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Abstract
The Hawkes process is a multivariate past-dependent point process used to model

the relationship of event occurrences between different phenomena. Although the
Hawkes process was originally introduced to describe excitation interactions, which
means that one event increases the chances of another occurring, there has been a
growing interest in modeling the opposite effect, known as inhibition. In this paper,
we propose a maximum likelihood approach to estimate the interaction functions
of a multivariate Hawkes process that can account for both exciting and inhibiting
effects. To the best of our knowledge, this is the first exact inference procedure
designed for such a general setting in the frequentist framework. Our method includes
a thresholding step in order to recover the support of interactions and therefore to infer
the connectivity graph. A benefit of our method is to provide an explicit computation
of the log-likelihood, which enables in addition to perform a goodness-of-fit test for
assessing the quality of estimations. We compare our method to classical approaches,
which were developed in the linear framework and are not specifically designed for
handling inhibiting effects. We show that the proposed estimator performs better
on synthetic data than alternative approaches. We also illustrate the application of
our procedure to a neuronal activity dataset, which highlights the presence of both
exciting and inhibiting effects between neurons.

Keywords: Non-linear Hawkes process, point process, maximum likelihood estimation, goodness-
of-fit.
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1 Introduction

A Hawkes process is a point process in which each point is commonly associated with

event occurrences in time. In this past-dependent model, every event time impacts the

probability that other events take place subsequently. These processes are characterised by

the conditional intensity function, seen as an instantaneous measure of the probability of

event occurrences. Since their introduction in Hawkes [1971], Hawkes processes have been

applied in a wide variety of fields, for instance in seismology [Ogata, 1988], social media

[Rizoiu et al., 2017], criminology [Olinde and Short, 2020] and neuroscience [Reynaud-

Bouret et al., 2018].

The multidimensional version of this model, referred to as the multivariate Hawkes

process, models the interaction between different kinds of events through kernel functions.

Originally this model takes only into account mutually exciting interactions (an event

increases the chances of others occurring) by assuming that all kernel functions are non-

negative. A specificity of self-exciting Hawkes processes is their branching structure, also

known as cluster structure. Introduced in Hawkes and Oakes [1974], it has been used in

order to build the theoretical background of Hawkes processes (the most known results

being existence and the value of the expected number of points) by leveraging the branch-

ing theory. Estimation methods in the literature are vast including maximum likelihood

estimators [Ozaki, 1979, Guo et al., 2018] and method of moments [Da Fonseca and Za-

atour, 2013]. Non-parametric approaches include an EM procedure introduced in Lewis

and Mohler [2011], estimations obtained via the solution of Wiener-Hopf equations [Bacry

and Muzy, 2016] or by approximating the process through autoregressive models [Kirchner,

2017] or through functions in reproducing kernel Hilbert spaces [Yang et al., 2017].

Although the self-exciting Hawkes process remains widely studied, there has been a

growing interest in modeling the opposite effect, known as inhibition, in which the proba-

bility of observing an event is lowered by the apparition of certain events. In practice, this

amounts to considering negative kernel functions. In order to maintain the positivity of the

intensity function, a non-linear operator is added to the expression which in turns entails

the loss of the cluster representation. This model known as the non-linear Hawkes process
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was first presented in Brémaud and Massoulié [1996], where existence of such processes was

proved via construction using bi-dimensional marked Poisson processes. Such approach of

analysis has been used in the literature as in Chen et al. [2017], where a coupling process

is established and leveraged to obtain theoretical guarantees on cross-analysis covariance.

Another approach is presented in Costa et al. [2020], where renewal theory allows to obtain

limit theorems for processes with bounded support kernel functions. Estimation methods

focus mainly on non-parametric methods for general interactions and non-linear functions,

as found in Bacry and Muzy [2016], Sulem et al. [2021].

In the last years, alternative models have been designed in order to take into account

inhibiting effects in Hawkes processes. An example is the neural Hawkes process, presented

in Mei and Eisner [2017], Zuo et al. [2020], which combines a multivariate Hawkes process

and a recurrent neural network architecture. In Duval et al. [2021], a multiplicative model

considers two sets of neuronal populations, one exciting and another inhibiting, and each

intensity function is the product of two non-linear functions (one for each group). Another

model is presented in Olinde and Short [2020] and called self-limiting Hawkes process. It

includes the inhibition as a multiplicative term in front of a the traditional self-exciting

intensity function.

In this paper, we present a maximum likelihood estimation method for multivariate

Hawkes processes with exponential kernel functions, that works for both exciting and in-

hibiting interactions, as modelled by Brémaud and Massoulié [1996], Chen et al. [2017].

This work builds upon the methodology for the univariate case, presented in Bonnet et al.

[2021], by focusing in the intervals where the intensity function is positive. We show that,

under a weak assumption on the kernel functions, these intervals can be exactly deter-

mined. We can then write the compensator for each dimension which in turn provides an

explicit expression of the log-likelihood. This enables to build the corresponding maximum

likelihood estimator, the numerical procedure of which is implemented in Python and freely

available on GitHub.1 As a by-product, the closed-form expression of the compensator also

allows to assess goodness-of-fit via the Time Change Theorem and multiple testing. We
1https://github.com/migmtz/multivariate-hawkes-inhibition
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carry out a numerical study on simulated data and on a neuronal activity dataset [Petersen

and Berg, 2016, Radosevic et al., 2019]. The performance of our approach is compared to

estimations obtained via approximations from Bacry et al. [2020] and Lemonnier and Vay-

atis [2014], and we show that our method not only achieves better estimations but is capable

of identifying correctly the interaction network of the process.

To outline this paper, Section 2 presents the multivariate Hawkes process framework

and reviews the literature regarding inference of non-linear Hawkes processes. In Section 3,

we give a simple condition of existence of a multivariate Hawkes process with inhibition and

we present the estimation procedure with an exact computation of the log-likelihood when

the kernel functions are exponential. We also explain in the same section, how our approach

enables to perform a goodness-of-fit test in order to assess the quality of estimations. The

whole procedure is illustrated on simulated data in Section 4 and applied to a neuronal

activity dataset in Section 5.

2 The multivariate Hawkes process

2.1 Definition

A multivariate Hawkes process N = (N1, N2, . . . , Nd) of dimension d is defined by d point

processes on R∗+, denoted N i : B(R∗+) → N, where B(R∗+) is the Borel algebra on the set

of positive numbers. The process N is supposed to be orderly, in other words, two events

cannot occur at the same time.

