ∈ {1, 2, . . . , 2m+ 1}

or, equivalently,

qj,k = P (Zi ≤ Hk + ∆|Zi−1 = Hj)− P (Zi ≤ Hk −∆|Zi−1 = Hj).

Given that Zi−1 = Hj and by using (9), we derive (after isolating Wi) the following expression for qij

qj,k = P

(
Wi ≤

Hk + ∆− (1− λ)Hj

λ

)
− P

(
Wi ≤

Hk −∆− (1− λ)Hj

λ

)
,

= FBEZI

(
Hk + ∆− (1− λ)Hj

λ

∣∣∣∣µ, φ, ν)− FBEZI (Hk −∆− (1− λ)Hj

λ

∣∣∣∣µ, φ, ν) ,
Let also q = (q1, . . . , qm+1, . . . , q2m+1)ᵀ be the (2m + 1, 1) vector of initial probabilities associated with

the 2m+ 1 transient states of the Markov chain. Then, for j ∈ {1, 2, . . . , 2m+ 1}

qj =

 0 if Z0 6∈ (Hj −∆, Hj + ∆]

1 if Z0 ∈ (Hj −∆, Hj + ∆]
. (A.2)

Provided that the number 2m+1 of subintervals in matrix Q is sufficiently large (for example we may set

m = 200, that is 2m + 1 = 401), we accurately evaluate the RL properties of the EWMA control chart for

monitoring the fraction nonconforming. In this work we used m = 200 in the numerical computations. The

RL distribution of the EWMA control chart for monitoring the fraction nonconforming is a Discrete PHase-

type (or DPH) rv with parameters (Q,q) (Neuts (1981), Latouche and Ramaswami (1999), He (2014)). The
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pdf fRL(`) and the cdf FRL(`) of RL are respectively equal to

fRL(`) = qᵀQ`−1r, (A.3)

FRL(`) = 1− qᵀQ`1, (A.4)

while with 1 = (1, 1, . . . , 1)T , the mean (ARL), the second non-central moment E2RL = E(RL2) and the

standard-deviation (SDRL) of RL are respectively equal to

ARL = ν1, (A.5)

E2RL = ν1 + ν2, (A.6)

SDRL =
√
E2RL−ARL2. (A.7)

Note also that ν1 and ν2 are the first and second factorial moments of the RL, i.e.

ν1 = qT (I−Q)−11, (A.8)

ν2 = 2qT (I−Q)−2Q1. (A.9)

We mention that, in general, the form of the ARL function is quite complicated. From the previous

formulas we deduce that its determination requires matrix inversion and multiplication. Therefore, analytical

formulas are not provided.
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