Context	Industrial application	Source modeling	Target modeling	Conclusion
000	0000000		000000000	00

Bayesian Transfer Learning to Improve Predictive Performance of an ODE-Based Kinetic Model

$\label{eq:local_$

¹IFP Energies nouvelles ²Laboratoire ERIC, Université Lyon 2

2022 AIChE Spring Meeting 18th GCPS

Table of contents

Context

- The Challenge
- Transfer Learning
- 2 Industrial application
 - Hydrocracking modeling
 - Hydrotreatment modeling
 - The Data
 - The model

- Source model
- Build the prior
- 4 Target modeling
 - Experimentation
 - Choice of prior
 - Results

AIChE 2022 2 / 26

- Objective: improve process modeling quality and robustness
- Modern industry: lot of data generated but for a new modeling problem, frequently start from zero
- IFPEN example: new catalyst = new model
- \bullet Aim: keep information from older dataset \rightarrow Transfer Learning

Context ○●○	Industrial application	Source modeling	Target modeling	Conclusion 00
Transfer	Learning			

Notations:

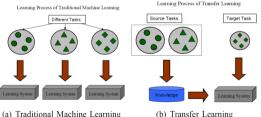
- Domain: D = (X, P(X))
- Task: T = (Y, f)
- Index "s" the source and "t" the target

Transfer Learning¹

Improve the learning of f_t using D_s and T_s when $D_s \neq D_t$ or $T_s \neq T_t$

Transfer Learning approaches:

- Transfer knowledge of instances
- Transfer knowledge of features representation
- Transfer knowledge of parameters



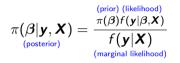
(b) Transfer Learning

¹Pan and Yang, "A Survey on Transfer Learning"

Loïc lapteff et al. (IFPEN)

Bayesian Transfer Learning for Kinetic model

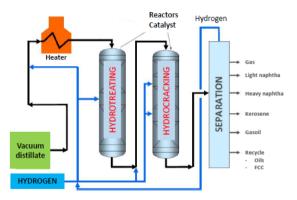
Context ○○●	Industrial application	Source modeling	Target modeling	Conclusion
Bayesian I	nference			



- In Frequentist statistics, β are optimized s.t. the likelihood is maximal.
- In Bayesian statistics, a prior on β is added and the posterior is maximized. It makes it useful for Transfer Learning problems.

The idea: Use as prior the distribution of the parameters learned on source

- Two hydrocracking industrial datasets:
 - Source dataset: from refineries using catalyst (n)
 - Target dataset: from refineries using catalyst (n+1)
- Objective: model the output Diesel Density for the catalyst (n+1)
 - Constraint: few observations for target dataset
 - 12 features used defined by the expert
- Bayesian transfer Learning to use the knowledge from the catalyst (n) to predict (n+1)



Bayesian Transfer Learning for Kinetic model

 $^{^1}$ "Modeling the hydrocracking process with kriging through Bayesian Transfer Learning", 2021 AIChE VirtualSpring Meeting 🗈 + < 🗄 + - 🛬 - 🚽

Results

- Models used: kriging and linear model
- The prior distribution is fitted using the source dataset
- The Bayesian transfer method:
 - Reduce the number of required observations to fit model of good quality
 - Increase model predictive performance

Comparison of Bayesian transfer Learning and classical approaches:

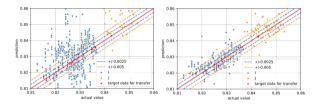


Figure: Results of Linear model for a sample of 20 target observations (left: without transfer, right: Bayesian approach

 $^{^{-1}}$ "Modeling the hydrocracking process with kriging through Bayesian Transfer Learning", 2021 AIChE Virtual Spring Meeting 🗈 + 4 🖹 + - 🛬 - 4

Context 000	Industrial application	Source modeling	Target modeling	Conclusion 00
Work in	studv			

- Aim: Model the Nitrogen content after Hydrotreatment stage
- Model used: ODE based Kinetic model
- Bayesian transfer method available for every parametric model: Method: use of Bayesian transfer to improve the model quality with few data
- Two datasets from pilot units:
 - Source: from "old" catalyst
 - Target: from "new" catalyst

Context 000	Industrial application	Source modeling	Target modeling 00000000	Conclusion 00
Data Pres	sentation			

Source Dataset

- 144 observations
- Aim: fit a good model to use parameters distribution as prior

