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Abstract

The multivariate Hawkes process is a past-dependent point process used to model the
relationship of event occurrences between different phenomena. Although the Hawkes process
was originally introduced to describe excitation effects, which means that one event increases
the chances of another occurring, there has been a growing interest in modelling the opposite
effect, known as inhibition. In this paper, we focus on how to infer the parameters of a
multidimensional exponential Hawkes process with both excitation and inhibition effects. Our
first result is to prove the identifiability of this model under a few sufficient assumptions. Then
we propose a maximum likelihood approach to estimate the interaction functions, which is,
to the best of our knowledge, the first exact inference procedure in the frequentist framework.
Our method includes a variable selection step in order to recover the support of interactions
and therefore to infer the connectivity graph. A benefit of our method is to provide an explicit
computation of the log-likelihood, which enables in addition to perform a goodness-of-fit test
for assessing the quality of estimations. We compare our method to standard approaches,
which were developed in the linear framework and are not specifically designed for handling
inhibiting effects. We show that the proposed estimator performs better on synthetic data
than alternative approaches. We also illustrate the application of our procedure to a neuronal
activity dataset, which highlights the presence of both exciting and inhibiting effects between
neurons.

Keywords: Non-linear Hawkes process, point process, maximum likelihood estimation,
identifiability, support recovery, goodness-of-fit.

1 Introduction
A Hawkes process is a point process in which each point is commonly associated with event oc-
currences in time. In this past-dependent model, every event time impacts the probability that
other events take place subsequently. These processes are characterised by the conditional inten-
sity function, seen as an instantaneous measure of the probability of event occurrences. Since their
introduction in Hawkes (1971), Hawkes processes have been applied in a wide variety of fields, for
instance in seismology (Ogata, 1988), social media (Rizoiu et al., 2017), criminology (Olinde and
Short, 2020) and neuroscience (Reynaud-Bouret et al., 2018).

The multidimensional version of this model, referred to as the multivariate Hawkes process,
describes the appearance of different types of events, the occurrences of which are influenced by
all past events of all types. Each interaction between two types of events is encoded in kernel
functions, also called interaction functions. Originally this model takes only into account mutually
exciting interactions - an event increases the chances of others occurring - by assuming that all
kernel functions are non-negative. A specificity of self-exciting Hawkes processes is their branching
structure, also known as cluster structure. Introduced in Hawkes and Oakes (1974), this parallel
between Hawkes processes and branching theory has provided the first theoretical background
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for the self-exciting Hawkes model, in particular existence and expected number of points on
a finite interval. Estimation methods in the literature are vast including maximum likelihood
estimators (Ozaki, 1979; Guo et al., 2018) and method of moments (Da Fonseca and Zaatour,
2013). Nonparametric approaches include an EM procedure introduced in Lewis and Mohler
(2011), estimations obtained via the solution of Wiener-Hopf equations (Bacry and Muzy, 2016) or
by approximating the process through autoregressive models (Kirchner, 2017) or through functions
in reproducing kernel Hilbert spaces (Yang et al., 2017).

Although the self-exciting Hawkes process remains widely studied, there has been a growing
interest in modeling the opposite effect, known as inhibition, in which the probability of observing
an event is lowered by the occurrence of certain events. In practice, this amounts to considering
negative kernel functions. In order to maintain the positivity of the intensity function, a non-linear
operator is added to the expression which in turns entails the loss of the cluster representation.
This model known as the non-linear Hawkes process was first presented in Brémaud and Massoulié
(1996), where existence of such processes was proved via construction using bi-dimensional marked
Poisson processes. Such approach of analysis has been used in the literature as in Chen et al. (2017),
where a coupling process is established and leveraged to obtain theoretical guarantees on cross-
analysis covariance. Another approach is presented in Costa et al. (2020), where renewal theory
allows to obtain limit theorems for processes with bounded support kernel functions. Estimation
methods focus mainly on nonparametric methods for general interactions and non-linear functions,
as found in Bacry and Muzy (2016); Sulem et al. (2021).

In the last years, alternative models have been designed in order to take into account inhibiting
effects in Hawkes processes. An example is the neural Hawkes process, presented in Mei and Eisner
(2017); Zuo et al. (2020), which combines a multivariate Hawkes process and a recurrent neural
network architecture. In Duval et al. (2022), a multiplicative model considers two sets of neuronal
populations, one exciting and another inhibiting, and each intensity function is the product of two
non-linear functions (one for each group). Another model is presented in Olinde and Short (2020)
and called self-limiting Hawkes process. It includes the inhibition as a multiplicative term in front
of a the traditional self-exciting intensity function.

In this paper, we present a maximum likelihood estimation method for multivariate Hawkes
processes with exponential kernel functions, that works for both exciting and inhibiting interac-
tions, as modelled by Brémaud and Massoulié (1996); Chen et al. (2017). This work builds upon
the methodology for the univariate case, presented in Bonnet et al. (2021), by focusing in the
intervals where the intensity function is positive. We show that, under a weak assumption on the
kernel functions, these intervals can be determined exactly. We can then write for each dimension
the integral of the intensity function, known in the literature as the compensator, which in turn
provides an explicit expression of the log-likelihood. This enables to build the corresponding max-
imum likelihood estimator and we complete our procedure with a variable selection step to recover
the significant interactions within the whole process. This is of particular interest since it provides
a graphical interpretation of the model and it can also be used a reduction dimension tool. Our
numerical procedure is implemented in Python and freely available on GitHub.1 As a by-product
of our method, the closed-form expression of the compensator also allows to assess goodness-of-fit
via the Time Change Theorem and multiple testing. We carry out a numerical study on simulated
data and on a neuronal activity dataset (Petersen and Berg, 2016; Radosevic et al., 2019). The
performance of our approach is compared to estimations obtained via approximations from Bacry
et al. (2020) and Lemonnier and Vayatis (2014), and we show that our method not only achieves
better estimations but is capable of identifying correctly the interaction network of the process.

To outline this paper, Section 2 presents the multivariate Hawkes process framework and reviews
the literature regarding inference of non-linear Hawkes processes. In Section 3, we detail our
procedure, including the maximum likelihood estimation, variable selection and goodness-of-fit
test to assess the quality of the estimations. We also address the question of identifiability of
the model, that we prove under a few sufficient conditions. The whole procedure is illustrated on
simulated data in Section 4 and applied to a neuronal activity dataset in Section 5. In Section
6 we discuss our contributions and its current limitations along with interesting perspectives for
future work.

1https://github.com/migmtz/multivariate-hawkes-inhibition
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2 The multivariate Hawkes process

2.1 Definition
Amultivariate Hawkes processN = (N1, N2, . . . , Nd) of dimension d is defined by d point processes
on R∗+, denoted N i : B(R∗+)→ N, where B(R∗+) is the Borel algebra on the set of positive numbers.

Each process N i can be characterised by its associated event times
(
T ik
)
k
and its conditional

intensity function, defined for all t ≥ 0 by

λi(t) =

µi +

d∑
j=1

∫ t

0

hij(t− s) dN j(s)

+

=

µi +

d∑
j=1

∑
T jk≤t

hij(t− T jk )

+

, (1)

where x+ = max (0, x). Here, the quantity µi ∈ R∗+ is called the baseline intensity and each
interaction or kernel function hij : R∗+ → R represents the influence of the process N j on the
process N i and T jk corresponds to the k-th event time of process N j .

Remark 2.1. The positive-part function in Equation (1) is needed to ensure the non-negativity
of λi in the presence of strong inhibiting effects, that is when some interaction functions hij are
sufficiently negative compared to positive contributions. Concretely, the positive part does not affect
the intensity function if inhibiting effects are in minority compared to the positive contributions
(exciting effects or baseline intensities).

Remark 2.2. Equation (1) may question the reader for two reasons. First, it is the cadlag
definition of a the conditional intensity of a Hawkes process. It’s our choice to prefer it to the caglad
version but all the results presented here can be written in this setting. Second, it is considered
that the history is empty for t < 0. It is a common choice for statistical inference (a finite amount
a times is observed) while the infinite history is preferred for a probabilistic analysis based on a
stationary assumption.

For each process N i and for all t ≥ 0, let us note N i(t) =
∑
k≥1 1T ik≤t the measure of (0, t] and

the compensator

Λi(t) =

∫ t

0

λi(u) du .

The process N can be seen as a point process on R∗+, where for any B ∈ B(R∗+), N(B) =∑d
i=1N

i(B). Similarly to a univariate process, N can be characterised by its conditional intensity
λ (also called total intensity):

λ(t) =

d∑
i=1

λi(t) , (2)

and by its compensator

Λ(t) =

∫ t

0

λ(u) du =

d∑
i=1

Λi(t) .

From this point of view, the process N is associated to event times
(
T(k)

)
k

=
(
Tmkuk

)
k
, corre-

sponding to the ordered sequence composed of
⋃d
i=1{T ik | k > 0}, and we may define, for every

t ≥ 0, N(t) =
∑
k≥1 1T(k)≤t =

∑d
i=1N

i(t). Here, (uk)k is the random ordering sequence and (mk)k
the sequence of marks that make it possible to identify to which dimension each time corresponds.
These marks can be written as

mk =

d∑
j=1

j1Nj({T(k)})=1 .

Remark 2.3. A more detailed introduction of multivariate point processes via the concept of
marked point processes can be found in (Daley and Vere-Jones, 2003, Chapter 6.4)
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As the aim of this paper is to describe a practical methodology for estimating the conditional
intensities λ1, . . . , λd via maximising the log-likelihood, the latter quantity has to be made explicit.
Let t ≥ 0 and assume that event times

{
T ik : 1 ≤ k ≤ Ni(t), 1 ≤ i ≤ d

}
are observed in the interval

(0, t]. Then, given a parametric model P = {(λ1θ1 , . . . , λ
d
θd

) : θ = (θ1, . . . , θd) ∈ Θ1 × · · · × Θd}
(and associated compensators Λ1

θ1
, . . . ,Λdθd) for conditional intensity functions λ1, . . . , λd, for every

θ ∈ Θ, the log-likelihood `t(θ) reads (Daley and Vere-Jones, 2003, Proposition 7.3.III.)