Each process N i can be characterised by its associated event times (T ik)k and its condi-

tional intensity function, defined for all t ≥ 0 by

λi(t) =

(
µi +

d∑
j=1

∫ t

0

hij(t− s) dN j(s)

)+

=

µi +
d∑
j=1

∑
T j
k≤t

hij(t− T jk )

+

, (1)

where x+ = max (0, x). Here, the quantity µi ∈ R∗+ is called the baseline intensity and each

interaction function hij : R∗+ → R represents the influence of the process Nj on the process

Ni.
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Remark. The positive-part function in Equation (1) is needed to insure the non-negativity

of λi in the presence of strong inhibiting effects (that is when some interaction functions

hij are sufficiently negative compared to positive contributions). Concretely, the positive

part does not affect the intensity function if inhibiting effects are in minority compared to

the positive contributions (exciting effects or the baseline intensities).

For each process Ni and for all t ≥ 0, let us note N i(t) =
∑

k≥1 1T i
k≤t the measure of

(0, t] and the compensator

Λi(t) =

∫ t

0

λi(u) du .

The process N can be seen as a point process on R∗+, where for any B ∈ B(R∗+), N(B) =∑d
i=1N

i(B) (and we may define, for every t ≥ 0, N(t) =
∑

k≥1 1T(k)≤t =
∑d

i=1N
i(t)).

Similarly to a univariate process, N can be characterised by its conditional intensity λ

(also called total intensity) [Daley and Vere-Jones, 2003]:

λ(t) =
d∑
i=1

λi(t) , (2)

and by its compensator

Λ(t) =

∫ t

0

λ(u) du =
d∑
i=1

Λi(t) .

From this point of view, the process N is associated to event times
(
T(k)
)
k

=
(
Tmk
uk

)
k
,

corresponding to the ordered sequence composed of
⋃d
i=1{T ik | k > 0}. Here, (uk)k is

the random ordering sequence and (mk)k the sequence of marks that make it possible to

identify to which dimension each time corresponds to. These marks can be written as

mk =
d∑
j=1

j1Nj({T(k)})=1 .

As the aim of this paper is to describe a practical methodology for estimating the

conditional intensities λ1, . . . , λd via maximizing the log-likelihood, the latter quantity has

to be made explicit. Let t ≥ 0 and assume that event times {T ik : 1 ≤ k ≤ Ni(t), 1 ≤ i ≤ d}

are observed in the interval (0, t]. Then, given a parametric model P = {λθ : θ ∈ Θ} (and

associated compensators Λθ) for each conditional intensity function λi, for every θ ∈ Θ,
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the log-likelihood `t(θ) reads [Daley and Vere-Jones, 2003, Proposition 7.3.III.]

`t(θ) =
d∑
i=1

`it(θ) , with `it(θ) =

N i(t)∑
k=1

log λiθ(T
i−
k )− Λi

θ(t) , (3)

where λiθ(T
i−
k ) = limt→T i−

k
λiθ(t) and with convention log (x) = −∞ for x ≤ 0.

The heart of the problem in deriving a maximum likelihood estimator for the conditional

intensities λi is being able to evaluate exactly the compensator values Λi
θ(t) for every

possible θ ∈ Θ, which requires to determine when the conditional intensities λi are non-

zero. The forthcoming sections clear this point up.

2.2 Related work

Estimation methods for Hawkes processes have focused mainly on self-exciting interactions

(by assuming hij ≥ 0). In Ozaki [1979], the author presents the maximum likelihood

estimation method for univariate processes with exponential kernel, the same method is

established in Mishra et al. [2016] for the power law kernel function. In Chen et al. [2018]

the maximum likelihood method is presented for the multivariate version with exponen-

tial kernel. In Bacry et al. [2020], estimations for the exponential multivariate case are

obtained by optimising a least-squares criterion. Other methods in the parametric setting

include estimations obtained via spectral analysis in Adamopoulos [1976], by using an EM

algorithm in Veen and Schoenberg [2006] or via the method of moments in Da Fonseca and

Zaatour [2013].

Estimators of the interaction functions are also presented in non-parametric settings.

For instance, Yang et al. [2017] proposes a non-parametric online algorithm for multivariate

Hawkes processes via functions in a reproducing kernel Hilbert space and an alternate

version of the likelihood. In Reynaud-Bouret et al. [2014], an approximation of hij is

obtained by considering piece-wise constant functions on a bounded interval [0, A], A >

0. This method consists in optimising a least-squares loss by considering the histograms

formed by the observed event times. Hawkes processes with excitation have also been

studied in Bayesian contexts, as in Rasmussen [2013] for the univariate case and in Donnet

et al. [2020] for multivariate processes using the loglikelihood.
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Although inhibiting effects in Hawkes processes where first mentioned in Brémaud and

Massoulié [1996], they have only met a growing interest in the last decade. Concerning

inference, most of the known methods are not designed for handling the inhibiting case,

but some are capable in practice to estimate negative interactions. For instance Reynaud-

Bouret et al. [2014] in the non-parametric setting and Bacry et al. [2020] in the parametric

one, as mentioned above. Another similar method is proposed in Lemonnier and Vayatis

[2014] where an approximation of the compensator Λ is obtained by integrating the intensity

function λ without the positive part function and then considering a family of exponential

functions. However, it is unclear how these approaches will perform when the function λ

is frequently equal to zero due to inhibiting terms. This remark is mentioned in Bacry and

Muzy [2016] where by assuming that there is a negligible chance of the intensity function

being negative, their proposed method provides negative-valued estimations. Obviously,

this is not a problem while these intensities remain non-negative. However, as soon as

the latter condition is violated, the numerical procedures fail to produce an admissible

estimation.

Inference procedures that are adapted specifically to Hawkes processes with inhibition

are scarcer in the literature. Sulem et al. [2021] presents various results for non-linear

Hawkes processes including inhibition effects regarding existence, stability and Bayesian

estimation for kernel functions with bounded support. Deutsch and Ross [2022] presents

choices of priors for Bayesian estimation based on a new reparametrisation of the process.

Lastly, Bonnet et al. [2021] presents a maximum likelihood estimation adapted to the

univariate Hawkes process with inhibition and monotone kernel functions. The decisive

contribution of this work is to give, for an exponential kernel h(t) = αe−βt (α ∈ R, β > 0),

a closed-form expression of restart times, which are basically the instants at which the

single conditional intensity becomes non-zero. This makes possible to compute explicitly

the compensator and then the log-likelihood. Yet, this study is limited to the univariate

case. It has to be noted that a formalism similar to Bonnet et al. [2021] but for multivariate

Hawkes processes is mentioned in Deutsch and Ross [2022]. However, the authors chose to

put this framework aside and prefer to focus on non-parametric Bayesian estimation.
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This paper goes a step forward in estimation of multivariate Hawkes processes with

inhibition, by providing the first exact maximum likelihood method for exponential inter-

actions hij(t) = αije
−βijt. As it will be explained in the next section, this also enables to

perform standard goodness-of-fit tests.