Target Dataset

- 126 observations
- Aim: fit a good model when few observations are available

Outlier detection: Local outlier factor Loic lapteff et al. (IFPEN) The features:

- *LHSV*: Liquid Hourly Space Velocity, inverse of the residence time *t*
- T: Temperature of the hydrotreating reactor
- ppH₂: Hydrogen partial pressure
- *TMP*: Weighted average of the simulated distillation: $TMP = \frac{1}{7}(FEED_DS05 + 2 \times FEED_DS50 + 4 \times FEED_DS95)$
- N₀: Nitrogen content in feedstock
- S_0 : Sulfur content in feedstock
- *Res*₀: Resines content in feedstock
- N: Nitrogen content after hydrotreating (to be predicted)

Context	Industrial application	Source modeling	Target modeling	Conclusion
	0000000			
The mo	al al			
I he mo	del			

• ODE based kinetic model:

$$\frac{dN}{dt} = -k_0 \frac{exp(-\frac{E_a}{R_g}(\frac{1}{T} - \frac{1}{Tref}))(\frac{ppH_2}{ppH_{2,ref}})^m N^n}{(1 + A_0 Res_0)(1 + \frac{C_0 N_0}{1 + S_0})} \times (1 - u \cdot exp(-\frac{b}{R_g}(\frac{1}{T} - \frac{1}{Tref}))(\frac{ppH_2}{ppH_{2,ref}})^a(\frac{TMP}{TMP_{ref}})^v N^t).$$

where $\theta = (k_0, E_a, m, n, a, b, A_0, C_0, u, t, v)$ are the parameters to be optimized

• Boundary for parameters value to keep a physical sense

• Score to minimize:
$$\sum_{i=1}^{K} \frac{(\hat{y}_i - y_i)^2}{\max(5, y_i)}$$

Context 000	Industrial application	Source modeling	Target modeling	Conclusion 00
Statistical r	nodel			

In order to perform Bayesian inference, need to have a statistical model:

where $f_{\theta}(\cdot)$ is the solution of the differential equation (1) Heteroscedastic model is considered and expression of σ_i must be chosen to fit with the cost function $\sum_{i=1}^{K} \frac{(f_{\theta}(\mathbf{x}_i) - y_i)^2}{\max(5, y_i)}$

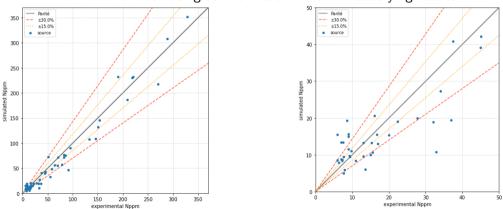
Context 000	Industrial application ○○○○○○●	Source modeling	Target modeling 00000000	Conclusion 00
Statistical m	odel			
With $\mathbf{\Sigma} = igg($	$\begin{pmatrix} \sigma_1^2 & 0 \\ & \ddots & \\ 0 & \sigma_K^2 \end{pmatrix}$	we obtain:		
	$p(oldsymbol{y} oldsymbol{X},oldsymbol{ heta})$	$\sim~\mathcal{N}(\mathit{f}_{m{ heta}}(m{X}),m{\Sigma})$		
		\propto exp $(-rac{1}{2}(oldsymbol{y}-f_{oldsymbol{ heta}}(oldsymbol{X}))^Toldsymbol{\Sigma}^-$	$^{-1}(oldsymbol{y} - f_{oldsymbol{ heta}}(oldsymbol{X})))$	
	$oldsymbol{ heta}_{ML}$	$\propto exp(-\frac{1}{2}(\mathbf{y} - f_{\theta}(\mathbf{X}))^{T} \mathbf{\Sigma}^{-1})$ $= argmin \frac{1}{2}(\mathbf{y} - f_{\theta}(\mathbf{X}))^{T} \mathbf{\Sigma}^{-1}$	$^{-1}(oldsymbol{y}-oldsymbol{f}_{oldsymbol{ heta}}(oldsymbol{X}))$	
		$= \operatorname{argmin}_{\theta} \sum_{i=1}^{K} \frac{(y_i - f_{\theta}(\boldsymbol{x}_i))^2}{\sigma_i^2}$	2	

With $\sigma_i^2 = \sigma \cdot max(5, y_i)$, σ unknown, the maximum likelihood estimator θ_{ML} minimizes $\sum_{i=1}^{K} \frac{(f_{\theta}(x_i) - y_i)^2}{max(5, y_i)}$

Loïc lapteff et al. (IFPEN)

AIChE 2022 12 / 26

Context 000	Industrial application	Source modeling ●००	Target modeling	Conclusion 00
Fitted source	e model			



The model is fitted using source dataset and offer satisfying results:

Figure: Parity plot of the fitted source model. A zoom is applied on the right.