`t(θ) =

d∑
i=1

`it(θi) ,

with

`it(θi) =

Ni(t)∑
k=1

log λiθi(T
i−
k )− Λiθi(t) , (3)

where λiθi(T
i−
k ) = limt→T i−k

λiθi(t) and with convention log (x) = −∞ for x ≤ 0.
The heart of the problem in deriving a maximum likelihood estimator for the conditional

intensities λi is being able to evaluate exactly the compensator values Λiθ(t) for every possible θ ∈ Θ,
which requires to determine when the conditional intensities λi are non-zero. The forthcoming
sections clear this point up.

2.2 Related work
Estimation methods for Hawkes processes have focused mainly on self-exciting interactions (by
assuming hij ≥ 0). In Ozaki (1979), the author presents the maximum likelihood estimation
method for univariate processes with exponential kernel h(t) = αe−βt (α > 0, β > 0), the same
method being established in Mishra et al. (2016) for the power law kernel function h(t) = αβ

(1+βt)1+γ

(α > 0, β > 0, γ > 0). In Chen et al. (2018) the maximum likelihood method is presented for
the multivariate version with exponential kernel, while Bacry et al. (2020) proposed an inference
method based on optimising a least-squares criterion. Other methods in the parametric setting
include spectral analysis (Adamopoulos, 1976), EM algorithm (Veen and Schoenberg, 2008) and
method of moments (Da Fonseca and Zaatour, 2013).

Estimators of the interaction functions hij are also presented in a nonparametric setting. For in-
stance, Yang et al. (2017) proposed to estimate hij in a reproducing kernel Hilbert space. Reynaud-
Bouret et al. (2014) proposed a decomposition of the interaction functions hij on a histogram basis
with bounded support, the estimation of which are obtained by minimising a least-squares contrast.
Hawkes processes with excitation have also been studied in a Bayesian context, with likelihood-
based approaches, as in Rasmussen (2013) for the univariate case and in Donnet et al. (2020) for
multivariate processes.

Although inhibiting effects in Hawkes processes were first mentioned in Brémaud and Massoulié
(1996), they have only met a growing interest in the last decade. Concerning inference, most of
the known methods are not designed for handling the inhibiting case: nevertheless some are able
in practice to estimate negative interactions by minimising a least-squares criterion, but without
guaranteeing that the estimated intensity functions remain non-negative (Reynaud-Bouret et al.,
2014; Bacry et al., 2020). A similar approach is proposed in Lemonnier and Vayatis (2014) for
maximum likelihood estimation, where the compensator Λi is approximated by integrating the
conditional intensity λi without the positive part function (see Equation (1)). Obviously, these
methods should perform well when the intensities remain mostly positive, but it is unclear how they
will adapt to scenarios when the intensities are frequently equal to zero due to inhibiting terms.
A similar remark is mentioned in Bacry and Muzy (2016) concerning their estimation method,
that can provide negative estimations of the interactions only if there is a negligible chance of the
intensities to be null.

Inference procedures that are specifically dedicated to Hawkes processes with inhibition are
scarcer in the literature. Sulem et al. (2021) presents various results for non-linear Hawkes processes
including inhibition effects: existence, stability and Bayesian estimation for kernel functions with
bounded support. Deutsch and Ross (2022) presents choices of priors for Bayesian estimation
based on a new reparametrisation of the process.
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Lastly, Bonnet et al. (2021) presents a maximum likelihood estimation adapted to the univariate
Hawkes process with inhibition and monotone kernel functions. The decisive contribution of this
work is to give, for an exponential kernel h(t) = αe−βt (α ∈ R, β > 0), a closed-form expression of
restart times, which are defined as the instants at which the single conditional intensity becomes
non-zero. This makes possible to compute explicitly the compensator and then the log-likelihood.
Yet, this study is limited to the univariate case. It has to be noted that a formalism similar to
Bonnet et al. (2021) for multivariate Hawkes processes is mentioned in Deutsch and Ross (2022),
but used neither for maximum likelihood estimation, nor for goodness-of-fit tests.

This paper goes a step forward in estimation of multivariate Hawkes processes with inhibition,
by providing the first exact maximum likelihood method for exponential interactions hij(t) =
αije

−βijt, combined with a variable selection procedure. As it will be explained in the next section,
the proposed approach also enables to perform standard goodness-of-fit tests.

3 Estimation and goodness-of-fit

3.1 Introductive example
Before motivating and explaining the estimation procedure proposed in this paper, we present an
example of multivariate Hawkes process. Figure 1 depicts in red conditional intensities λ1 and λ2
for a realisation of a 2-dimensional Hawkes process (see the forthcoming section for the definition
of underlying intensities). The existence of such a process (along with its stationarity) is ensured
by controlling the spectral radius ρ(S+) < 1 of the matrix S+ = (‖h+ij‖1)ij (Deutsch and Ross,
2022). Similar results with slightly different conditions can be found in Brémaud and Massoulié
(1996) and Sulem et al. (2021). The simulation has been carried out with baselines µ1 = 0.5 and
µ2 = 1.0, and with exponential kernels hij(t) = αije

−βijt parameterised by:(
α11 α12

α21 α22

)
=

(
−1.9 3.0
0.9 −0.7

)
, and

(
β11 β12
β21 β22

)
=

(
2.0 20.0
3.0 2.0

)
.

These kernels have been chosen such that both processes are self-inhibiting (α11, α22 < 0) but
inter-exciting (α12, α21 > 0).

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

1

0

1

2

3

1

T(1) T(3)

Underlying intensity
Conditional intensity

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
t

1

0

1

2

3

2

T(2)

Figure 1: Simulation of a 2-dimensional Hawkes process. Each cross corresponds to an event time,
and each T(k) is shown in its corresponding process.

The goal of this paper is to establish a parametric estimation method, via maximum likelihood
estimation, that is able to handle both excitation and inhibition frameworks in the multivariate
case. For this purpose, it is necessary to compute explicitly the log-likelihood `t(θ) (see Equa-
tion (3)) and in particular to evaluate the compensator Λiθ, expressed as an integral of λiθ. For
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the latter, the main challenge is to determine when conditional intensities λi are non-zero, that
is on which intervals they are tailored by the exponential interaction functions and not by the
positive-part operator.

In Bonnet et al. (2021), the authors solved this challenge for univariate processes by remarking
that the conditional intensity is monotone between two event times. Figure 1 illustrates that this
is not necessarily true for multivariate processes (here, between T(2) and T(3)). This constitutes
the major difficulty we have to cope with.

3.2 Underlying intensity and restart times in the multivariate setting
From now on, let us focus on the exponential model (Hawkes, 1971), where each interaction function
hij is then defined as

hij(t) = αije
−βijt ,

with αij ∈ R and βij ∈ R∗+ for i, j ∈ {1, . . . , d}. For each i ∈ {1, . . . , d}, the underlying intensity
function λi? is defined as in Bonnet et al. (2021) for the univariate case:

λi?(t) = µi +

d∑
j=1

∫ t

0

hij(t− s) dN j(s) .

This quantity coincides with the conditional intensity λi when it is non-zero, and is non-positive
otherwise. In particular, we can observe that λi(t) =

(
λi?(t)

)+ (see Figure 1).
As explained in the previous section, the main difficulty of the multivariate exponential setting

is the non-monotony of conditional intensities λi between two event times. Determining intervals
where λi is non-zero (that is when λi? is positive) would require to numerically find the roots of a
high-degree polynomial, which is expensive and inexact. To alleviate this problem, we introduce
Assumption 1.

Assumption 1. For each i ∈ {1, . . . , d}, there exists βi ∈ R∗+ such that βij = βi for all j ∈
{1, . . . , d}.

Remark 3.1. This model with constant recovery rates βi has been studied before in the works
of Ogata (1981) in the self-exciting version of a 2-dimensional Hawkes process. Intuitively, this
assumption considers the situation where the rate of “dissipation” of any internal or external effect
is dependent only on the receiving phenomenon. For instance, for neuronal interactions, each
activation from neuron j will have an impact on a connected neuron i dependent on both neurons
(αij)ij but the “recovery” time can be assumed to depend only on the connected neuron i (βi)i.

As we will see in Lemma 3.1, this assumption enables to recover the monotony of the conditional
intensities between two times. It remains now to determine when the underlying intensity λi? is
negative. To do so, we define the restart times in the multivariate framework, to be, for any k and
i:

T i?(k) = min
(
inf {t ≥ T(k) : λi?(t) ≥ 0}, T(k+1)

)
.

As exemplified in Figure 2, the restart time T i?(k) (associated to the sub-process i) corresponds
to the first instant between T(k) and T(k+1) from which λi?(t) becomes non-negative (or T(k+1) if
this instant does not exist). Intuitively, it means that λi(t) = λi?(t) on (T i?(k), T(k+1)) and λi(t) = 0

elsewhere on (T(k), T(k+1)). This is formalised in Lemma 3.1. In particular, it appears that the
restart time T i?(k) can be expressed as a function of

T(k) + β−1i log

(
µi − λi?(T(k))

µi

)
,

which is the single root to the equation µi+(λi?(T(k))−µi)e−βi(t−T(k)) = 0 on the interval [T(k),+∞)
when λi?(T(k)) < 0 (see top panel of Figure 2). Then, Proposition 3.1 gives an explicit formulation
of the compensator of each subprocessi N i, which is needed to compute the log-likelihood (see
Equation (3)). The proofs of these two results are presented respectively in Appendix A and
Appendix B.
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1

0

1

2

1

T1
(1) T1

(2) = T1
(3) T1

(4)

Conditional intensity
Underlying intensity
Restart times

T(1) T(2) T(3) T(4)
t

2

1

0

1

2

2

T2
(1) T2

(2) T2
(3) = T2

(4)

Figure 2: Illustration of restart times (T ?(k))1≤k≤4 for each subprocess of a 2-dimensional process
associated with event times (T(k))1≤k≤4.

Lemma 3.1. If Assumption 1 is granted, then for each i ∈ {1, . . . , d} and any k ≥ 1:

T i?(k) = min
(
t?k, T(k+1)

)
. (4)

where

t?k =

(
T(k) + β−1i log

(
µi − λi?(T(k))

µi

)
1{λi?(T(k))<0}

)
Furthermore, for all t ∈ (T(k), T(k+1)),

λi(t) =

{
λi?(t) > 0 if t ∈ (T i?(k), T(k+1))

0 otherwise.