3 Existence and estimation

3.1 Existence

Before motivating and explaining the estimation procedure proposed in this paper, ex-

istence, uniqueness and stationarity of a counting process characterised by conditional

intensities λi as defined in Equation (1) need to be confirmed.

A sufficient condition for the existence of a unique stationary Hawkes process with

such intensities is for the matrix S = (‖hij‖1)ij to have a spectral radius ρ(S) strictly

smaller than 1 [Brémaud and Massoulié, 1996, Theorem 7]. However, this appears to be

a strong assumption in the framework considered here, as it takes into account negative

interactions, which in theory do not compromise the existence of the process. Thus, we

point out a weaker assumption, which considers instead the exciting contribution of each

kernel function hij.

Proposition 3.1. If the matrix S+ = (‖h+ij‖1)ij satisfies ‖S+‖∞ < 1, then there exists a

unique distribution of the process N with finite average intensity.

This result is a straightforward adaptation of [Sulem et al., 2021, Lemma 2.1], which

originally states the existence of Hawkes processes with inhibition tailored by interaction

functions hij with bounded supports. Proposition 3.1 is the extension to interaction func-

tions with unbounded supports and is immediately obtained by changing
∫ s
s−A to

∫ s
0

in

[Sulem et al., 2021, Appendix D].

While quite simple, Proposition 3.1 is of importance to theoretically support the sim-

ulation and the estimation of multivariate Hawkes processes with exponential interaction

functions. In particular, it allows for studying numerically processes with strong inhibiting
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effects, for which the interaction matrix S has a spectral radius ρ(S) ≥ 1, but which verifies

‖S+‖∞ < 1 (see Section 4).

3.2 Introductive example

Figure 1 depicts (in red) conditional intensities λ1 and λ2 for a realisation of 2-dimensional

Hawkes process. The simulation has been carried out with baselines µ1 = 0.5 and µ2 = 1.0,

and with exponential kernels hij(t) = αije
−βijt parameterised by:α11 α12

α21 α22

 =

−1.9 3.0

0.9 −0.7

 , and

β11 β12

β21 β22

 =

2.0 20.0

3.0 2.0

 .

These kernels have been chosen such that both processes are self-inhibiting (α11, α22 < 0)

but inter-exciting (α12, α21 > 0).

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

1

0

1

2

3

1

T(1) T(3)

Underlying intensity
Conditional intensity

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
t

1

0

1

2

3

2

T(2)

Figure 1: Simulation of a 2-dimensional Hawkes process. Each cross corresponds to an

event time, and each T(k) is shown in its corresponding process.

The goal of this paper is to establish a parametric estimation method, via maximum like-

lihood estimation, that is able to handle both excitation and inhibition frameworks in the
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multivariate case. For this purpose, it is necessary to compute explicitly the log-likelihood

`t(θ) (see Equation (3)) and in particular to evaluate the compensator Λi
θ, expressed as

an integral of λiθ. For the latter, the main challenge is to determine when conditional in-

tensities λi are non-zero, that is on which intervals they are tailored by the exponential

interaction functions and not by the positive-part operator.

In Bonnet et al. [2021], the authors solved this challenge for univariate processes by

remarking that the conditional intensity is monotone between two event times. Figure 1

illustrates that this is not necessarily true for multivariate processes (here, between T(2)

and T(3)). This constitutes the major difficulty we have to cope with.

3.3 Underlying intensity and restart times in the multivariate set-

ting

From now on, let us focus the study to the exponential model [Hawkes, 1971], where each

interaction function hij is then defined as

hij(t) = αije
−βijt ,

with αij ∈ R and βij ∈ R∗+ for i, j ∈ {1, . . . , d}. For each i ∈ {1, . . . , d}, we define the

underlying intensity function λi? to be

λi?(t) = µi +
d∑
j=1

∫ t

0

hij(t− s) dN j(s) .

This quantity coincides with the conditional intensity λi when it is non-zero, and is non-

positive otherwise. In particular, we can observe that λi(t) = (λi?)
+ (see Figure 1).

As explained in the previous section, the main difficulty of the multivariate exponential

setting is the non-monotony of conditional intensities λi between two event times. De-

termining intervals where λi is non-zero (that is when λi? is positive) would require to

numerically find the roots of a high-degree polynomial, which is expensive and inexact. To

alleviate this problem, we introduce Assumption 1.

Assumption 1. For each i ∈ {1, . . . , d}, there exists βi ∈ R∗+ such that βij = βi for all

j ∈ {1, . . . , d}.
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As we will see in Lemma 3.1, this assumption enables to recover the monotony of the

conditional intensities between two times. It remains now to determine when the underlying

intensity λi? is negative. To do so, we leverage the work done in Bonnet et al. [2021] and

define the restart times in the multivariate framework, to be, for any k and i:

T i?(k) = min
(
inf {t ≥ T(k) : λi?(t) ≥ 0}, T(k+1)

)
.

Lemma 3.1 formalises when λi(t) > 0 with respect to restart times T ik.

Lemma 3.1. If Assumption 1 is granted, then for each i ∈ {1, . . . , d} and any k > 1:

T i?(k) = min

(
T(k) + β−1i log

(
µi − λi?(T(k))

µi

)
1{λi?(T(k))<0}, T(k+1)

)
. (4)

Furthermore, if T i?(k) < T(k+1), then

λi(t) = λi?(t) > 0 for any t ∈ (T i?(k), T(k+1)) .

Proof. Let i ∈ {1, . . . , d}. For any k ≥ 1, the underlying intensity function λi? in the

interval [T(k), T(k+1)) can be written:

λi?(t) = µi +
d∑
j=1

Nj(t)∑
`=1

αije
−βij(t−T j

` ) ,

this function is differentiable and we obtain:

(λi?)′(t) = −
d∑
j=1

βij

Nj(t)∑
`=1

αije
−βij(t−T j

` ) .

By using Assumption 1 that for all j ∈ {1, . . . , d}, βij = βi ∈ R∗+, we obtain the

following differential equation:

(λi?)′(t) = −βi
(
λi?(t)− µi

)
,

which by solving on the interval gives:

λi?(t) = µi +
(
λi?(T(k)

)
− µi)e−βi(t−T(k)) . (5)

In particular, the derivative of the underlying intensity function is of opposite sign as

(λi?(T(k))− µi). Let us distinguish two cases:
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• If λi?(T(k)) ≥ 0, then,

T i?(k) = T(k) = min
(
T(k), T(k+1)

)
= min

(
T(k) + β−1i log

(
µi − λi?(T(k))

µi

)
1{λi?(T(k))<0}, T(k+1)

)
.

