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A HOMOGENIZED MODEL ACCOUNTING FOR DISPERSION, INTERFACES

AND SOURCE POINTS FOR TRANSIENT WAVES IN 1D PERIODIC MEDIA.

R. Cornaggia1 and B. Lombard2

Abstract. A homogenized model is proposed for linear waves in 1D microstructured media. It com-
bines second-order asymptotic homogenization (to account for dispersion) and interface correctors (for
transmission from or towards homogeneous media). A new bound on a second-order effective coefficient
is proven, ensuring well-posedness of the homogenized model whatever the microstructure. Based on
an analogy with existing enriched continua, the evolution equations are reformulated as a dispersive
hyperbolic system. The efficiency of the model is illustrated via time-domain numerical simulations.
An extension to Dirac source terms is also proposed.
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1. Introduction

Understanding, modelling and controlling wave propagation in heterogeneous media is of major interest
in numerous engineering domains, e.g. seismic simulation and protection, sound and vibration attenuation,
non-destructive testing, etc. The particular case of periodically varying media, see e.g. [28] for sonic and
phononic crystals, gathered much attention. Indeed the interaction between waves and the periodic medium
produces pronounced dispersive features, including band-gaps (“forbidden” range of frequencies for which waves
decay exponentially) at higher frequencies. On the modelling side, robust methods exploit the periodicity to
establish effective models linking the salient macroscopic features of the wave propagation to the microstructure.
These effective models enable efficient numerical simulation, and they also provide a solid ground to implement
topological optimization algorithms of architected materials [3, 14].

In this paper, the focus is on the long wavelength regime, compared to the characteristic size of the mi-
crostructure. In this regime (prior to the first band-gap), higher-order models accounting for dispersion effects
are studied since [35], notably thanks to double-scale asymptotic homogenization methods [9], see e.g. [3, 14]
for models of scalar waves in two-dimensional media. One-dimensional situations are particularly well doc-
umented: [1, 4, 5, 18, 19, 27] among other computed the higher-order homogenized coefficients and designed
well-posed models thanks to the “Boussinesq trick” [2] that enables the partial or total permutation of space
and time derivatives without loss of the asymptotic order of approximation. This trick was generalized in [41]
that established a whole family of models. Introducing an additional modelling tool, [36] recently proposed a
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reformulation of these homogenized wave equations into hyperbolic systems well-suited for time-domain simu-
lation [23], based on a phenomenological stress-gradient model presented in [21].

On the other hand, using these models in realistic bounded domains, i.e. addressing either boundary con-
ditions or transmission conditions towards another homogeneous or microstructured medium, is an issue that
is still a major research topic. In two or three dimensions, oscillating boundary layers that appear near these
boundaries of interfaces, can be accounted for using corrector functions to complement the inner expansion
and to obtain convergence estimates, see e.g. [34] for eigenvalue problems in bounded domains, [26] for elliptic
problems with interfaces and [10, 11, 20] and the references therein for time-harmonic transmission problems.
However, (i) these boundary or transmission correctors are complex objects whose theoretical study is quite
involved [6, 22] and (ii) their direct computation is often as costly as the one of the original problem posed on
the microstructured domain.

Fewer works address the “practical” implementation of these correctors, i.e. the design of enriched boundary
or transmission conditions suitable for numerical implementation and simulation. A notable exception is the
contribution of S. Fliss and collaborators [8, 20, 40]. These authors consider two-dimensional time-harmonic
problems in half-planes or strips and address interface neighborhoods thanks to matched asymptotic expansions
or ”enriched” double-scale expansions accounting explicitly for local correctors. Also using matched expansions,
effective transmission conditions are built for scattering problems by layered “slabs” of materials with interfaces
either orthogonal [31] or aligned [32] with the layers, and in the context of water waves by [33]. For purely one-
dimensional propagation, [15] proposes boundary and transmission conditions for wave problems homogenized
up to second order, still for time-harmonic loads and fields. This methodology is also applied to non-uniformly
oscillating media in [37].

Finally, the time-domain simulation of these homogenized wave models and associated boundary and trans-
mission conditions is almost inexistant, to the best or our knowledge, although a proposal was made recently
in [8, Chap. 5] for a half-plane with a Dirichlet boundary condition. In this context, the main purpose of
the present paper is to build a well-posed “total” model to simulate 1D transient wave propagation through
microstructured domains, combining (i) the family of second-order models from [41] and their reformulation
as hyperbolic systems from [36], and (ii) the effective transmission conditions proposed in [15], adapted to
the time-domain context to ensure well-posedness. An extension of the proposed tools to Dirac source points
immersed in the microstructure is also given.