Proposition 3.1. [Compensator for multivariate exponential kernels] Let us suppose that Assump-
tion 1 is granted. For each i ∈ {1, . . . , d} the compensator Λi of the process N i reads, ∀t ≥ 0:

Λi(t) =

{
µit if t < T(1)

µiT(1) +
∑N(t)
k=1 Jk if t ≥ T(1) ,

(5)

where for all integer k ∈ {1, . . . , N(t)}:

Jk = µi

[
min(t, T(k+1))− T i?(k)

]
+ β−1i

(
λi?(T(k))− µi

) [
e−βi(T

i?
(k)−T(k)) − e−βi(min(t,T(k+1))−T(k))

]
.

3.3 Identifiability and likelihood computation
As already mentioned in Section 2, let t ≥ 0 and assume that event times

{
T ik : 1 ≤ k ≤ Ni(t),

1 ≤ i ≤ d} are observed in the interval (0, t]. We consider the parametric exponential model for a
multivariate Hawkes process of dimension d, defined by

P =
{

(λ1, . . . , λd) : λ1 ∈ P1, . . . , λd ∈ Pd
}
,

where for each i ∈ {1, . . . , d}, Pi is the exponential parametric model for the process N i:

Pi =

λiθi =

µi +

d∑
j=1

∫ t

−∞
αije

−βi(t−s) dN j(s)

+

: θi = (µi, αi1, . . . , αid, βi) ∈ Θ

 ,
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where Θ = R?+×Rd×R?+. For a candidate set of intensities (λ1θ1 , . . . , λ
d
θd

), the underlying intensity
functions are denoted λi?θi (i ∈ {1, . . . , d}), the compensators Λiθi and the restart times (T i?θi,(k))k.
Now, given a realisation

(
T(k)

)
k>0

of a multivariate exponential Hawkes process, Theorem 3.1
establishes the correspondence between the conditional intensities and the parameters.

Theorem 3.1 (Identifiability). Let N = (N1, . . . , Nd) be a multivariate Hawkes process defined by
a set of intensity functions (λ1θ1 , . . . , λ

d
θd

) ∈ P, for some θ = (θ1, . . . , θd) ∈ Θd. Let also
(
T(k)

)
k>0

be a realisation of N and Ft be the corresponding filtration.
Let us assume that a.s. for every (i, j) ∈ {1, . . . , d}2, i 6= j, there exist an event time τ from

process N j, and an event time τ+ > τ from process N i, such that:

1. λiθi(τ
−) > 0;

2. there are only events of process N j in the interval [τ, τ+).

Then, for any θ′ ∈ Θd,

∀i ∈ {1, . . . , d}, λiθi(t | Ft) = λiθ′i(t |Ft) a.e. ⇐⇒ θ = θ′ .

The proof is presented in Appendix C. To the best of our knowledge, the only identifiability
result for non-linear multivariate Hawkes processes is given by Sulem et al. (2021) but only if
interaction functions hij have a bounded support. Their proof strongly relies on this assumption
since they extend to the multivariate case the renewal properties proved by Costa et al. (2020)
for non-linear univariate Hawkes processes with a bounded kernel. Their proof also requires some
assumptions to ensure that one process is not totally inhibited, which is also a consequence of the
assumptions that we propose, as discussed in Section 3.4.

As expected, Proposition 3.1 makes it possible to compute explicitly the log-likelihood expressed
in Equation (3) for multivariate exponential Hawkes processes. This is formalised in Corollary 3.1.1
(and proved in Appendix D).

Corollary 3.1.1. Let i ∈ {1, . . . , d} and k ≥ 2 an integer. Let us denote

Sik := T(N(T ik)−1) = T(max{`∈N∗:T(`)<T
i
k}) ,

the time preceding directly T ik, the k
th observation of process N i.

Then, for all θ ∈ Θ, the log-likelihood of process N i reads:

`it(θi) = log µi +

Ni(t)∑
k=2

log
(
µi + (λi?θi(S

i
k)− µi)e−βi(T

i
k−S

i
k)
)
− Λiθi(t) , (6)

where Λiθi is given by Equation (5) and with convention log (x) = −∞ for x ≤ 0.

Algorithm 1 in Appendix E presents the iterative computation of the likelihood using Equa-
tion (6). In particular, the complexity of the computation is O(N(t) × d). It is then possible to
establish the Maximum Likelihood Estimator, which we will refer to as (MLE). These estimators
will be denoted by a tilde: (µ̃i)i, (α̃ij)ij , (β̃i)i and (h̃ij)ij .

3.4 On identifiability conditions
In the previous section we presented a result on the identifiability of multivariate Hawkes process
with inhibition via Theorem 3.1. Let us mention that identifiability of parameters µi and βi do
not require any assumption. The challenge of the proof lies in identifying parameters αij , which
is achieved thanks to Conditions 1 and 2 of Theorem 3.1. Condition 1 allows to control strong
inhibition scenarios by ensuring that each subprocess’ intensity is positive sufficiently often, and
not only at its own event times, while Condition 2 enables to disentangle the contributions of each
subprocess. We believe that these assumptions are only sufficient and could be weakened at the
cost of a more intricate analysis.

In this section we will discuss this set of conditions by providing two examples of parameters
αij that allow to apply this result along with one counter-example.
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3.4.1 Examples for which the conditions are fulfilled

Let us begin with an example of a two-dimensional process. In this situation, as soon as both
processes have an infinite amount of events, Conditions 1 and 2 boil down to finding indexes k ≥ 1
and k′ ≥ 1 such that λ1(T 2

k
−

) > 0 and λ2(T 1
k′
−

) > 0. Indeed, it is then enough to consider
(τ, τ+) = (T 2

k , T
1
N(T 2

k )+1
) for (i, j) = (1, 2) and (τ, τ+) = (T 1

k′ , T
2
N(T 1

k′ )+1
) for (i, j) = (2, 1).

Example 1. Let us assume that N is a two-dimensional Hawkes process with the following matrix
for parameters αij: (

α11 α12

α21 α22

)
=

(
α11 0.0
α21 α22

)
,

such as α11 ≤ 0, α21 ≥ 0 and α22 > 0.
Both processes contain an infinite number of events as process N1 can be seen as a one-

dimensional Hawkes process and the second one has a lower-bounded intensity λ2 > µ2. Now,
since λ2(t) > 0 for all t ≥ 0, we have λ2(T 1

1
−

) > 0. Then, let us first remark that the event times
of process N1 occur independently of N2, as α12 = 0. So, for any event time T 1

` of N1, the restart
times can be written as if N1 was a univariate Hawkes process (see Bonnet et al. (2021)):

T 1?
(`) = T 1

` + β−11 log

(
µ1 − λ1?(T 1

` )

µ1

)
1{λ1?(T 1

` )<0} .

For t > T 1?
(`) small enough, both λ1(t) and λ2(t) are positive, meaning that the next event time

can come either from N1 or from N2. If we consider an infinite sequence of event times, we will
eventually observe an event T 2

k of N2 such that λ1(T 2
k
−

) > 0.

This gives a set of Hawkes processes with inhibition that verify the assumptions of Theorem 3.1.
For higher dimensions, the multiplicity of all possible connections between processes complicates
the study of general cases from a theoretical point of view. Example 2 illustrates a case where the
conditions are fulfilled by considering identically distributed processes.

Example 2. Let us consider a d-dimensional Hawkes process, as well as µ, α+, α−, β such that
for any i and for any j 6= i:

µi = µ > 0 , αii = α− ≤ 0 ,

βi = β > 0 , αij = α+ ≥ 0 .

As each process has the same parameters for µi and βi along with the exact same interactions, all
processes are identically distributed and so in order to verify Conditions 1 and 2 it is enough to
verify them for i = 1 and j = 2.

Fulfilling both conditions amounts to verifying that, with non-zero probability, we can find k ≥ 1
such that:

1. λ1(T 2
k
−

) > 0;

2. T(N(T 2
k )+1) is an event from process N1.

Furthermore, let us notice that as all processes are cross-exciting, if λ1(T 2
k
−

) > 0 for a certain
k, then λ1(t) > 0 for t > T 2

k small enough, so T(N(T 2
k )+1) can come from process N1. It remains

now to verify that with non zero probability λ1(T 2
k
−

) > 0 for a certain k ≥ 1.
But the opposite would entail that almost surely, for all indexes k ≥ 1, λ1(T 2

k
−

) = 0. Yet, as
all processes are identically distributed, this means that, for all j 6= 2, λj(T 2

k
−

) = 0 almost surely.
It would then follow that, for every i and for every j 6= i, for all k > 1, λj(T ik

−
) = 0 almost surely.

Let us consider T i0k for a fixed k and i0. As each process N j for j 6= i is then excited with the
same parameter α+ and they are identically distributed, then λj(T i0k ) are identically distributed
and independent conditionally on history F

T
i0
k
. It follows then that the restart times associated to

T i0k of each process are independent and identically distributed. Consequently, there is a non-zero
probability that at least two processes regenerate at roughly the same time before another time of
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process N i0 (as it self-inhibits). Once that for j0, j1, λj0 and λj1 , are positive, the next event time
may come from either process, and so either λj1(T−

(N(T
i0
k )+1)

) > 0 with T
(N(T

i0
k )+1)

from process

N j0 , or the inverse, which contradicts the fact that for all i, j and for all k > 1, λj(T ik) = 0. So for
at least one pair (i, j) and one k, we must have λj(T ik

−
) > 0 and so it has to occur for all pairs,

in particular (1, 2).

In the next section we present Example 3 of a specific set of parameters for which both conditions
are not necessarily met.

3.4.2 Example where the conditions are not fulfilled

Example 3. Let us consider the Hawkes process defined by the following parameters:(
µ1

µ2

)
=

(
105

0.1

)
,

(
α11 α12

α21 α22

)
=

(
1.0 1.0
−106 −106

)
,

(
β1
β2

)
=

(
1.0

10−5

)
.

The probability that the first event time T(1) is from process N1 is 105/(105 + 0.1) ≈ 1. If the first
event is indeed from process N1, then process N2 is strongly inhibited and in that case the restart
time T 2?

(1)
is equal to

T 2?
(1)

= T1 + 105 log(107) ,

which is very far from T1. As λ1 is lower-bounded by 105, the next candidate of process N1 is
roughly distributed as an exponential random variable with parameter 105 so the next event time
is with high probability of process N1. If this is the case, process N2 is further inhibited, and
with probability going exponentially quickly to 1, all next event times will come from process N1,
preventing us from granting Conditions 1 and 2.