If (λi?(T(k))−µi) ≥ 0, then λi? is decreasing and lower-bounded by µi. If (λi?(T(k))−

µi) < 0 then λi? is increasing and lower-bounded by zero. In both cases, for any

t ∈ (T i?(k), T(k+1)), λi?(t) > 0 and then λi? = λi(t).

• If λi?(T(k)) < 0, then
(
λi?
(
T(k)
)
− µi

)
< 0 so λi? is strictly increasing. By denoting

λi(T i−k ) := limt→T i−
k
λi(t):

– If λi(T i−(k+1)) ≤ 0, then for any t ∈ [T(k), T(k+1)), λi?(t) < 0 and so T i?(k) = T(k+1).

– If λi(T i−(k+1)) > 0, then by the intermediate value theorem, there exists t? ∈

(T(k), T(k+1)) such that λi?(t?) = 0. By using Equation (5), we obtain:

t? = T(k) + β−1i log

(
µi − λi?(T(k))

µi

)
,

and by definition T i?(k) = t? < T(k+1). Lastly, for any t ∈ (T i?(k), T(k+1)), λi?(t) > 0

and then λi?(t) = λi(t).

Combining all scenarios achieves the proof.

Figure 2 illustrates all three different scenarios. In particular, the term

T(k) + β−1i log

(
µi − λi?(T(k))

µi

)
can be seen as the solution to the equation µi+(λi?(T(k))−µi)e−βi(t−T(k)) = 0 on the interval

[T(k),+∞) when λi?(T(k)) < 0.

Remark. This model with constant recovery rates βi has been studied before in the works

of Ogata [1981] in the self-exciting version of the process. Intuitively, this assumption

considers the situation where the rate of “dissipation” of any internal or external effect is
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0 1 2 3 4 5
t

0.2

0.1

0.0

0.1

0.2

0.3

i

T(k)
T i

(k)

i (T(k)) 0

0 1 2 3 4 5
t

T(k) T i
(k) T(k + 1)

i (T(k)) < 0
i (T(k + 1)) > 0

T(k) + 1
i log ( i i (T(k))

i )

0 1 2 3 4 5
t

T(k) T i
(k)

T(k + 1)

i (T(k)) < 0
i (T(k + 1)) 0

Figure 2: Illustration of three possible scenarios for restart times T i?(k) depending on the

sign of λi?(T(k)) and λi?(T−(k+1)). The pointed line in the last scenario shows the equation

µi + (λi?(T(k))− µi)e−βi(t−T(k)) and the term T(k) + β−1i log
(
µi−λi?(T(k))

µi

)
as its only root.

dependent only on the receiving phenomenon. For instance, for neuronal interactions, each

activation from neuron j will have an impact on a connected neuron i dependent on both

neurons (αij)ij but the “recovery” time can be assumed to depend only on the connected

neuron i (βi)i.

Proposition 3.2. [Compensator for multivariate exponential kernels] Let N be a multi-

variate Hawkes process with exponential kernels. We suppose that Assumption 1 is granted.

For any i ∈ {1, . . . , d} the compensator Λi of process N i reads:

Λi(t) =


µit if t < T(1)

µiT(1) +

N(t)−1∑
k=1

∫ T(k+1)

T i?
(k)

λi?(u) du+

∫ t

T i?
(N(t))

λi?(u) du if t ≥ T(1) ,
(6)

where:

∫ τ

T i?
(k)

λi?(u) du = µi(τ − T i?(k)) + β−1i (λi?(T(k))− µi)(e−βi(T
i?
(k)
−T(k)) − e−βi(τ−T(k))) , (7)
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for τ ∈ [T i?(k), T(k+1)] and with the conventions that the sum is equal to 0 if N(t) = 1 and

the last integral is equal to 0 if t < T i?(N(t)).

Proof. Equation (6) is obtained by splitting the expression of Λi on each interval [T(k), T(k+1))

for any k ∈ {0, N(t) − 1}. By using Lemma 3.1 we replace λ by λi?. For Equation (7),

the integral can be directly obtained from the expression of λi? (5) from the proof in

Lemma 3.1.

3.4 Maximum likelihood estimation

As expected, Proposition 3.2 makes it possible to compute explicitly the log-likelihood

expressed in Equation (3) for multivariate exponential Hawkes processes. This is formalised

in Corollary 3.2.1.

Corollary 3.2.1. Let P be the parametric exponential model for a multivariate Hawkes

process of dimension d, defined through a parametric model Pi for each process N i:

P i =

λiθi =

(
µi +

d∑
j=1

∫ t

−∞
αije

−βi(t−s) dN j(s)

)+

: θi = (µi, αi1, . . . , αid, βi) ∈ Θ

 ,

with Θ = R?
+ × Rd × R?

+. We can then write P as:

P =

{
λθ =

d∑
i=1

λiθi : θ = (θi) ∈ Θd

}
,

with underlying intensity functions λi?θ , restart times (T i?θ,(k))k∈{1,...,N(t)} and compensator

functions Λi
θ.

For any θ ∈ Θ, the log-likelihood of the i-th process is equal to:

`it(θ) = log µi +

N i(t)∑
k=2

log
(
µi + (λi?θ (T(N(T i

k)−1))− µ
i)e
−βi(T i

k−T(N(Ti
k
)−1)

)
)
− Λi

θ(t) , (8)

with Λi
θ given by Equation (6) and with convention log (x) = −∞ for x ≤ 0.

Proof. In order to obtain λi?θ (T i−k ) let us start by noting that if k = 1 then λi?θ (T i−k ) = µi.

For k ≥ 2, we are working in the interval [T(N(T i
k)−1), T(N(T i

k))
) as T(N(T i

k))
= T ik by properties

of a point process. Using then Equation (5) in the proof of Lemma 3.1 we obtain for any i:
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λi?θ (T i−k ) =

µ
i if k = 1 ,

µi + (λi?θ (T(N(T i
k)−1))− µ

i)e
−βi(T i

k−T(N(Ti
k
)−1)

)
if k ≥ 2 .

This result along with Proposition 3.2 gives the result.

Algorithm 1 in Appendix A presents the iterative computation of the likelihood us-

ing (8). In particular, the complexity of the computation is O(N(t)× d).