In Section 2, dispersive models for one-dimensional waves obtained from second-order homogenization are
recalled, and a new result on the second-order homogenized coefficient is given (Proposition 1). Then the
proposed hyperbolic system is presented and the conditions for its well-posedness are established (Proposition
2). Section 3 gives relevant corrections for transmission conditions between homogeneous and homogenized
media, and states the stability conditions for the total model incorporating the hyperbolic system and these
conditions (Proposition 3). Section 4 presents the treatment of source points. The improvements brought by
the proposed models are illustrated by a set of time-domain simulations in Section 5, and Section 6 finally
summarizes the findings of the papers and proposes several extensions. Auxiliary definitions and proofs are
gathered in Appendix A.

2. Second-order homogenized model in unbounded space

This section focuses on free waves in an unbounded periodic elastic medium, characterized by density
ρ`(x) = ρ(x/`) and Young’s modulus E`(x) = E(x/`), in terms of 1-periodic functions (ρ,E) and the peri-
odicity length `. The material displacement is denoted u`(x, t), and v` = ∂tu` and σ` are the velocity and
stress fields. Combining the momentum balance equation ∂t(ρ`v`) = ∂xσ` and the elastic constitutive law
σ` = E`∂xu`, the source-free wave motion is then described equivalently by the wave equation satisfied by u`,



TITLE WILL BE SET BY THE PUBLISHER 3

or the first-order system satisfied by (v`, σ`):

ρ` ∂ttu` − ∂x(E`∂xu`) = 0 ⇔

 ∂tv` −
1

ρ`
∂xσ` = 0,

∂tσ` − E` ∂xv` = 0.
(1)

The main results obtained by second-order homogenization at low frequencies and wavenumbers, and moderate
variations of material parameters (E, ρ) (so that the ratio between period and wavelength is the only small
scale of the problem), are summarized below. Since the derivation of these results is now classical, they are
not justified: the reader is referred to [41] and the references therein for more details on the formal expansions,
to [15] for error estimates in the time-harmonic case, and to [1, 27] for error estimates in the transient case.

Remark 1. Rigorous asymptotic analysis should be done in terms of a non-dimensional parameter ε = `/λ,
where λ is a ”reference” wavelength that serves as a spatial scale. For time-harmonic problems, this wavelength
can be defined, see e.g. [15, Remark 1]. In the present work, the focus is on modelling rather than on asymptotic
analysis, and transient waves with broad frequency –and therefore wavelength– spectra are considered, hence
all the expansions and estimates below are formally given in terms of ` for simplicity: o(1), o(`) and o(`2)
remainders indicate leading-, first- and second-order approximations. Discussions on the choice of reference
wavelength λ and the influence of ratio ε are postponed to numerical illustrations in Section 5.1.

2.1. Formal expansions, cell functions and macroscopic fields

The two-scale formal expansion begins with the following ansatz on the solution:

u`(x, t) =
∑
n

`nun(x, x/`, t), y 7→ un(x, y, t) is 1-periodic,

where the spatial dependency is split between the “slow” space variable x and its “fast” counterpart y = x/`.
Injecting this expression into the wave equation (1) and solving iteratively the resulting cascade of equations,
see [41], one finds separated variable solutions of the form:

u0(x, y, t) = ū0(x, t)

u1(x, y, t) = ū1(x, t) + P1(y)∂xū0(x, t)

u2(x, y, t) = ū2(x, t) + P1(y)∂xū1(x, t) + P2(y)∂xxū0(x, t)

(2)

written in terms of slowly varying macroscopic fields ūj and fastly oscillating correctors involving 1-periodic
cell functions Pj , modulated by the successive space derivatives of the previous macroscopic fields. The cell
functions are solutions of static cell problems posed on the scaled periodicity cell [0, 1], as recalled in Appendix
A.1.

The formal process also provides wave equations satisfied by the macroscopic fields ūn, whose source terms
depend on the previously determined fields {ūj}j<n. Here we prefer to work with total macroscopic fields Un
instead, that concatenate all the contributions of order up to n. In what follows, we accordingly define:

U0 = ū0, U1 = ū0 + `ū1, U2 = ū0 + `ū1 + `2ū2.