3.5 Recovering the graph of interactions
The aim of this section is to describe methodologies able to estimate non-null interactions between
subprocesses, which boils down to detecting parameters such that αij 6= 0. Recovering interactions
has an interest, first, in providing a graphical interpretation of the Hawkes model, as it describes
which subprocesses are actually connected within the whole process. Moreover, the graph of
interactions can also be used as a reduction dimension tool, for instance if we focus on the dynamic
of one single subprocess, the activity of which can be impacted by a sub-network of surrounding
processes that we want to identify, as investigated in Bonnet et al. (2022) for neuronal activity.

Estimating non-null interactions is a challenging topic, which has been particularly studied for
linear regression (see for instance Tibshirani (1996)). Regarding Hawkes processes with inhibition,
this is even more demanding because of the non-differentiability of the log-likelihood. Therefore,
we propose, in the subsequent sections, two post hoc techniques (i.e. after computing the MLE
estimator) not related to numerical optimization, and additionally, having the benefit to scale
easily to high-dimensional processes.

3.5.1 Thresholding

The first method that will be referred to as (MLE-ε) is obtained by adding a thresholding step to
the classic Maximum Likelihood Estimation (MLE). This is similar to the cumulative percentage of
total variation approach presented in Principal Component Analysis (Joliffe, 2002, Section 6.1.1).
All absolute estimated values |α̃ij | are arranged in increasing order (|α̃(k)|)k∈{1,...,d2}. We compute
then the cumulative sums sk =

∑k
l=1 |α̃(l)| and write S := sd2 the sum of all absolute estimated

values. Then all estimations α̃(k) such that

sk < εS ,

are set to zero, for a threshold ε ∈ (0, 1). Subsequently, all non-null estimations α̃ij are then
re-estimated by maximising the log-likelihood.

The choice of an optimal threshold level ε requires a way of comparing estimations, which is
achieved thanks to the goodness-of-fit procedure described in Section 3.6, and which is illustrated
in Section 4.2.

10



3.5.2 Confidence interval

The second method is applicable when a sample (N1, . . . , Nn) of n realisations of a multivariate
Hawkes process is available. For every i, j, we average all estimations α̃ij over the realisations
N1, . . . , Nn to obtain ᾱij and then we determine a confidence interval around each estimation at a
given confidence level 1− η. Then each estimation for which the confidence interval contains 0 is
set to zero. Subsequently, all non-null estimations α̃ij are re-estimated.

In this paper we consider two different confidence intervals.

• (CfE) corresponds to the empirical interval[
α(b η2nc), α(d(1− η2 )ne)

]
,

where, (α(k))k∈{1,...,n} is the sequence of the sorted estimations of αij , and b·c and d·e are
respectively the floor and the ceiling functions.

• (CfSt) corresponds to [
ᾱij − t1− η2 sn, ᾱij + t1− η2 sn

]
,

where sn is the empirical standard deviation of the sample and t1− η2 is the quantile of
level 1 − η

2 of the Student distribution with n − 1 degrees of freedom. This corresponds to
a confidence interval obtained for normally distributed estimators. For Hawkes processes
with exclusively exciting interactions, estimations obtained through the MLE procedure are
asymptotically normal as proven in (Ogata, 1978, Theorem 5) and as discussed in Laub
(2014). For processes with inhibiting interactions, asymptotic normality is still an open
question but is in all likelihood true. However, one has to be careful when using this estimator,
in particular a small number of observations could imply that the asymptotic normality is
not achieved. In practice, normality can be tested thanks to a Kolmogorov-Smirnov test.

This method of selection through confidence intervals can be seen as testing the following
hypothesis at a confidence level 1− η for every i, j:{

H0 : αij = 0 ,

H1 : αij 6= 0 .

We can then compute the corresponding p-value for each test and set to zero all parameters for
which the null hypothesis is not rejected. As we test d2 different hypotheses, it is essential to
incorporate multiple testing procedures. For this purpose, we choose the Benjamini-Hochberg
method, consisting in adapting the rejection threshold of each p-value. This method enables to
control the false discovery rate (FDR). If we denote V the number of rejected true null hypothesis
and R the number of rejected true alternative hypotheses, the FDR is defined as

FDR = E
[

V

R+ V

]
.

In other words, we control the expected number of true null hypotheses (i.e. parameter αij is
equal to zero) rejected by our testing method. The B-H procedure considers the ordered p-values
(p(k))k∈{1,...,d2} and compares each one to the adapted rejection threshold (1 − η) kd2 . Then, we
determine the largest K ∈ {1, . . . , d2} such that p(K) < (1− η)Kd2 and we reject all hypothesis such
that p(k) ≤ p(K)

3.6 Goodness-of-fit
As a benefit of our approach, it is possible to perform a goodness-of-fit test for assessing the
quality of estimations. This is particularly useful when choosing between several estimations (such
as those introduced before), in particular to choose an optimal level of thresholding for the (MLE-
ε) method. The closed-form expression of the compensator given in Proposition 3.1 enables the
use of the Time Change Theorem for inhomogeneous Poisson processes (Daley and Vere-Jones,
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2003, Proposition 7.4.IV). For any i, the sequence of transformed times (Λi(T ik))k is a realisation
of a homogeneous Poisson process with unit-intensity if and only if (T ik)k is a realisation of a point
process with intensity λi.

We can then define for any θ ∈ Θ the null hypothesis

Hi : “(T ik)k is a realisation of a point process with intensity λiθi”.

The hypothesis is then tested via a Kolmogorov-Smirnov test between the empirical distribution
(Λiθ(T

i
k+1) − Λiθ(T

i
k))k≥1 and an exponential distribution with parameter 1. We obtain then d

different tests with p-values (pi)i≥1. Using multiple testing approaches can help in determining
correctly estimated processes.

Lastly, we can obtain an additional test by considering the entire sequence of times (T(k))k≥1
and the total intensity λ. We obtain then the null hypothesis

Htot : “(T(k))k is a realisation of a point process with intensity λθ”,

with corresponding p-value ptot. This value is obtained by way of a Kolmogorov-Smirnov test
between the empirical distribution of (Λθ(T(k+1)) − Λθ(T(k)))k≥1 and an exponential distribution
with parameter 1, this time using the total compensator of the process.

In the forthcoming sections, this testing procedure is applied to several realisations of event
times, that are independent of the considered estimator. This enables to assess properly the
accuracy of estimations, without knowing the true conditional intensities. This is particularly
interesting for real-world data.

Let us mention that the goodness-of-fit procedure is not only an assessment of the overall fit
between the model and the observations but it provides also a tool to calibrate the threshold for
the (MLE-ε) method. Indeed, for each threshold level ε chosen over a grid, we compute all p-values
(one for each subprocess, one for ptot) and we choose the value of ε that maximises the mean p-
value. For the other two methods, (CfE) and (CfSt), the model selection procedure is described in
Section 3.5.2 and the goodness-of-fit is only performed afterwards in order to establish the quality
of the estimations.

4 Illustration on synthetic datasets

4.1 Simulation procedure
In order to assess the performance of the maximum likelihood estimation method, we simulate
different data by using Ogata’s thinning method (Ogata, 1981). This method consists in defining
a piecewise constant function λ+ such that for any k ≥ 1 and any t ∈ [T(k), T(k+1)), λ+(t) ≥ λ(t).
For this, we define λ+ for any t ∈ [T(k), T(k+1)) as

λ+(t) =

d∑
i=1

µi +

d∑
j=1

∫ t

0

α+
ije
−βi(T(k)−s) dN j(s)

 ,

which corresponds to considering only the positive interactions.
Four different parameter sets are considered: three sets for 2-dimensional Hawkes processes

and a last one for a 10-dimensional process. Table 1 presents the parameters used in Dimension
2. All scenarios contain at least one negative interaction (αij < 0). Scenario (1) is a Hawkes
process where all parameters are non-null whereas Scenarios (2) and (3) are chosen to study the
performance of our methods when estimating null interactions (α12 for Scenario (2) and α21 for
Scenario (3)). All simulations have exactly 5000 event times in total.

In order to carry out the hypothesis testing procedure, we simulate a sample of Hawkes pro-
cesses independent from the one used for the estimation. Each testing sample contains as many
realisations as the estimation sample. All p-values presented in the paper correspond to the average
obtained over all realisations.
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Scenario (1) (2) (3)(
µ1

µ2

) (
0.5
1.0

) (
0.7
1.0

) (
1.2
1.0

)
(
α11 α12

α21 α22

) (
−1.9 3.0
1.2 1.5

) (
0.2 0.0
−0.6 1.2

) (
−1.0 0.1
0.0 −0.8

)
(
β1
β2

) (
5.0
8.0

) (
3.0
2.0

) (
0.3
0.5

)
Table 1: Parameters for simulations of two-dimensional Hawkes processes.

4.2 Proposed methods and comparison to existing procedures
The main focus of this paper is to assess the performance of the maximum likelihood estimator
to correctly detect the interacting functions of our processes without ambiguity, estimators are
denoted with a tilde: (µ̃i)i, (α̃ij)ij , (β̃i)i and (h̃ij)ij . In this paper we propose four methods
previously introduced in Section 3.5:

• (MLE) The estimator obtained by minimising the opposite of the log-likelihood −
∑d
i=1 `

i
t(θ)

(see Equation (6)). The log-likelihood is computed via Algorithm 1 and the minimisation is
done with the L-BFGS-B method (Byrd et al., 1995).

• (MLE-ε) The estimator obtained by adding a thresholding step to the previous method to
determine the non-null estimations. The value of ε is chosen such that it maximises the mean
over all p-values obtained.

• (CfE) The estimator whose support is obtained through the empirical confidence intervals.

• (CfSt) The estimator using Student distributed intervals after verification of normality of the
estimations.

The latter three methods are specially interesting for Scenarios (2) and (3) of the 2-dimensional
processes, and also for the 10-dimensional setting.

Remark 4.1. Another option considered for (MLE-ε) is to use instead the values |α̃ij/β̃i| for the
thresholding. Numerical results slightly differ between the two methods, with the retained method
showing better overall p-values.

For an informative assessment of the proposed approaches, we compare their performance to
estimation methods from the literature. However, up to our knowledge, there is no other parametric
estimation methods designed for inhibiting processes, that is for handling negative values of αij .
As a consequence, we chose to include estimation methods developed for exciting processes, that
are nonetheless able to produce negative estimations of αij . This is the case for three popular
approaches described below.