3.5 Goodness-of-fit

As a benefit of our approach, it is possible to perform a goodness-of-fit test for assessing

the quality of estimations. Indeed, the closed-form expression of the compensator given

in Proposition 3.2 enables to use the Time Change Theorem for inhomogeneous Poisson

processes [Daley and Vere-Jones, 2003, Proposition 7.4.IV]. For any i, the sequence of

transformed times (Λi(T ik))k is a realisation of a homogeneous Poisson process with unit-

intensity if and only if (T ik)k is a realisation of a point process with intensity λi.

We can then define for any θ ∈ Θ the null hypothesis

Hi : “(T ik)k is a realisation of a point process with intensity λiθ”.

The hypothesis is then tested via a Kolmogorov-Smirnov test between the empirical dis-

tribution (Λi
θ(T

i
k+1) − Λi

θ(T
i
k))k≥1 and an exponential distribution with parameter 1. We

obtain then d different tests with p-values (pi)i≥1. Using multiple testing approaches can

help in determining correctly estimated processes.

Lastly, we can obtain an additional test by considering the entire sequence of times

(T(k))k≥1 and the total intensity λ. We obtain then the null hypothesis

Htot : “(T(k))k is a realisation of a point process with intensity λθ”,

with corresponding p-value ptot.

In the forthcoming sections, this testing procedure is applied to several realisations

of event times, that are independent of the considered estimator. This enables to assess

properly the accuracy of estimations, without knowing the true conditional intensities. This

is particularly interesting for real-world data.
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4 Illustration on synthetic datasets

4.1 Simulation procedure

In order to assess the performance of the maximum likelihood estimation method, we

simulate different data by using Ogata’s thinning method Ogata [1981]. This method

consists in defining a piecewise constant function λ+ such that for any k > 1 and any

t ∈ [T(k), T(k+1)), λ+(t) ≥ λ(t). For this, we define λ+ for any t ∈ [T(k), T(k+1)) as

λ+(t) =
d∑
i=1

(
µi +

d∑
j=1

∫ t

0

α+
ije
−βi(T(k)−s) dN j(s)

)
,

which corresponds to considering only the positive interactions.

Four different parameter sets are considered: three sets for 2-dimensional Hawkes pro-

cesses and a last one for a 10-dimensional process. Table 1 presents the parameters used

in Dimension 2. All scenarios contain at least one negative interaction (αij < 0). Scenario

(1) is a Hawkes process where all parameters are non-null whereas Scenarios (2) and (3)

are chosen to study the performance of our method when estimating null interactions (α12

for Scenario (2) and α21 for Scenario (3)). All simulations have exactly 5000 event times

in total.

Scenario (1) (2) (3)µ1

µ2

 0.5

1.0

 0.7

1.0

 1.2

1.0


α11 α12

α21 α22

 −1.9 3.0

1.2 1.5

  0.2 0.0

−0.6 1.2

 −1.0 0.1

0.0 −0.8


β1
β2

 5.0

8.0

 3.0

2.0

 0.3

0.5


Table 1: Parameters for simulations of two-dimensional Hawkes processes.
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In order to carry out the hypothesis testing procedure, we simulate a sample of Hawkes

processes independent from the one used for the estimation. Each testing sample contains as

many realisations as the estimation sample. All p-values presented in the paper correspond

to the average obtained over all realisations.

4.2 Proposed methods and comparison to existing procedures

The main focus of this paper is to assess the performance of the maximum likelihood

estimator to correctly detect the interacting functions of our processes (without ambiguity,

estimators are denoted with a tilde: (µ̃i)i, (α̃ij)ij, (β̃i)i and (h̃ij)ij). To do so, we consider

two versions of the method presented here:

• (MLE) The estimator obtained by minimising the opposite of the log-likelihood

−
∑d

i=1 `
i
t(θ) (see Equation (8)). The log-likelihood is computed via Algorithm 1

and the minimisation is done with the L-BFGS-B method [Byrd et al., 1995].

• (MLE-ε) The estimator obtained by adding a thresholding step to the previous

method, similar to the cumulative percentage of total variation approach used in

Principal Component Analysis [Joliffe, 2002, Section 6.1.1]. All estimated values |α̃ij|

are arranged in increasing order, the cumulative sum (sk)k is computed and all es-

timations α̃ij such that sk < ε
∑

p,q |α̃pq| are set to zero, for a threshold ε ∈ (0, 1).

The value of ε is chosen over a grid of values as the one achieving the highest mean

over all p-values associated to the goodness-of-fit tests described in Section 3.5. All

non-null estimations α̃ij are then re-estimated by maximising the log-likelihood.

The method MLE-ε is proposed as a way of estimating the null interactions, as in

the cases of Scenarios (2) and (3) for the 2-dimensional processes, and also for the 10-

dimensional setting.

Remark. Another option considered for MLE-ε is to use instead the values |α̃ij/β̃i| for the

thresholding. Numerical results slightly differ between the two methods, with the retained

method showing better overall p-values.

We compare our estimations to three popular approaches from the literature.
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1. (Approx) The first one [Lemonnier and Vayatis, 2014] is obtained by approaching the

compensator Λi(t) (in each log-likelihood `it(θ)) by∫ t

0

λi?(u) du .

In the case where all interactions are positive, this integral is equal to the compen-

sator. The difference is when interactions are negative as this integral takes into

account the negative values of the underlying intensity function.

2. The other two methods minimise the least-squares loss approximation defined as

Reynaud-Bouret et al. [2014], Bacry et al. [2020]:

Rt(θ) =

∫ t

0

(λθ(u))2 du− 2

t

N(t)∑
k=1

λmk
θ (T−(k)) ,

which is an observable approximation of ‖λθ − λ‖2t =
∫ t
0
(λθ(u) − λ(u))2 du up to a

constant term. In Bacry et al. [2020], all interactions are assumed to be positive,

however the implemented version of this method in the package tick Bacry et al.

[2018] allows to retrieve negative values. For this, we consider two different kernel

functions from this implementation:

• (Lst-sq) hij(t) = αijβije
−βijt, where βij is fixed beforehand by the practitioner.

In practice, we fix βij = βi to be consistent with our model (see Assumption 1).

The only solver in the implementation that provides negative values is BFGS,

which is limited to work with an `2-penalty. The grid of values {1, 10, . . . , 106}

is considered for the regularisation constant. To obtain the best estimation for

this method, we choose the constant that minimises the relative squared error

over all estimated parameters.

• (Grid-lst-sq) hij(t) =
∑U

u=1 α
u
ijβ

ue−β
ut, with (βu)u a fixed grid of parameters.