Section 2.2 below provides and discusses the wave equations satisfied by these fields.
Finally, (i) defining the total macroscopic velocities Vn = ∂tUn, and stresses Sn = E0∂xUn, where E0 is the

effective Young’s modulus to be defined later, (ii) summing the contributions of eqs. (2), (iii) using replacements
e.g. ū0 = U1 + o(1) in the corrector terms and (iv) neglecting higher-order contributions, the total n-th order
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approximations of (u`, v`, σ`) are given by:

u`(x, t) = Un(x, t) +

n∑
j=1

`jPj

(x
`

)
∂jxUn(x, t) + o(`n),

v`(x, t) = Vn(x, t) +

n∑
j=1

`jPj

(x
`

)
∂jxVn(x, t) + o(`n),

σ`(x, t) = Sn(x, t) +

n∑
j=1

`jQj

(x
`

)
∂jxSn(x, t) + o(`n),

(3)

where specific stress cell functions Qj are introduced [15], see Appendix A.1 and Remark 2 below.

Remark 2. The literature often focuses on the displacement u` and on the wave equation it satisfies (left of
(1)). The stress field σ` = E`∂xu`, particularly relevant when considering boundary or transmission conditions,
is then treated as a byproduct of the analysis, whose approximation accuracy suffers from the differentiation.
On the other hand, the system featuring the two fields (v`, σ`) in (1) emphasizes the similar roles played by these
fields, that should be reflected by equally accurate approximations. This is the main motivation for the functions
Qj associated to the stress field σ`, as proposed in this 1D waves context by [15]. The two-fields formalism is
also used for deriving boundary and transmission correctors [31–33] and providing associated error estimates in
higher dimensions, see [10, 11] and the references therein.

2.2. Homogenized wave models up to second order

Effective equations satisfied by the macroscopic fields (Un, Vn, Sn), also provided by the two-scale approach,
are now discussed at orders 0, 1 and 2.

Homogenized model at leading order. This model is given similarly to (1) by a wave equation on U0 or a
system on (V0, S0):

∂ttU0 − c20∂xxU0 = 0 ⇔

 ∂tV0 −
1

ρ0
∂xS0 = 0,

∂tS0 − E0∂xV0 = 0.
(4)

The constant homogenized coefficients at leading order ρ0 and E0 are given in 1D by the usual formula:

ρ0 =

∫ 1

0

ρ(y)dy, E0 =

(∫ 1

0

E−1(y)dy

)−1

, (5)

i.e. the arithmetic mean and the harmonic mean of their oscillating counterparts (ρ,E). The celerity c0 is
defined naturally as:

c0 =
√
E0/ρ0. (6)

First-order homogenized model. As shown by [12, Section 2.3] or [15, Lemma 1], the first-order macroscopic
fields (U1, V1, S1) also satisfy the homogenized equations (4), i.e. there is no first-order contribution to the wave
equation.

Second-order homogenized model. The model (4) is valid in the quasistatic limit, i.e. for wavelengths
much longer than `. For shorter wavelengths, dispersive effects (i.e. frequency-dependent wave velocity) cannot
be neglected and must be accounted for in the homogenized models. This is done by incorporating second-order
terms into the wave equation, i.e. using the equations satisfied by (U2, V2, S2). In [41], it was shown that
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second-order expansions lead to a family of enriched wave equations for the macroscopic displacement U2:

∂ttU2 − c20∂xxU2 − `2
(
βxc

2
0∂xxxxU2 − βm∂xxttU2 −

βt
c20
∂ttttU2

)
= 0, with βx − βm − βt = β, (7)

where the homogenization process provides the values of the homogenized velocity c0 given by (6), and the
second-order coefficient β, for which a new expression is provided here:

Proposition 1. The second-order homogenized coefficient β can be computed in terms of the material coeffi-
cients (ρ,E), the homogenized coefficients (ρ0, E0) given by (5) and the first cell functions (P1, Q1):

β =
1

2

∫ 1

0

[
P1(y)−Q1(y)

]2( E0

E(y)
+
ρ(y)

ρ0

)
dy.

As a consequence, β is non-negative.