1. (Approx) The first one (Lemonnier and Vayatis, 2014) is obtained by approaching the com-
pensator Λi(t) (in each log-likelihood `it(θ)) by∫ t

0

λi?(u) du .

In the case where all interactions are positive, this integral is equal to the compensator. The
difference is when interactions are negative as this integral takes into account the negative
values of the underlying intensity function. The minimisation is done in the same way as for
(MLE) using the L-BFGS-B method.
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2. The other two methods minimise the least-squares loss approximation defined in Reynaud-
Bouret et al. (2014); Bacry et al. (2020) as:

Rt(θ) =

∫ t

0

(λθ(u))2 du− 2

t

N(t)∑
k=1

λmkθ (T−(k)) ,

which is an observable approximation of ‖λθ − λ‖2t =
∫ t
0
(λθ(u)− λ(u))2 du up to a constant

term. In Bacry et al. (2020), all interactions are assumed to be positive, however the im-
plemented version of this method in the package tick Bacry et al. (2018) allows to retrieve
negative values. For this, we consider two different kernel functions from this implementation:

• (Lst-sq) hij(t) = αijβije
−βijt, where βij is fixed beforehand by the practitioner. In

practice, we fix βij = βi to be consistent with our model (see Assumption 1). The only
solver in the implementation that provides negative values is BFGS, which is limited
to work with an `2-penalty. The grid of values {1, 10, . . . , 106} is considered for the
regularisation constant. To obtain the best estimation for this method, we choose the
constant that minimises the relative squared error over all estimated parameters.

• (Grid-lst-sq) hij(t) =
∑U
u=1 α

u
ijβ

ue−β
ut, with (βu)u a fixed grid of parameters. In our

case, we choose U = d and the grid contains each parameter βi. Intuitively, by applying
an `1-penalty, this method would be able to retrieve the corresponding parameter βi
for each process. However, in practice, the implementation uses BFGS as optimiser and
is limited to work with an `2-penalty. As for (Lst-sq), the regularisation parameter is
chosen over the grid of values by minimising the relative squared error.

4.2.1 Results on bivariate Hawkes processes

We generate 25 realisations for each parameter set given in Table 1 and we estimate the parameters
for each individual simulation. We begin this comparison by competing the proposed methods with
both (Approx) and (Lst-sq) which are the two methods with the same kernel functions considered
in this paper. Figure 3 displays the relative squared errors for each group of parameters (baselines
(µi)i, interaction terms (αi,j)i,j and delay factors (βi)i) by considering vector norms.

First, we observe that delay factors (βi)i (last column of Figure 3) are similarly estimated by
all approaches. Let us recall that (Lst-sq) is not included in the comparison of delay factors: since
it requires to provide a value for these parameters (they are not estimated), it was given the true
values of (βi)i as input. An alternative offered by tick is to provide a grid of values, but this
approach, denoted (Grid-lst-sq), is included in the comparison at the end of the section because of
its difference with the exponential model considered here.

Then, regarding the baseline intensities (µi)i and the interaction factors (αij)ij , the proposed
methods outperform the two other approaches. In all Scenarios, (MLE-ε), (CfE) and (CfSt) appear
to perform almost identically as they retrieve the same supports and from then, the re-estimations
are the same. In Scenario (2), all estimation methods perform reasonably well. This can be
explained by the weak inhibiting effect of the interaction 1 → 2, leaving the intensity almost
always positive. The slight difference between (MLE-ε) and the confidence intervals comes from
the fact that (MLE-ε) is applied individually to each estimation so for some estimations it does
not set any values to zero.

In Scenario (1), the performance of (Approx) and (Lst-sq) is altered, in particular for the (α̃ij)ij
estimations, because the inhibiting effect is stronger than in Scenario (2). The major changes
appear in Scenario (3), where both (Approx) and (Lst-sq) obtain very high relative errors. More
precisely, they fail to explain the interactions between the two processes (see the estimations (α̃ij)ij
in the middle column of Figure 3), which is compensated by a wrong estimation (µ̃i)i of baseline
intensities. This is not surprising since Scenario (1), and even more Scenario (3), were designed so
that the intensity functions are frequently equal to zero, which induces major differences between
true and underlying intensities. Since (Approx) and (Lst-sq) are both based on assuming that these
two functions are almost equal, the violation of this assumption causes large estimation errors. As
expected, the proposed methods, which are developed to handle such inhibiting scenarios, provide
accurate estimations.
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Figure 3: Boxplots of the relative squared error for each group of parameters ((µi)i, (αi,j)i,j and
(βi)i) for 25 realisations of a two-dimensional Hawkes processes. (Lst-sq) does not appear in the
last column because it is provided with the true values of (βi)i. The proposed methods are (MLE),
(MLE-ε), (CfE) and (CfSt).

These results are confirmed by the outcomes of the goodness-of-fit test displayed in Table 2.
It shows indeed the averaged p-values for each scenario using both the true parameters and all
four estimations from Figure 3 with 25 simulations different from the ones used for estimation. In
particular, we can see that our methods obtain high p-values, being very close to those obtained
using the true parameters. Table 2 also highlights when parameters are incorrectly estimated.
For instance, in Scenario (1), (Approx) correctly estimate Process 2 but provides less accurate
estimations for Process 1 (the p-value is almost half the one obtained with the true parameters),
which is the one characterised by a self-inhibiting behaviour. In addition, at least one of the
proposed methods obtains the highest value for ptot in each scenario, which illustrates the ability
of these procedures to reconstruct the complete process N . Let us note that the very low p-
values obtained by (Approx) and (Lst-sq) for Scenario (3) confirm the ability of the goodness-of-fit
procedure to detect when the parameter estimations strongly differ from the true parameters.

Scenario (1) Scenario (2) Scenario (3)
p-value p1 p2 ptot p1 p2 ptot p1 p2 ptot

True 0.492 0.438 0.430 0.535 0.468 0.479 0.510 0.623 0.338

MLE 0.440 0.442 0.398 0.483 0.461 0.485 0.549 0.638 0.357

MLE-ε
0.440 0.442 0.398 0.488 0.461 0.491 0.549 0.574 0.327CfE

CfSt

Approx 0.257 0.442 0.358 0.483 0.452 0.459 0.0 0.007 0.0
Lst-sq 0.154 0.438 0.392 0.534 0.463 0.478 0.0 0.0 0.0

Table 2: Average p-values for estimations of two-dimensional Hawkes processes for all scenarios.
The values are averaged over 25 simulations. In bold the p-values correspond to a rejected hypoth-
esis at a confidence level of 0.95.

Lastly, let us investigate the estimations obtained via (Grid-lst-sq), which can be used in prac-
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tice as a way to estimate the parameters βi by providing a grid of possible parameters. Let us
mention that both of the previous comparisons (boxplots and p-values) cannot be done here due
to the difference in the number of parameters, but we can compare the methods in terms of re-
constructions h̃ij of the interaction functions hij . For this purpose, we analyse Figure 4, which
represents the estimated interaction functions h̃ij for all methods in Scenario (3). Interestingly,
we see that (Grid-lst-sq) performs similarly to (Lst-sq), while the latter is fed with all true values
(βi)i for each interaction. However, we see that (Grid-lst-sq) suffers from the same difficulties than
(Approx) and (Lst-sq), which was expected since it relies on the same unvalid assumption. Let us
note that we chose to display the results for Scenario (3) since it highlights the main differences
between the compared approaches but the reconstructions for Scenarios (1) and (2) can be found
in Appendix F (Figures 13 and 14).
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Figure 4: Reconstruction of interaction functions hij for Scenario (3) of two-dimensional Hawkes
processes along with all estimated functions h̃ij . The real function is plotted in red and 25 esti-
mations are averaged for each method.

4.2.2 A 10-dimensional Hawkes process

A 10-dimensional Hawkes process is simulated based on a set of parameters corresponding to the
quantities (sign(αij)‖hij‖1)ij = (αij/βi)ij displayed in Figure 5. The chosen parameters fulfil the
existence condition ‖ρ(S+)‖ < 1.

The corresponding estimations α̃ij and β̃i are averaged over 25 realisations and displayed in
Figure 6. The heatmap representation is convenient for high-dimensional processes as it allows us
to see whether the signs of each interaction are well-estimated and whether the null-interactions
are correctly detected.

In this example we decided to keep only (Approx) and (Lst-sq) as comparison methods as
these are the ones with the same parameterisation for the kernel functions. Among the four
methods considered, (Approx) is the only one that wrongly estimates the sign of some interactions,
represented by the black boxes in the second row matrix. (MLE) and (Lst-sq) correctly retrieve
the sign of each interactions but are unable to detect the null interactions: this is not surprising
since (MLE) does not contain a regularisation step and the (Lst-sq) estimator is implemented with
a `2-penalty which does not provide a sparse solution. On the one hand, (MLE-ε) is in this case
quite conservative by setting a single value equal to 0 compared to (MLE). On the other hand, both
confidence intervals methods improve the number of interactions whose sign is correctly estimated.
Interestingly, we see that (CfE) sets more values equal to zero than it should (purple boxes) whereas
(CfSt) denotes the opposite effect by not detecting null interactions (orange boxes). Overall, (CfSt)
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obtains the best results in terms of support recovery and sign estimations by committing only two
errors. Table 3 summarises the p-values for each hypothesis as described in Section 3.6. All of the
proposed methods obtain overall better p-values with no particularly low values, which is not the
case for (Approx) (see p4 and ptot) and for (Lst-sq) (see p8 and p10). Although the p-values all
exceed 5%, they remain substantially smaller than those obtained with the alternative methods.

p-value p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 ptot

True 0.437 0.608 0.435 0.517 0.534 0.45 0.43 0.47 0.533 0.509 0.464

MLE 0.451 0.619 0.399 0.466 0.506 0.464 0.424 0.386 0.45 0.483 0.434

MLE-0.05 0.454 0.622 0.392 0.466 0.505 0.427 0.418 0.392 0.495 0.482 0.432
CfE 0.424 0.532 0.393 0.528 0.532 0.301 0.444 0.427 0.516 0.505 0.439
CfSt 0.452 0.633 0.375 0.474 0.527 0.462 0.431 0.422 0.488 0.493 0.465

Approx 0.411 0.376 0.475 0.077 0.485 0.411 0.3 0.384 0.285 0.436 0.085
Lst-sq 0.422 0.63 0.344 0.456 0.416 0.439 0.411 0.096 0.579 0.157 0.423

Table 3: p-values for estimations of a ten-dimensional Hawkes process. The values are averaged over
25 simulations. ptot corresponds to testing whether the estimated intensity function corresponds
to a multivariate Hawkes process N as defined in Section 3.6.