In our case, we choose U = d and the grid contains each parameter βi. Intu-

itively, by applying an `1 penalty, this method would be able to retrieve the

corresponding parameter βi for each process. However, in practice, the imple-

mentation uses BFGS as optimiser and is limited to work with an `2-penalty.
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As for Lst-sq, the regularisation parameter is chosen over the grid of values by

minimising the relative squared error.

4.2.1 Results on bivariate Hawkes processes

For the two-dimensional Hawkes processes, we simulate 25 realisations for each parameter

set and an estimation is obtained for each individual simulation. All estimations are then

averaged. We begin by comparing methods MLE and MLE-ε along with both Approx and

Lst-sq which are the two methods with the same kernel functions considered in this paper.

Figure 3 represents the relative squared errors for each group of parameters by considering

vector norms.

Figure 3: Boxplots representing the relative squared error for each group of parameters for

two-dimensional Hawkes processes. Lst-sq does not appear in the last column because it is

parameterised with the true values of (βi)i. The proposed methods are MLE and MLE-ε.

First, we observe that delay factors (βi)i (last column of Figure 3) are similarly estimated

by all approaches. Let us recall that Lst-sq is not included in the comparison of delay

factors: since it requires to provide a value for these parameters (they are not estimated),

it was given the true values of (βi)i as input. An alternative offered by tick is to provide
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a grid of values, but this approach, denoted Grid-lst-sq, is included in the comparison at

the end of the section because of its difference with the exponential model considered here.

Then, regarding the baseline intensities (µi)i and the interaction factors (αij)ij, both

MLE and MLE-ε outperform the two other approaches. In Scenario (2), all estimation

methods perform reasonably well. This can be explained by the weak inhibiting effect of

the interaction 1→ 2, leaving the intensity almost always positive.

In Scenario (1), estimations of Approx and Lst-sq are altered because the inhibiting

effect is stronger than in Scenario (2). The major changes appear in Scenario (3), where

both Approx and Lst-sq obtain very high relative errors. More precisely, they fail to explain

the interactions between the two processes (see the estimations (α̃ij)ij in the middle column

of Figure 3), which is compensated by a wrong estimation (µ̃i)i of baseline intensities. This

is not surprising since Scenario (1), and even more Scenario (3), were designed so that the

intensity functions are frequently equal to zero, which induces major differences between

true and underlying intensities. Since Approx and Lst-sq are both based on assuming

that these two functions are almost equal, the violation of this assumption causes large

estimation errors. As expected, MLE and MLE-ε, which are developed to handle such

inhibiting scenarios, provide accurate estimations.

These results are confirmed by the outcomes of the goodness-of-fit test displayed in

Table 2. It shows indeed the averaged p-values for each scenario using both the true

parameters and all four estimations from Figure 3 with 25 simulations different from the

ones used for estimation. In particular, we can see that MLE and MLE-ε obtain high p-

values, being very close to those obtained using the true parameters. Table 2 also highlights

when parameters are incorrectly estimated. For instance, in Scenario (1), Approx correctly

estimate Process 2 but fails to estimate Process 1 (the p-value is almost half the one

obtained with the true parameters), which is the one characterised by a self-inhibiting

behaviour. In addition, at least one of the two proposed methods obtains the best value

for ptot in each scenario, which illustrates the ability of these procedures to reconstruct

the complete process N . Let us note that the very low p-values obtained by Approx and

Lst-sq for Scenario (3) confirm the ability of the goodness-of-fit procedure to detect when
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the parameter estimations strongly differ from the true parameters.

Scenario (1) Scenario (2) Scenario (3)

p-value p1 p2 ptot p1 p2 ptot p1 p2 ptot

True 0.492 0.438 0.430 0.535 0.468 0.479 0.510 0.623 0.338

MLE 0.440 0.442 0.398 0.483 0.461 0.485 0.549 0.638 0.357

MLE-ε 0.440 0.442 0.398 0.488 0.461 0.491 0.549 0.574 0.327

Approx 0.257 0.442 0.358 0.483 0.452 0.459 0.0 0.007 0.0

Lst-sq 0.154 0.438 0.392 0.534 0.463 0.478 0.0 0.0 0.0

Table 2: Average p-values for estimations of two-dimensional Hawkes processes for all

scenarios. The values are averaged over 25 simulations. In bold the highest ptot value

obtained among all estimation methods.

Lastly, let us investigate the estimations obtained via Grid-lst-sq, which can be used in

practice as a way to estimate the parameters βi by providing a grid of possible parameters.

Let us mention that both of the previous comparisons (boxplots and p-values) cannot be

done here due to the difference in the number of parameters, but we can compare the

methods in terms of reconstructions h̃ij of the interaction functions hij. For this purpose,

we analyse Figure 4, which represents the estimated interaction functions h̃ij for all five

methods in Scenario (3). Interestingly, we see that Grid-lst-sq performs similarly to Lst-sq,

while being fed with all true values (βi)i for each interaction. However, we see that Grid-

lst-sq suffers from the same difficulties than Approx and Lst-sq, which was expected since

it relies on the same unvalid assumption. Let us note that we chose to display the results

for Scenario (3) since it highlights the main differences between the compared approaches

but the reconstructions for Scenarios (1) and (2) can be found in Appendix B (Figures 10

and 11).
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Figure 4: Reconstruction of interaction functions hij for Scenario (3) of two-dimensional

Hawkes processes along with all estimated functions h̃ij. The real function is plotted in red

and 25 estimations are averaged for each method.

4.2.2 A 10-dimensional Hawkes process

A 10-dimensional Hawkes process is simulated based on a set of parameters corresponding to

the quantities (sign(αij)‖hij‖1)ij = (αij/βi)ij displayed in Figure 5. The chosen parameters

fulfill the existence condition ‖S+‖∞ < 1.

For the purpose of the numerical illustration and in order to keep the computation time

of both MLE and MLE-ε (which increases with the dimension d) affordable, only 5 different

realisations are simulated. The corresponding estimations α̃ij and β̃ij are then averaged

and displayed in Figure 5. The heatmap representation is convenient for high-dimensional

processes and it allows us to see whether the signs of each interaction are well-estimated

and whether the null-interactions are correctly detected.

In this example we decided to keep only Approx and Lst-sq as comparison methods

as these are the ones with the same parametrisation for the kernel functions. Among

the four methods considered, Approx is the only one that wrongly estimates the sign of

some interactions, represented by the black boxes in the second row matrix. MLE and

22



(a) Heatmap of real parameters.