ヘロト 人間 ト ヘヨト ヘヨト

Context 000	Industrial application	Source modeling ○●○	Target modeling	Conclusion 00
Source m	odel on target data	set		

The source model is tested on the target dataset:

- Prediction higher than actual value: new catalyst more active
- Model readjustment needed
- Aim: use few target observations to fit the target model with the help of source knowledge

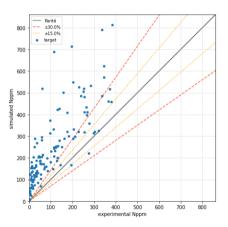


Figure: Parity plot of the source model applied to the target dataset

Context 000	Industrial application	Source modeling ○○●	Target modeling	Conclusion 00
Prior choice				

To use Bayesian inference, a prior distribution is needed:

• A Gaussian distribution is assumed for the model parameters:

$$\pi(oldsymbol{ heta}_t) ~\sim~ \mathcal{N}(\hat{oldsymbol{ heta}}_s, extsf{gVar}(\hat{oldsymbol{ heta}}_s))$$

• g is a scalar, that must be chosen, to adapt prior impact:

$$egin{array}{ccc} \hat{ heta}_t & o & \hat{ heta}_s \ g o 0 & \hat{ heta}_s \end{array} \ \hat{ heta}_t & o & \hat{ heta}_{t,ML} \end{array}$$

• A MCMC algorithm is used to obtain source parameters distribution and estimate $\hat{\theta}_s$ and $Var(\hat{\theta}_s)$

Context 000	Industrial application	Source modeling	Target modeling ●00000000	Conclusion 00
Experime	ntation			

Experiments are carried out in order to

- Find an effective method for the choice of g-value
- Compare Bayesian transfer with classical approach

Testing process

- Different target sample sizes considered: 5, 10, 15, 20
- For each size, 10 random samples tested
- For each sample, different value for g: 1, 10, 100, 1000, 10000

Context 000	Industrial application	Source modeling	Target modeling 0●0000000	Conclusion 00
Experimer	ntation			

Example for a random sample of size 15:

- Training set:
 - High g-value, with and without transfer scores are similar (prior neglected)
 - When the value of g decreases, the training score decreases.
- Test set:
 - The score evolution is not monotonous
 - A well chosen g-value increases model quality and conversely a badly chosen g-value decreases it

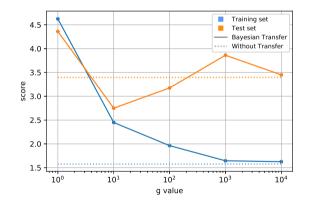
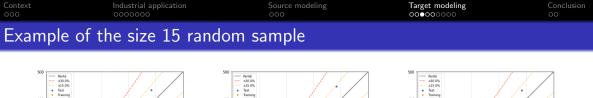


Figure: Example of g-value impact for a random sample of size 15



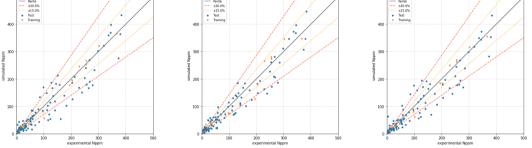


Figure: Parity plot for the size 15 random sample. Left: Without transfer, Center: Bayesian transfer with g=10, Right: Bayesian transfer with g=1000

• Similar results as 15 observations are sufficient to fit a satisfying model, but improvement with Bayesian transfer with a good g-value

Loïc lapteff et al. (IFPEN)

Bayesian Transfer Learning for Kinetic model

AIChE 2022 18 / 26

Context
oooIndustrial application
ooooooSource modeling
oooTarget modeling
oooooooConclusion
ooExample of the size 15 random sample

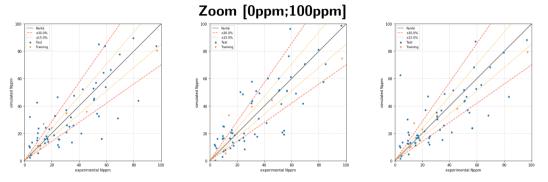


Figure: Parity plot for the size 15 random sample. Left: Without transfer, Center: Bayesian transfer with g=10, Right: Bayesian transfer with g=1000