Finally, we compare the relative squared errors for each group of parameters (see Figure 8).
Similarly to the two-dimensional case, all proposed methods perform significantly better than
alternative approaches regarding the estimation of all parameters. In addition, it can be noticed
that inaccurate estimations of the parameters αij tend to deteriorate the estimations of µi, which
suggests an effect of compensation between these parameters. Regarding the estimator (CfSt),
which shows the best averaged performance, it can be remarked that it also exhibits a large
variance, in particular when estimating βi.

Figure 7 illustrates for (CfST) the ordered p-values for hypothesis H0 : αij = 0.
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Figure 7: Ordered p-values corresponding to support estimation of method (CfSt). Red points
correspond to rejected null hypothesis H0 : αij = 0 and blue points to non-rejected ones.

This can be explained by this estimator providing a very sparse solution (as seen in Figure 6)
and therefore taking into account less observations for estimating the coefficients βi.

An important question for any inference method, especially in a high-dimensional setting, is
its computational cost. Table 4 shows the average estimation time (over 25 realisations), all times
being total estimation time. More precisely, for our 3 model selection methods (MLE-ε), (CfE)
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(MLE-ε), (CfE) and (CfSt).

and (CfSt), it takes into account the total times, including the first (MLE) estimation in addition
to the re-estimation over the support.

MLE MLE-ε CfE CfSt Approx Lst-sq Grid-lst-sq
Computing time 87.6 178.2 147.2 152.2 51.4 1.32 47.7

Table 4: Average computing time in seconds for all estimation methods, averaged over 25 real-
isations of a ten-dimensional Hawkes process. The time shown for (MLE-ε) is the total time of
estimation for 7 different values of ε. Similarly for tick methods, the time is for 7 different levels
of penalisation (as done in the estimations of Section 4.2.1). For the (Grid-lst-sq), we provided a
search grid for βi that contains 12 values, including the true one.

Although the difference between (Lst-sq) and all other methods is substantial, let us recall that
(Lst-sq) requires to be provided with parameters βi, which offers two numerical advantages: it does
not need to optimise for parameters βi which are the more difficult parameters to estimate and it
includes a pre-computation step (of exponential terms) that accelerates all internal computations.
In order to provide a fairer comparison, we include the computing time of the (Grid-lst-sq) method
which can be considered as an alternative for estimating these parameters when given a search grid
for βi (here with 12 values, including the true parameters). As expected, the computational cost of
the MLE method is higher than the alternative approaches (Approx) and (Grid-lst-sq), designed
for the linear model. It remains nevertheless that (Lst-sq) and (Grid-lst-sq) are both implemented
in a compiled language (C++), which is always faster than an interpreted language such as that
used in the proposed package (Python). However, all computation times remain quite reasonable,
even for the methods that include a selection model step.

4.3 Robustness on misspecified models
In this section, we address the question of the robustness of our estimator regarding the misspecifi-
cation of the kernel function. More precisely, we generate a two-dimensional Hawkes process with
power-law kernels, which are commonly used in the literature (Mishra et al., 2016; Ogata, 1988)
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as an alternative to the exponential kernel for modelling a slower convergence to zero. For all i, j
we define the power-law kernel as:

hij(t) =
αijβij

(1 + βijt)1+γ
,

with βij > 0, γ > 0 and αij ∈ R in order to allow inhibition effects. Let us remark that in the
general case each kernel function could be given a different parameter γij but here we fix the same
parameter for all interactions, which is a similar condition as Assumption 1.

We propose to investigate different scenarios in order to model different behaviours. In all
cases, we set the values of αij in order to have both excitation and inhibition effects and the values
of µi as follows: (

µ1

µ2

)
=

(
1.0
1.0

)
,

(
α11 α12

α21 α22

)
=

(
0.1 1.5
1.0 −0.5

)
.

• Scenarios γ : we set (
β11 β12
β21 β22

)
=

(
1.0 1.1
1.2 1.0

)
,

all values being similar in order to be close to Assumption 1. Then we study the effect of
parameter γ which controls how the kernel functions decrease to zero. We set

γ ∈ {2.0, 4.0, 6.0, 8.0} .

• Scenario β : we keep the same values of µi, αij as in Scenarios γ, we fix γ = 4.0 and we
choose very different values of βi,j :(

β11 β12
β21 β22

)
=

(
1.0 2.0
0.1 1.0

)
,

so that Assumption 1 is violated and therefore the intensity function of process N2 is fre-
quently non-monotonous between two event times.

We expect that our estimator should adapt better to Scenarios γ (in particular large values of
γ would correspond to a fast convergence to zero) than to Scenario β.

Figure 9 represents the heatmap for sign(αij)‖hij‖1 = αij/γ and sign(α̃ij)‖h̃ij‖1 = α̃ij/β̃i
as well as whether the type of each interaction is correctly estimated (excitation or inhibition).
We first notice that in most cases, our method is robust enough to differentiate between exciting
and inhibiting interactions, the only errors concerning parameter α11 that is close to zero. For
Scenarios γ, we can observe as expected that the bigger differences are obtained for smaller values
of γ. Although the signs of the interactions are correctly estimated in Scenario β, we can observe
substantial errors regarding the estimations of both α21 and α22.

Table 5 shows the average p-values associated with the goodness-of-fit measure presented in
Section 3.6. It confirms that for all Scenarios γ, the p-values are smaller for smaller values of γ, all
p-values remaining greater than 5%. However, the p-values associated with Scenario β are always
equal to zero, which means that the goodness-of-fit is able to detect that the interactions are not
correctly estimated.

To conclude, if the true model is not too far from an exponential model and Assumption 1
holds, our procedure can adapt and provide reasonable estimations. If not, our estimator cannot
adjust but we are able to detect incorrect estimations thanks to the goodness-of-fit procedure.

5 Application on neuronal data

5.1 Preprocessing and data description
In this section we present the results obtained by our estimation method applied to a collection of
10 trials consisting in the measurement of spike trains of 223 neurons from the lumbar spinal of a
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Figure 9: Top row corresponds to the heatmap sign(αij)‖hij‖1 = αij/γ. Middle row corresponds
to the estimated heatmap sign(α̃ij)‖h̃ij‖1 = α̃ij/β̃i. Bottom row corresponds to errors when
estimating the nature of the interaction. A black box represents a value αij whose sign is wrongly
estimated.

p1 p2 ptot

Scenario γ

γ = 2.0 0.140 0.275 0.068
γ = 4.0 0.484 0.536 0.482
γ = 6.0 0.381 0.503 0.408
γ = 8.0 0.408 0.506 0.330

Scenario β 0.0 0.0 0.0

Table 5: Average p-values for estimations of two-dimensional Hawkes processes for all scenarios
in the misspecified power-law model. The values are averaged over 25 simulations. In bold the
p-values correspond to a rejected hypothesis at a confidence level of 0.95.

red-eared turtle. This data are first presented in Petersen and Berg (2016) and then also analysed
in Bonnet et al. (2022) to study how the activity of a group of neurons impacts the membrane
potential’s dynamic of another neuron. In particular, recovering the connectivity graph allows
to isolate a subnetwork which activity impacts the dynamics of one given neuron. Events were
registered for 40 seconds and in order to take into account eventual stationarity we only consider
the events that took place on the interval [11, 24] (see Bonnet et al. (2022) for further details).
Among all trials, each neuron recording contains between 54 and 4621 event times. Furthermore,
we divide our samples in a training set consisting on all events in half the interval [11, 17.5] and
a test set consisting on the remaining window [17.5, 24], in particular each neuron has at least 15
event times in each set. The training sets are used for obtaining the estimations and the test sets
for performing the goodness-of-fit tests.

5.2 Resampling
As only ten realisations are available, this can obviously limit the performance of both confidence
intervals methods. In order to counter this problem, we perform a resampling method obtained as
follows:

1. We sample 3 realisations at random (N1, N2, N3), without replacement and by taking the
order into account. From now on, we consider that each realisation takes place in the time
interval [0, 6.5] (instead of [11, 17.5]).

2. We cumulate all 3 realisations by considering that process N1 takes place in [0, 6.5] then
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process N2 in [6.5, 13] and finally N3 in [13, 19.5]. This creates a single realisation N in the
interval [0, 19.5].

This approach is proposed in (Reynaud-Bouret et al., 2014, Section 3.4). In our case, we repeat
this process 20 times to obtain another sample of realisations. These new sample will be used for
both the (MLE) method (presented as (resampled-MLE)) and for both (CfE) and (CfSt).

5.3 Goodness-of-fit and multiple testing procedure
Since we are dealing with a high-dimensional setting, it is crucial to account for a multiple testing
correction which is performed through the Benjamini-Hochberg procedure as described in Section
3.5. In this case, the adapted rejection threshold corresponds to 0.05k

d+1 and represented in Figure
10 by a blue line. This is particularly useful in order to determine the best value of ε for (MLE-ε)
as we do not have prior knowledge regarding the sparsity of the neuronal connections.

0 50 100 150 200

10
5

10
4

10
3

10
2

10
1

10
0

MLE
MLE-0.40
MLE-0.60
MLE-0.90
resampled-MLE
CfE
CfSt
Diag
BH-corrected rejection threshold

Figure 10: Ordered p-values for all hypothesis tests Hi and Htot. ptot appears as a cross for each
model (if there appears no cross for one given method, it means that the corresponding ptot is equal
to zero). The blue curve corresponds to the adapted rejection threshold from the B-H procedure,
so all tests whose p-value are under the line are rejected.

Figure 10 shows the ordered p-values for each hypothesis Hi along with hypothesis Htot dis-
played with a bold cross, all total p-values also being summarised in Table 6.

MLE MLE-0.40 MLE-0.60 MLE-0.90 resampled-MLE CfE CfSt Diag
ptot 0.0 0.002 0.004 0.048 0.0 0.053 0.0 0.0

Table 6: Values of ptot for each estimation method for the neuronal dataset. In bold appear the
p-values above the rejection threshold after Benjamini-Hochberg procedure.

