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The Challenge

Objective: improve process modeling quality and robustness

Modern industry: lot of data generated but for a new modeling problem,
frequently start from zero

IFPEN example: new catalyst = new model

Aim: keep information from older dataset → Transfer Learning
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Transfer Learning

Notations:

Domain: D = (X ,P(X ))

Task: T = (Y , f )

Index “s” the source and “t”
the target

Transfer Learning1

Improve the learning of ft using Ds

and Ts when Ds ̸= Dt or Ts ̸= Tt

Transfer Learning approaches:

Transfer knowledge of instances

Transfer knowledge of features representation

Transfer knowledge of parameters

1Pan and Yang, “A Survey on Transfer Learning”

Löıc Iapteff et al. (IFPEN) Bayesian Transfer Learning for Kinetic model AIChE 2022 4 / 26



Context Industrial application Source modeling Target modeling Conclusion

Bayesian Inference

π(β|y ,X )
(posterior)

=

(prior)

π(β)
(likelihood)

f (y |β,X )

f (y |X )
(marginal likelihood)

In Frequentist statistics, β are optimized s.t. the likelihood is maximal.

In Bayesian statistics, a prior on β is added and the posterior is maximized. It
makes it useful for Transfer Learning problems.

The idea: Use as prior the distribution of the parameters learned on source
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Previous work: Modeling of Hydrocracking process1

Two hydrocracking industrial datasets:

Source dataset: from refineries using
catalyst (n)
Target dataset: from refineries using
catalyst (n+1)

Objective: model the output Diesel
Density for the catalyst (n+1)

Constraint: few observations for target
dataset
12 features used defined by the expert

Bayesian transfer Learning to use the
knowledge from the catalyst (n) to predict
(n+1)

1 “Modeling the hydrocracking process with kriging through Bayesian Transfer Learning”, 2021 AIChE Virtual Spring Meeting
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Previous work: Modeling of Hydrocracking process1

Results

Models used: kriging and linear model

The prior distribution is fitted using
the source dataset

The Bayesian transfer method:

Reduce the number of required
observations to fit model of good
quality
Increase model predictive
performance

Comparison of Bayesian transfer Learning and
classical approaches:

Figure: Results of Linear model for a sample of 20
target observations (left: without transfer, right:
Bayesian approach

1 “Modeling the hydrocracking process with kriging through Bayesian Transfer Learning”, 2021 AIChE Virtual Spring Meeting
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Work in study

Aim: Model the Nitrogen content after Hydrotreatment stage

Model used: ODE based Kinetic model

Bayesian transfer method available for every parametric model:
Method: use of Bayesian transfer to improve the model quality with few data

Two datasets from pilot units:

Source: from “old” catalyst
Target: from “new” catalyst
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Data Presentation

Source Dataset

144 observations

Aim: fit a good model to
use parameters distribution
as prior

Target Dataset

126 observations

Aim: fit a good model
when few observations are
available

Outlier detection:
Local outlier factor

The features:

LHSV : Liquid Hourly Space Velocity, inverse of the
residence time t

T : Temperature of the hydrotreating reactor

ppH2: Hydrogen partial pressure

TMP: Weighted average of the simulated
distillation: TMP =
1
7(FEED DS05+2×FEED DS50+4×FEED DS95)

N0: Nitrogen content in feedstock

S0: Sulfur content in feedstock

Res0: Resines content in feedstock

N: Nitrogen content after hydrotreating (to be
predicted)
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The model

ODE based kinetic model:

dN

dt
= −k0

exp(− Ea
Rg

( 1
T − 1

Tref ))(
ppH2

ppH2,ref
)mNn

(1 + A0Res0)(1 +
C0N0
1+S0

)
×

(1− u · exp(− b

Rg
(
1

T
− 1

Tref
))(

ppH2

ppH2,ref
)a(

TMP

TMPref
)vNt).

where θ = (k0,Ea,m, n, a, b,A0,C0, u, t, v) are the parameters to be optimized

Boundary for parameters value to keep a physical sense

Score to minimize:
∑K

i=1
(ŷi−yi )

2

max(5,yi )

Löıc Iapteff et al. (IFPEN) Bayesian Transfer Learning for Kinetic model AIChE 2022 10 / 26



Context Industrial application Source modeling Target modeling Conclusion

Statistical model

In order to perform Bayesian inference, need to have a statistical model:

yi = fθ(x i ) + ϵi ,

ϵi ∼ N (0, σ2
i ),

where fθ(·) is the solution of the differential equation (1)
Heteroscedastic model is considered and expression of σi must be chosen to fit with

the cost function
∑K

i=1
(fθ(x i )−yi )

2

max(5,yi )
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Statistical model

With Σ =

σ2
1 0

. . .