• Similar results as 15 observations are sufficient to fit a satisfying model, but improvement with Bayesian transfer with a good g-value

Loïc lapteff et al. (IFPEN)

Bayesian Transfer Learning for Kinetic model

AIChE 2022 19 / 26

 Context
 Industrial application
 Source modeling
 Target modeling
 Conclusion

 000
 0000000
 000
 000
 000
 000

Example of a size 10 random sample

- For this application and model, small designs of 15 observations offer good results
- With less observations, the classical approach can lead to really bad model
- The Bayesian transfer model still offers satisfying results and thus a great improvement

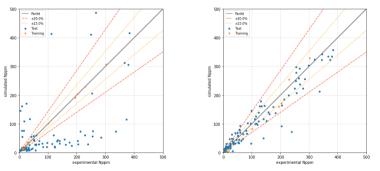


Figure: Parity plot for a random sample of size 10. Left: Without transfer, Right: Bayesian transfer with g=10

Context 000	Industrial application	Source modeling	Target modeling ○○○○○●○○○	Conclusion 00
Choice of g-v	value			

Two approaches tested:

First method: Cross Validation

For a given sample of size n_{sample} :

- For each g-value tested, leave one out cross validation is performed on the training set:
 - n_{sample} model are fitted using $n_{sample} 1$ observations and score is evaluated on the remaining observation
 - The mean of the n_{sample} test scores is considered
- The value of g with the lowest averaged score is kept
- Many model to fit: time consuming

The chosen g-value is not the same for the different designs

Context 000	Industrial application	Source modeling	Target modeling ○○○○○○●○○	Conclusion 00
Choice of g-value				

Two approaches tested:

Second method: Bound on training score

Idea: The training score starts with the score of the source model with $g \approx 0$ and monotonically reaches the score without transfer as the value of g increases. The aim is to maximise the prior impact without getting a bad model on the training set. For a given sample:

- Take the lowest g-value so that the training score is lower than the expectation score
- Need to know the performance expectation: source model score on source dataset is used

The chosen g-value is not the same for the different designs

Context 000	Industrial application	Source modeling	Target modeling ○○○○○○●○	Conclusion 00
Results w	with cross validation			

- g chosen using cross validation
- Score improve with Bayesian transfer, particularly with small designs
- Smallest min-max interval with Bayesian transfer: less impacted by design quality

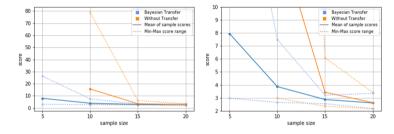


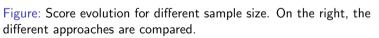
Figure: Score evolution according to sample size. The mean and the minimum-maximum score range over the 10 samples are plotted. On the right, a zoom is applied.

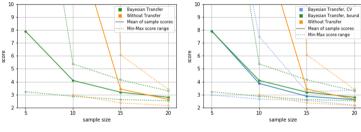
イロト イヨト イヨト イヨ

Context 000	Industrial application	Source modeling	Target modeling ○○○○○○○●	Conclusion

Results with bound on training score

- Similar results for the second method for selecting the g-value
- Both methods provide a good choice of g
- Which one to chose:
 - Cross validation: time consuming
 - Bound on training score: hyperparameter to fix





イロト 不得下 イヨト イヨト

Context 000	Industrial application	Source modeling	Target modeling	Conclusion •o
Conclusion				

• Conclusion:

- Bayesian transfer leads to more robust model, less impacted by the design quality
- The prediction performance is improved, especially for small designs
- A good choice of g is crucial for good performance: the cross-validation method is recommended
- Perspective:
 - Test more g-value to refine its chosen value
 - Couple Bayesian transfer with Design of Experiment for ODE based kinetic model
 - Apply Bayesian transfer on other parametric model and application

AIChE 2022

25 / 26

Context 000	Industrial application	Source modeling	Target modeling	Conclusion ⊙●
Any question	ns?			

Thanks for your attention!

Loïc IAPTEFF, PhD student at IFP Energie Nouvelles, France PhD guidance: Julien JACQUES, Université Lyon 2 Benoît CELSE, IFPEN Victor COSTA, IFPEN Mail: loic.japteff@ifpen.fr