We first note that for most methods, the p-values ptot associated with the Htot hypothesis are
either equal to 0 or under the rejection threshold. In particular, it is the case for the MLE-ε
approach for small values of ε (i.e. weak sparsity scenarios) but as we increase the threshold ε, the
p-values appear to increase, with the best estimation being achieved for ε = 0.90.

This suggests that the simpler the model the better p-values we obtain so we decided to include
another approach, named “Diag”, consisting in setting all αij = 0 for i 6= j. This corresponds to
a model where there exists no interaction between neurons and we keep only self-interactions: in
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other words, each neuron is seen as a univariate Hawkes process with three parameters (µi, αii, βi).
Although most hypotheses Hi are not rejected by the method, the total p-value ptot is zero which
suggests that although such a model could explain each dimension individually, it is unable to
explain the neurons’ interactions as a whole interconnected process. Although the total p-values
are generally quite low, they remain above the rejection threshold for (MLE-0.90) and (CfE). Let
us notice that the high value of the best threshold (0.90) is consistent with the (CfE) estimator
that provides an even sparser solution with 4.26% non-null interactions.

Let us also recall that the (CfSt) method relies on the assumption that the MLE estimator is
asymptotically normal. Here we have a low number of repetitions (10 trials) in a high-dimensional
setting where some neurons are rarely observed which could explain why this estimator does not
perform well. Moreover, in this context, a Kolmogorov-Smirnov test of normality is likely to provide
high p-values for such small-sized samples even for non-normal distributions.

Finally, the model that best describes the complete process N is (CfE) with the highest value
for ptot and with almost all hypotheses, including Htot, not rejected. This suggests indeed that
the estimations provided by (CfE) are the best fit for explaining the entire process as well as each
individual subprocess.

5.4 Estimation results
Figure 11 illustrates the obtained estimation for all parameters for the (CfE) method. Let us recall
that the estimation for (CfE) is obtained by using the resampled trials: the support is determined
by using the empirical quantiles confidence intervals after an estimation through (MLE) and then
all parameters are re-estimated over each trial. A single estimation is obtained by averaging over
all trials.

Although the heatmap matrix corresponding to (sign(α̃ij))ij contains only 4.26% of non-null
entries, there remain many significant interactions. Interestingly, among them we detect all types
of interactions: mutual excitation, mutual inhibition, self-excitation, self-inhibition. This supports
the relevance of carefully accounting for inhibition when developing inference procedures.

We also notice that the diagonal contains mostly non-null entries (all but 6), which highlights the
major effect of self-interactions, among which some are negative and some are positive. Although
it is possible that different neurons actually show different patterns, some being self-exciting and
other self-inhibiting, there exists another hypothesis. We might indeed observe a combination of
effects from which we cannot distinguish: on the one hand, a self-exciting behaviour and on the
other hand, a refractory period following a spike during which a neuron cannot spike again. This
could also explain why the order of magnitude of the βi estimations, which describe the duration
until an effect vanishes, is different from a neuron to another. It would be of great interest to
propose another modelling that could account for both effects and thereby helping us to provide
additional information to support or refute this hypothesis.

Another striking phenomenon is the behaviour of neuron 13, which seems to interact with
many other neurons: it contains indeed 69% non-null receiving interactions (row) and 57% non-
null giving interactions (column). Further analysis shows that this neuron spikes only in one out
of ten trials so that it could indicate an inaccurate estimation. However, the p-value associated
with this neuron’s subprocess is not rejected by our goodness-of-fit procedure, which suggests that
the corresponding estimation is actually accurate. Therefore, this neuron could either play central
role among the whole network or be connected to an unobserved neuron with a central role. On
the opposite side, some neurons exhibit only a few connections, in particular there is one neuron
that only receives interactions without giving, while another one gives without receiving.

6 Discussion
In this paper, we proposed a methodology for estimating the parameters of multivariate exponential
Hawkes processes with both exciting and inhibiting effects. Our first contribution was to provide a
few sufficient conditions to ensure the identifiability of a commonly used model. Then we developed
and implemented a maximum likelihood estimator combined with a variable selection procedure
that enables to detect the significant interactions inside the whole process. While our framework
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Figure 11: Heatmap (sign(αij))ij of (CfE) estimation on 223 neurons.

is more general than the usual linear Hawkes model, there remain two main limitations, the first
one being the exponential distribution of the kernels, the second one the assumption that the delay
factors βij only depend on the receiving process N i. If it is essential to assume a parametric form
for the kernel functions in order to maintain the concepts of our approach, it would be of great
interest to consider some extensions to account for potential combined effects, as already mentioned
in Section 5.4. It would be notably relevant to include multi-scale effects or to consider a potential
lag between an event time and its actual impact. Regarding the assumption on the delay factors,
while it is quite standard, it could be a limitation of our approach when considering heterogeneous
phenomena.

Going over this assumption would lead us to explore numerical integration methods and would
considerably increase the computational time of the estimation procedure. This is obviously detri-
mental since, in practice, time sequences are increasingly abundant and large. On the other hand,
improving the computational effectiveness of estimation procedures for Hawkes processes is a cur-
rent direction of research (Bompaire et al., 2018).

Our work focuses on the computational aspects of both maximum likelihood estimation and
variable selection. It is of natural interest to provide further theoretical study of the asymptotic
behaviour of our estimator, as done for exciting Hawkes processes (Guo et al., 2018). This work is
currently under investigation.

Let us also highlight that, because of the physical constraints of the experiment, only a fraction
of the neuronal network is observed, which raises the question of interpretability of the estimated
interactions. Indeed, the latter do not take into account the interactions with neurons that are
outside the observed network. Very recent results tackle the consistency of estimated interactions
in a partially observed network (Reynaud-Bouret et al., 2021). A necessary condition to recover
interactions in the subnetwork requires in particular to have a large number of interactions within
the full network. Regarding the neuronal application, it could be of great interest to further
investigate the interpretability of the inferred interactions and connectivity graph in light of the
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aforementioned work.
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A Proof of Lemma 3.1
In order to prove Lemma 3.1, let us first state a preliminary result.

Lemma A.1. If Assumption 1 is granted, then for each i ∈ {1, . . . , d} and any k ≥ 1:

∀t ∈ [T(k), T(k+1)),

λi?(t) = µi +
(
λi?(T(k)

)
− µi)e−βi(t−T(k)) .

Proof. Let i ∈ {1, . . . , d}. For any k ≥ 1, the underlying intensity function λi? in the interval
[T(k), T(k+1)) can be written:

λi?(t) = µi +

d∑
j=1

Nj(t)∑
`=1

αije
−βij(t−T j` ) .

This function is differentiable in the open interval (T(k), T(k+1)) and we obtain:

(λi?)′(t) = −
d∑
j=1

βij

Nj(t)∑
`=1

αije
−βij(t−T j` ) .

By using Assumption 1 that for all j ∈ {1, . . . , d}, βij = βi ∈ R∗+, we obtain the following
differential equation:

(λi?)′(t) = −βi
(
λi?(t)− µi

)
,

which by solving on the interval gives:

λi?(t) = µi +
(
λi?(T(k))− µi

)
e−βi(t−T(k)) .

Proof of Lemma 3.1. Let i ∈ {1, . . . , d} and k ≥ 1. By Lemma A.1, ∀t ∈ [T(k), T(k+1)):

λi?(t) = µi +
(
λi?(T(k))− µi

)
e−βi(t−T(k)) .

In particular, the derivative of the underlying intensity function is of opposite sign as (λi?(T(k))−
µi). Let us distinguish two cases, referring to Figure 12 for a better understanding:

• If λi?(T(k)) ≥ 0, then,

T i?(k) = T(k) = min
(
T(k), T(k+1)

)
= min

(
t?k, T(k+1)

)
.

If (λi?(T(k))−µi) ≥ 0, then λi? is decreasing and lower-bounded by µi. If (λi?(T(k))−µi) < 0
then λi? is increasing and lower-bounded by zero. In both cases, for any t ∈ (T i?(k), T(k+1)),
λi?(t) > 0 and then λi(t) = λi?(t).

• If λi?(T(k)) < 0, then
(
λi?
(
T(k)

)
− µi

)
< 0 so λi? is strictly increasing and by continuity and

by Lemma A.1, there exists a unique t? > T(k) such that µi+
(
λi?(T(k)

)
−µi)e−βi(t

?−T(k)) = 0.
We obtain:

t? = T(k) + β−1i log

(
µi − λi?(T(k))

µi

)
.

By denoting λi?(T−(k+1)) := limt→T−
(k+1)

λi?(t):

– If λi?(T−(k+1)) > 0, then t? < T(k+1) by strict increasingness and so by definition T i?(k) =

t? = t?k. Lastly, for any t ∈ (T(k), T(k+1)), if t ∈ (T(k), T
i?
(k)], λ

i?(t) ≤ 0 and then
λi(t) = 0, while if t ∈ (T i?(k), T(k+1)), λi?(t) > 0 and then λi(t) = λi?(t).

– If λi?(T−(k+1)) ≤ 0, then by strict increasingness t? > T(k+1) and so T i?(k) = T(k+1). In
this case, for all t ∈ (T(k), T(k+1)), λi?(t) < 0 so λi(t) = 0. Moreover, (T i?(k), T(k+1)) = ∅
so we never have λi(t) = λi?(t).

Combining all scenarios achieves the proof.
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Figure 12: Illustration of three possible scenarios for restart times T i?(k) depending on the sign
of λi?(T(k)) and λi?(T−(k+1)) = limt→T−

(k+1)
λi?(t). The dotted line in the last scenario shows the

equation µi + (λi?(T(k))−µi)e−βi(t−T(k)) = 0 and the term T(k) +β−1i log
(
µi−λi?(T(k))

µi

)
as its only

root.