(b) Top row corresponds to heatmap for each estimation method. Bottom row corresponds

to errors made with respect to real parameters. A value of 1 (orange) shows an undetected

0 (non-null estimation for αij = 0), a value of -1 (purple) shows a non-null value set to 0

and a value of -2 (black) shows a non-null value whose sign is wrongly estimated.

Figure 5: Heatmaps of (sign(αij)‖hij‖1)ij = (αij/βi)ij (for true and estimated parameters)

for the 10-dimensional simulation.

23



Lst-sq correctly retrieve the sign of each interactions but are unable to detect the null

interactions. MLE-ε is the best concerning both the estimations of the interactions by

identifying correctly excitation and inhibition, along with obtaining a matrix with a similar

support as the original. Table 3 summarises the p-values for each hypothesis as described

in Section 3.5. Both MLE and MLE-ε obtain overall better p-values with no particularly

low values, which is not the case for Approx (see p4 and p9) and for Lst-sq (see p8 and p10).

In particular, MLE-ε achieves the best ptot value, suggesting it is the best at reconstructing

not only each individual sub-process but the entire process seen as a whole.

p-value p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 ptot

True 0.403 0.708 0.273 0.728 0.545 0.386 0.701 0.234 0.668 0.632 0.462

MLE 0.407 0.743 0.287 0.640 0.458 0.384 0.638 0.240 0.617 0.123 0.336

MLE-0.25 0.439 0.721 0.289 0.665 0.497 0.311 0.631 0.269 0.621 0.119 0.403

Approx 0.354 0.407 0.450 0.035 0.394 0.219 0.390 0.339 0.080 0.135 0.282

Lst-sq 0.427 0.712 0.204 0.604 0.447 0.313 0.607 0.043 0.572 0.036 0.282

Table 3: p-values for estimations of a ten-dimensional Hawkes process. The values are

averaged over 5 simulations. In bold the highest ptot value obtained among all estimation

methods.

5 Application on neuronal data

5.1 Preprocessing and data description

In this section we present the results obtained by our estimation method applied to a

collection of 10 trials consisting in the measurement of spike trains of 223 neurons from

the lumbar spinal of a red-eared turtle. This data are first presented in Petersen and Berg

[2016] and then also analysed in Bonnet et al. [2022] to study how the activity of a group

of neurons impacts the membrane potential’s dynamic of another neuron. Events were
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registered for 40 seconds and in order to take into account eventual stationarity we only

consider the events that took place on the interval [11, 24] (see Bonnet et al. [2022] for

further details). Among all trials, each neuron recording contains between 54 and 4621

time events. Furthermore, we divide our samples in a training set consisting on all events

in half the interval [11, 17.5] and a test set consisting on the remaining window [17.5, 24],

in particular each neuron has at least 15 time events in each set. The training sets are used

for obtaining the estimations and the test sets for performing the goodness-of-fit tests.

5.2 Estimation results

In this section, we present the results obtained via MLE and MLE-ε. The estimation

method is the same as in the previous section: an estimation is obtained for each individ-

ual trial and then a single estimation is obtained by averaging over each neuron. Figure 6

presents the heatmap matrix (α̃ij/β̃i)ij of the estimation obtained through MLE. The esti-

mation presents both excitation and inhibition effects between the neurons and in particular

a negative diagonal equivalent to self-inhibition. An interpretation of this diagonal may be

the refractory period of a neuron (minimal time before being able to be activated again).

However, in practice not all neurons interact with each other and an important part

of the study of such interactions is to estimate the interaction graph between neurons.

For this we apply then the MLE-ε method. In the absence of any information about

the existing neuronal connections, to determine the best threshold level ε we compare for

each estimation the p-values obtained via the method described in Section 3.5. Figure 7

shows the ordered p-values for each hypothesis Hi along with hypothesis Htot for different

values of ε. Being in a high-dimensional context, it is important to take into account a

multiple testing procedure and for this purpose we choose the Benjamini-Hochberg method

consisting in adapting the threshold of each p-value, represented in the figure by a blue

line. Let us recall here how this method works : the Benjamini-Hochberg (B-H) method

controls the false discovery rate (FDR). If we denote V the number of rejected true null

hypothesis and S the number of rejected true alternative hypothesis, the FDR is defined
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Figure 6: Heatmap matrix (α̃ij/β̃i)ij for the MLE estimation on 223 neurons.

as

FDR = E
[

V

S + V

]
.

In other words we control the expected number of true null hypothesis (i.e. the process is

indeed a Hawkes process) rejected by our testing method. The B-H procedure considers the

ordered p-values (p(k))k∈{1,...,d+1} and compares each one to the adapted rejection threshold
αk
d+1

. Then we determine the largest K ∈ {1, . . . , d+ 1} such that p(K) <
αK
d+1

and we reject

all hypothesis such that p(k) < p(K).

We begin by noticing that as we increase the threshold ε the p-values appear to increase

progressively and that for values like ε = 0.9 and ε = 0.95 most hypothesis are not rejected

after the multiple testing adjustment.

This suggests that the simpler the model the better p-values we obtain so we decided to

include another estimation, named “Diag” on both graphics, consisting on fixing all αij = 0
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Figure 7: Ordered p-values for all hypothesis tests Hi and Htot. ptot appears as a cross for

each model. The blue curve corresponds to the adapted rejection threshold from the B-H

procedure, so all tests whose p-value are over the line are not rejected.

for i 6= j. This corresponds to a model where no interaction between neurons exists and

we keep only self-interactions: in other words, each neuron is seen as a univariate Hawkes

process with three parameters (µ, α, β). Although most hypothesis Hi are not rejected by

the method, the total p-value ptot is zero which suggests that although such a model could

explain each dimension individually, it is unable to explain the neurons’ interactions as a

whole interconnected process. The values of ptot for all models are presented in Figure 7 by

a cross and are summarised in Table 4. The model that best represents the complete process

N corresponds to ε = 0.90 with the highest value for ptot and with almost all hypothesis,

including Htot, not rejected. This suggests that the estimations provided by MLE-0.90 are

the best fit for explaining the entire process as well as each individual subprocess.