0 σ2
K

, we obtain:

p(y |X ,θ) ∼ N (fθ(X ),Σ)

∝ exp(−1

2
(y − fθ(X ))TΣ−1(y − fθ(X )))

θML = argmin
θ

1

2
(y − fθ(X ))TΣ−1(y − fθ(X ))

= argmin
θ

K∑
i=1

(yi − fθ(x i ))
2

σ2
i

With σ2
i = σ ·max(5, yi ), σ unknown, the maximum likelihood estimator θML

minimizes
∑K

i=1
(fθ(x i )−yi )

2

max(5,yi )
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Fitted source model

The model is fitted using source dataset and offer satisfying results:

Figure: Parity plot of the fitted source model. A zoom is applied on the right.
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Source model on target dataset

The source model is tested on the target
dataset:

Prediction higher than actual value:
new catalyst more active

Model readjustment needed

Aim: use few target observations to fit
the target model with the help of
source knowledge

Figure: Parity plot of the source
model applied to the target dataset
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Prior choice

To use Bayesian inference, a prior distribution is needed:

A Gaussian distribution is assumed for the model parameters:

π(θt) ∼ N (θ̂s , gVar(θ̂s))

g is a scalar, that must be chosen, to adapt prior impact:

θ̂t →
g→0

θ̂s

θ̂t →
g→+∞

θ̂t,ML

A MCMC algorithm is used to obtain source parameters distribution and estimate
θ̂s and Var(θ̂s)
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Experimentation

Experiments are carried out in order to

Find an effective method for the choice of g-value

Compare Bayesian transfer with classical approach

Testing process

Different target sample sizes considered: 5, 10, 15, 20

For each size, 10 random samples tested

For each sample, different value for g: 1, 10, 100, 1000, 10000
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Experimentation

Example for a random sample of size 15:

Training set:

High g-value, with and without
transfer scores are similar (prior
neglected)
When the value of g decreases, the
training score decreases.

Test set:

The score evolution is not
monotonous
A well chosen g-value increases
model quality and conversely a badly
chosen g-value decreases it

100 101 102 103 104

g value

1.5

2.0

2.5

3.0

3.5

4.0

4.5

sc
or
e

Training set
Test set
Bayesian Transfer
Without Transfer

Figure: Example of g-value impact for a random sample
of size 15
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Example of the size 15 random sample

Figure: Parity plot for the size 15 random sample. Left: Without transfer, Center: Bayesian
transfer with g=10, Right: Bayesian transfer with g=1000

Similar results as 15 observations are sufficient to fit a satisfying model, but
improvement with Bayesian transfer with a good g-value
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Example of the size 15 random sample

Zoom [0ppm;100ppm]

Figure: Parity plot for the size 15 random sample. Left: Without transfer, Center: Bayesian
transfer with g=10, Right: Bayesian transfer with g=1000

Similar results as 15 observations are sufficient to fit a satisfying model, but
improvement with Bayesian transfer with a good g-value
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Example of a size 10 random sample

For this application and
model, small designs of 15
observations offer good
results

With less observations, the
classical approach can lead to
really bad model

The Bayesian transfer model
still offers satisfying results
and thus a great improvement

Figure: Parity plot for a random sample of size 10. Left: Without
transfer, Right: Bayesian transfer with g=10
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Choice of g-value

Two approaches tested:

First method: Cross Validation

For a given sample of size nsample :

For each g-value tested, leave one out cross validation is performed on the
training set:

nsample model are fitted using nsample − 1 observations and score is evaluated on the
remaining observation
The mean of the nsample test scores is considered

The value of g with the lowest averaged score is kept

Many model to fit: time consuming

The chosen g-value is not the same for the different designs
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Choice of g-value

Two approaches tested:

Second method: Bound on training score

Idea: The training score starts with the score of the source model with g ≈ 0 and
monotonically reaches the score without transfer as the value of g increases. The aim
is to maximise the prior impact without getting a bad model on the training set.
For a given sample:

Take the lowest g-value so that the training score is lower than the expectation
score

Need to know the performance expectation: source model score on source dataset
is used

The chosen g-value is not the same for the different designs
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Results with cross validation

g chosen using cross
validation

Score improve with Bayesian
transfer, particularly with
small designs

Smallest min-max interval
with Bayesian transfer: less
impacted by design quality

Figure: Score evolution according to sample size. The mean and
the minimum-maximum score range over the 10 samples are
plotted. On the right, a zoom is applied.
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Results with bound on training score

Similar results for the second
method for selecting the
g-value

Both methods provide a good
choice of g

Which one to chose:

Cross validation: time
consuming
Bound on training score:
hyperparameter to fix

Figure: Score evolution for different sample size. On the right, the
different approaches are compared.
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Conclusion

Conclusion:

Bayesian transfer leads to more robust model, less impacted by the design quality
The prediction performance is improved, especially for small designs
A good choice of g is crucial for good performance: the cross-validation method is
recommended

Perspective:

Test more g-value to refine its chosen value
Couple Bayesian transfer with Design of Experiment for ODE based kinetic model
Apply Bayesian transfer on other parametric model and application
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Any questions?

Thanks for your attention!
Löıc IAPTEFF, PhD student at IFP Energie Nouvelles, France
PhD guidance:
Julien JACQUES, Université Lyon 2
Benôıt CELSE, IFPEN
Victor COSTA, IFPEN
Mail: loic.iapteff@ifpen.fr
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