B Proof of Proposition 3.1
Proof. For each i ∈ {1, . . . , d} and ∀t ≥ 0, with convention T(0) = 0 and T i?(0) = 0:

Λi(t) =

∫ t

0

λi(u) du =

N(t)∑
k=0

∫ T(k+1)

T(k)

λi(u)1u≤t du

=

N(t)∑
k=0

∫ T(k+1)

T i?
(k)

λi?(u)1u≤t du ,

where the last equation comes from Lemma 3.1. Then, for k = 0:∫ T(1)

T i?
(0)

λi?(u)1u≤t du =

∫ T(1)

T i?
(0)

µi1u≤t du

= µi min(t, T(1)) ,

and for every k ∈ {1, . . . , N(t)}, by Lemma A.1:∫ T(k+1)

T i?
(k)

λi?(u)1u≤t du

=

∫ T(k+1)

T i?
(k)

[
µi +

(
λi?(T(k)

)
− µi)e−βi(t−T(k))

]
1u≤t du

=µi

(
min(t, T(k+1))− T i?(k)

)
+ β−1i

(
λi?(T(k))− µi

)(
e−βi(T

i?
(k)−T(k)) − e−βi(min(t,T(k+1))−T(k))

)
.
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C Proof of Theorem 3.1
Proof. We only need to prove that if λiθi(t | Ft) = λiθ′i

(t | Ft) a.e. for every i ∈ {1, . . . , d} then
θ = θ′. In this proof, both intensities are considered with respect to the same filtration Ft so we
will omit it from the rest of the proof.

Let θ, θ′ ∈ Θ. Let us assume that λiθi(t) = λiθ′i
(t) for all t < T . In order to prove equality

between the two parameters we will first prove that µi = µi
′, then βi = β′i and lastly that αij = α′ij

for every i, j.

• For any i, as λiθi(t) = λiθ′i
(t) a.e., then

Λiθi(T(1)) = Λθ′i(T(1))

=⇒ µiT(1) = µi
′T(1)

=⇒ µi = µi
′ .

• For any i, let us choose T(k+1) such that it is an event of process N i. As

P(T(k+1) is an event of N i | FT−
(k+1)

) =
λiθi(T

−
(k+1))

λθ(T
−
(k+1))

,

then λiθi(T
−
(k+1)) > 0. By definition of T i?(k),θ,

T i?(k),θ < T(k+1) a.s. .

Furthermore, λiθi(t) = 0 for t ∈ (T(k), T
i?
(k),θi

) and λiθi(t) > 0 for t ∈ (T i?(k),θi , T(k+1)). Then, as
we assumed that λiθi(t) = λiθ′i

(t) a.e., we can conclude that T i?(k),θi = T i?(k),θ′i
. By differentiating

the intensity functions on the interval (T i?(k),θi , T(k+1)) as in the proof of Lemma 3.1 we obtain:

(λiθi)
′(t) = (λiθ′i)

′(t) a.e.

=⇒ − βi(λiθi(t)− µi) = −β′i(λiθ′i(t)− µi) a.e.

=⇒ (βi − β′i)(λiθi(t)− µi) = 0 a.s.

=⇒
∫ T(k+1)

T i?
(k),θ

(βi − β′i)(λiθi(t)− µi) dt = 0

=⇒ (βi − β′i)
∫ T(k+1)

T i?
(k),θ

(λiθi(t)− µi) dt = 0 .

Additionnally, |λiθi(t) − µi| > 0 a.s. for all t ∈ (T i?(k),θi , T(k+1)) as λiθi is monotone and
converges to µi. Then it follows that the integral is non-zero and so βi = β′i.

• Let us prove the equality αij = α′ij . By the assumption made on the event times, for any i, j
with i 6= j, there exists two event times τ < τ+ with τ an event time from process Nj and
τ+ an event time from process Ni such that:

1. λiθi(τ
−) > 0;

2. there are only events of process N j in the interval [τ, τ+).

Let τ and τ+ be two such event times. As a reminder, T(N(τ)−1) corresponds to the event
time before τ and similarly for τ+. For t ∈ [T(N(τ)−1), τ), as λiθi(t) = λiθ′i

(t) a.e. and by
Condition 1:

λi?θi(τ
−) = λi?θ′i(τ

−) .
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By using the following equalities (proven in the previous points of the proof)

µi = µi
′ , βi = β′i ,

T i?(N(τ)−1),θi = T i?(N(τ)−1),θ′i
,

it follows that

λi?θi(τ
−) = λi?θ′i(τ

−)

=⇒
d∑
l=1

αil
∑
T lk<τ

e−βi(τ−T
l
k) =

d∑
l=1

α′il
∑
T lk<τ

e−βi(τ−T
l
k)

=⇒
d∑
l=1

(αil − α′il)Al = 0 , (7)

where
Al =

∑
T lk<τ

e−βi(τ−T
l
k) .

We can then write Equation (7) by replacing τ by τ+ as λiθi(τ
−
+ ) > 0 because τ+ is an event

time of process N i. We obtain then

d∑
l=1

(αil − α′il)Bl = 0 , (8)

where
Bl =

∑
T lk<τ+

e−βi(τ+−T
l
k) .

By definition of event times τ and τ+, all events on the interval [τ, τ+) are from process N j

so we obtain for all l 6= j,
Bl = Ale−βi(τ+−τ) .

For l = j,
Bj = Aje−βi(τ+−τ) +

∑
τ≤T jk<τ+

e−βi(τ+−T
j
k ) ,

where the second term of the right hand side is positive as interval [τ, τ+) contains at least
one event, τ , from process N j . We can rewrite then Equation (8):

d∑
l=1

(αil − α′il)Bl = 0

=⇒ e−βi(τ+−τ)
d∑
l=1

(αil − α′il)Al

+ (αij − α′ij)
∑

τ≤T jk<τ+

e−βi(τ+−T
j
k ) = 0 .

By Equation (7), the first term is null and the second sum is non-zero as interval [τ, τ+)
contains at least an event from process N j . It follows that:

(αij − α′ij)
∑

τ≤T jk<τ+

e−βi(τ+−T
j
k ) = 0

=⇒ (αij − α′ij) = 0 .
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It follows that for every j 6= i, αij = α′ij . It remains to prove that αii = α′ii. For this, let T i2
be the second event time of process N i. We can the write the equality

λi?θi(T
i
2)− λi?θ′i(T

i
2) = 0 ,

=⇒
d∑
l=1

(αil − α′il)
∑
T lk<T

i
2

e−βi(τ−T
l
k) = 0 ,

=⇒ (αii − α′ii)
∑
T ik<T

i
2

e−βi(τ−T
l
k) = 0 ,

as for j 6= i, αij = α′ij . The sum is non-zero as it contains the event T i1 and so we obtain
αii = α′ii.

This achieves the proof.

D Proof of Corollary 3.1.1
Proof. For all i ∈ {1, . . . , d}, θ ∈ Θ and k ∈ N∗,

log λiθi(T
i−
k ) =−∞1λiθi (T

i−
k )=0

+ log λiθi(T
i−
k )1λiθi (T

i−
k )>0

=−∞1λi?θi (T
i−
k )≤0

+ log λi
?

θi(T
i−
k )1λi?θi (T

i−
k )>0

= log λi
?

θi(T
i−
k )

= log lim
t→T i−k

λi
?

θi(t).

Now, for k = 1, λi
?

θi
(T i−k ) = µi, and for k ≥ 2, let us note q = N(T ik)− 1. Then,

[T(q), T(q+1)) = [T(N(T ik)−1), T(N(T ik))
) = [Sik, T

i
k) ,

and by Lemma A.1, ∀t ∈ [T(q), T(q+1)):

λi?θ (t) = µi +
(
λi?θi(T(q))− µi

)
e−βi(t−T(q))

= µi +
(
λi?θi(S

i
k)− µi

)
e−βi(t−S

i
k) .

Thus,

lim
t→T i−k

λi
?

θi(t) = lim
t→T−

(q)

λi
?

θi(t)

= µi +
(
λi?θi(S

i
k)− µi

)
e−βi(T

i
k−S

i
k) .

To conclude, by Equation (3),

`it(θi) =

Ni(t)∑
k=1

log λiθi(T
i−
k )− Λiθi(t)

= log λiθi(T
i−
1 ) +

Ni(t)∑
k=2

log λiθi(T
i−
k )− Λiθi(t)

= logµi +

Ni(t)∑
k=2

log
(
µi +

(
λi?θi(S

i
k)− µi

)
e−βi(T

i
k−S

i
k)
)

− Λiθi(t) .
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E Algorithm for computing the log-likelihood
This section presents Algorithm 1 for computing the log-likelihood `t(θ) by leveraging the results
from Corollary 3.1.1.

Algorithm 1: Computation of the log-likelihood `t(θ) of a multivariate exponential
Hawkes process.
Input Parameters µi, αij , βi for i, j ∈ {1, . . . , d}, list of event times and marks
(T(k),mk)k=1:N(t);
Initialisation Initialise for all i, Λik = µiT(1), λi?(T−(k)) = µi, λi?k = µi + αim1

and

`t(θ) = log(λm1?(T−(k)))−
∑d
i=1 Λik;

for k = 2 to N(t) do
Compute for all i, T i?(k−1) = min

(
T(k−1) + β−1i log

(
µi−λi?k
µi

)
1{λi?k <0}, T(k)

)
;

Compute for all i,
Λik = µi(T(k) − T i?(k−1)) + β−1i (λi?k − µi)(e

−βi(T i?(k−1)−T(k−1)) − e−βi(T(k)−T(k−1)));
Compute for all i, λi?(T−(k)) = µi + (λi?k − µi)e−βi(T(k)−T(k−1));

Update `t(θ) = `t(θ) + log(λmk?(T−(k)))−
∑d
i=1 Λik;

Compute for all i, λi?k = λi?(T−(k)) + αimk ;
end

Compute for all i, T i?(N(t)) = min
(
T(N(t)) + β−1i log

(
µi−λi?k
µi

)
1{λi?k <0}, t

)
;

Compute for all i,
Λik =

[
µi(t− T i?(N(t))) + β−1i (λi?k − µi)(e

−βi(T i?N(t)−T(N(t))) − e−βi(t−T(N(t))))
]
1{t>T i?

(N(t))
};

Update `t(θ) = `t(θ)−
∑d
i=1 Λik;

return Log-likelihood `t(θ).

F Reconstructed interaction functions for synthetic data
This section presents the reconstruction of interaction functions hij along with the estimated
functions h̃ij from the two-dimensional Hawkes processes simulations as described in Section 4.2.1.
Figure 13 and Figure 14 correspond respectively to the estimations for Scenarios (1) and (2) from
Table 1.
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Figure 13: Reconstruction of interaction functions hij for Scenario (1) of two-dimensional Hawkes
processes along with all estimated functions h̃ij . The real function is plotted in red and 25 esti-
mations are averaged for each method.
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Figure 14: Reconstruction of interaction functions hij for Scenario (2) of two-dimensional Hawkes
processes along with all estimated functions h̃ij . The real function is plotted in red and 25 esti-
mations are averaged for each method.
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