Figure 8 shows the heatmap matrix for ε = 0.90. This matrix contains around 10.2%

of non-null entries in matrix (α̃ij)ij. First, we notice that among the non-zero interactions,
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MLE MLE-0.20 MLE-0.40 MLE-0.50 MLE-0.60 MLE-0.75 MLE-0.90 MLE-0.95 Diag

ptot 0.0 0.0 0.002 0.002 0.005 0.003 0.049 0.005 0.0

Table 4: Values of ptot for each estimation method for the neuronal dataset. In bold appear

the p-values above the rejection threshold after Benjamini-Hochberg procedure.

we detect all types of interactions: mutual excitation, mutual inhibition, self-excitation,

self-inhibition. This supports the relevance of carefully accounting for inhibition when

developing inference procedures. Interestingly, we observe that, similarly to the results

obtained with MLE (Figure 6), the diagonal still contains the larger estimated coefficients,

though we notice that some signs changed after reestimation. This would suggest that

some of the self-inhibiting effects that were detected without thresholding could be spuri-

ous and due to compensations of other interactions. Although the interpretation of this

phenomenon is not straightforward, it highlights the necessity of correctly recover the sup-

port of interactions in order to provide accurate estimations. This point will be further

discussed in Section 6.

Figure 9 displays the graph of interaction between neurons. We observe that a large

number of neurons are densely connected with only some of them having a limited number

of entering or exiting connections.

6 Discussion

In this paper, a workable methodology for estimating a multivariate exponential Hawkes

process with potential inhibiting interactions is introduced. Our approach relies on the

mild assumption that the delay factors βij only depend on the affected process Ni, which

enables to derive a closed-form expression for the compensator, appearing both in the log-

likelihood and in the Time Change Theorem. Up to our knowledge, this constitutes the

first exact frequentist inference and testing methods which are able to handle negative

interaction functions.

While the independence of the delay factors with respect to the interacting processes is
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Figure 8: Heatmap of MLE-0.90 estimation on 223 neurons.

quite consistent with practical applications such as neuronal activity, it could be a limitation

of our approach when considering heterogeneous phenomena. Going over this assumption

would force us to use numerical integration methods and would considerably increase the

computational time of the estimation procedure. This is obviously detrimental since, in

practice, time sequences are increasingly abundant and large. On the other hand, improving

the computational effectiveness of estimation procedures for Hawkes processes is a current

direction of research [Bompaire et al., 2018].

This work focuses on a computational perspective of maximum likelihood estimation.

It is naturally of interest to provide a theoretical study of the asymptotic behaviour of our

estimator, as done for exciting Hawkes processes [Guo et al., 2018]. This work is currently

under investigation.

From the applicative point of view, estimating accurately the support of the interactions
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(a) Total graph. (b) Zoomed version of graph of interactions.

Figure 9: Graph of interactions. A green edge corresponds to an exciting interaction and a

red edge to an inhibiting one. Edges such that |α̃ij|/β̃i > 0.25 are opaque. Self-interaction

is represented by color of the nodes.

is a central question, besides knowing their nature. Indeed, the support estimation is crucial

both for recovering the connectivity graph and for estimating the interaction functions since

the non-zero coefficients are eventually re-estimated on the support. This matter deserves

further investigations regarding for instance post hoc selection or regularised estimation

[Bacry et al., 2020].

Let us also highlight that, because of the physical constraints of the experiment, only a

fraction of the neuronal network is observed, which raises the question of interpretability of

the estimated interactions. Indeed, the latter do not take into account the interactions with

neurons that are outside the observed network. Very recent results tackle the consistency

of estimated interactions in a partially observed network [Reynaud-Bouret et al., 2021]. A

necessary condition to recover interactions in the subnetwork requires in particular to have

a large number of interactions within the full network. Regarding the neuronal applica-

tion, it could be of great interest to further investigate the interpretability of the inferred

interactions and connectivity graph in light of the aforementioned work.
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SUPPLEMENTARY MATERIAL

Python package for multivariate Hawkes processes: a Python package containing

code for manipulation of multivariate Hawkes process, including:

1. simulation;

2. estimation via the proposed methods;

3. goodness-of-fit as described in this article;

is freely available online at the address

https://github.com/migmtz/multivariate-hawkes-inhibition.

The package also contains synthetic datasets for reproducibility of the results analysed

in this article.
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A Algorithm for computing the log-likelihood

Algorithm 1: Computation of the log-likelihood `t(θ) of a multivariate exponen-

tial Hawkes process.
Input Parameters µi, αij, βi for i, j ∈ {1, . . . , d}, list of event times and marks

(T(k),mk)k=1:N(t);

Initialisation Initialise for all i, Λi
k = µiT(1), λi?(T−(k)) = µi, λi?k = µi + αim1 and

`t(θ) = log(λm1?(T−(k)))−
∑d

i=1 Λi
k;

for k = 2 to N(t) do

Compute for all i, T i?(k−1) = min
(
T(k−1) + β−1i log

(
µi−λi?k
µi

)
1{λi?k <0}, T(k)

)
;

Compute for all i,

Λi
k = µi(T(k) − T i?(k−1)) + β−1i (λi?k − µi)(e

−βi(T i?
(k−1)

−T(k−1)) − e−βi(T(k)−T(k−1)));

Compute for all i, λi?(T−(k)) = µi + (λi?k − µi)e−βi(T(k)−T(k−1));

Update `t(θ) = `t(θ) + log(λmk?(T−(k)))−
∑d

i=1 Λi
k;

Compute for all i, λi?k = λi?(T−(k)) + αimk
;

end

Compute for all i, T i?(N(t)) = min
(
T(N(t)) + β−1i log

(
µi−λi?k
µi

)
1{λi?k <0}, t

)
;

Compute for all i,

Λi
k =

[
µi(t− T i?(N(t))) + β−1i (λi?k − µi)(e

−βi(T i?
N(t)
−T(N(t))) − e−βi(t−T(N(t))))

]
1{t>T i?

(N(t))
};

Update `t(θ) = `t(θ)−
∑d

i=1 Λi
k;

return Log-likelihood `t(θ).

B Reconstructed interaction functions for synthetic data
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Figure 10: Reconstruction of interaction functions hij for Scenario (1) of two-dimensional

Hawkes processes along with all estimated functions h̃ij. The real function is plotted in red

and 25 estimations are averaged for each method.

Figure 11: Reconstruction of interaction functions hij for Scenario (2) of two-dimensional

Hawkes processes along with all estimated functions h̃ij. The real function is plotted in red

and 25 estimations are averaged for each method.

37


	Introduction
	The multivariate Hawkes process
	Definition
	Related work

	Existence and estimation
	Existence
	Introductive example
	Underlying intensity and restart times in the multivariate setting
	Maximum likelihood estimation
	Goodness-of-fit

	Illustration on synthetic datasets
	Simulation procedure
	Proposed methods and comparison to existing procedures
	Results on bivariate Hawkes processes
	A 10-dimensional Hawkes process


	Application on neuronal data
	Preprocessing and data description
	Estimation results

	Discussion
	Algorithm for computing the log-likelihood
	Reconstructed interaction functions for synthetic data