The proof of this result is given in Appendix A.2 and relies on reciprocity identities on the cell functions
(P1, Q1, P2, Q2) entering the initial definition (60) of β given in [41]. This important non-negativity property is
emphasized as it plays a key role in the analysis of the ensuing model (Section 2.3). It is trivially satisfied for
bilaminates, see eq. (67), and it was postulated in [36, Sect. 4.3] after many numerical tests on multi-laminated
composites, but it is proven here for any periodic medium for the first time, to the best of our knowledge, for
non-constant ρ : see [19, Remark 1] when ρ = 1.

Remark 3. The family of models (7), parametrized by the coefficients (βx, βm, βt), is obtained thanks to the
wave equation ∂ttU2 = c20∂xxU2 +O(`2) at leading-order, which enables to exchange second-order space and time
derivatives in higher-order terms. This possibilty, sometimes called “Boussinesq trick” [2], was used by [19]
to exhibit a well-posed model with only “mixed” derivatives (βx = βt = 0, βm = −β < 0), to replace ill-
posed models with fourth-order space derivatives (βx = β > 0, βt = βm = 0) that arise naturally from the
formal homogenization process (when ρ = 1). Later, [27] also studied the “mixed” model, derived an equivalent
Korteweg-de-Vries equation and proved error estimates for long-time propagation. The study [1] also proved
well-posedness and established error estimates for a two-parameter family of models (βx−βm = β, βt = 0). The
family (7) introduced in [41] is a generalization of these models which provides two degrees of freedom to choose
a particular model. The model can therefore be optimized e.g. by fitting the dispersion curve of the periodic
medium, see [36], while still satisfying the well-posedness requirements.

In higher dimensions, terms involving fourth-order space derivatives, associated with a high-order tensor-
valued coefficient, are in general impossible to remove. However, the Boussinesq trick still can be performed to
obtain well-posed models [2].

Finally, in this work as in [15], only the cases where βx = 0 are considered because (i) a fourth-order space
derivative in the wave equation would come along with additional boundary or transmission conditions that are
not easy to define (although a proposal is made by [8, Chap. 5] for a Dirichlet boundary condition) and (ii) the
analysis performed in [36] showed that this term leads to unstable models when βx > 0, involving an additional
modelling constraint. The so-called (mt) model, featuring fourth-order mixed and time derivatives, is therefore
used hereafter:

∂ttU2 − c20∂xxU2 + `2
(
βm∂xxttU2 +

βt
c20
∂ttttU2

)
= 0, with − βm − βt = β, (8)

and only one degree of freedom is left to choose the couple (βm, βt).
To investigate the properties of this wave equation, an equivalent system is now presented. Using this

formalism enables to reuse theoretical results specific to hyperbolic systems (stability, existence of solutions),
as well as dedicated numerical methods (integration schemes, discretization of interfaces). An overview may be
found in the reference books [23,29].
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2.3. Stress-gradient formalism

The upcoming system comes from a stress-gradient model introduced in [21] and studied in [36]. This
phenomenological model features four fields: the usual displacement u and stress σ, but also a microdisplacement
φ and a microstress r to account for microstructural effects. These fields satisfy the constitutive relations and
equilibrium equations: {

σ = Esg∂x(u+ φ),

r = Dφ,

{
ρsg∂ttu = ∂xσ,

ρsgJ∂ttφ = ∂xσ − r,
(9)

written in terms of density and Young’s modulus (ρsg, Esg) and two micro-stiffness and micro-inertia coefficients
(D,J). All these parameters are strictly positive real numbers, and D should not be confused with a differen-
tiation operator.

Relationships with the second-order homogenized model. Combining the relations (9), as done in [21,
Section 5.3], provides a fourth-order enriched wave equation for u:

∂ttu−
Esg

ρsg
∂xxu−

Esg

D
(1 + J)∂xxttu+

ρsgJ

D
∂ttttu = 0, (10)

which is formally the same equation than the (mt) homogenized equation given by (8). More precisely, the
equivalence is obtained by identifying the coefficients (Esg, ρsg, J,D) as:

Esg = E0, ρsg = ρ0, J =
βt
β

and D =
E0

`2β
. (11)

Moreover, identifying the terms in the two wave equations (8) and (10), and using the relations (9) and (11),
the fields of the stress-gradient model satisfy the following relations with the macroscopic displacement U2 and
stress S2 = E0∂xU2:

{
u = U2

σ = S2 + E0∂xφ = S2 + `2β ∂xr
and


∂xxφ = `2

[
−βm
c20
∂xxttU2 −

βt
c40
∂ttttU2

]
,

∂xxr =
E0

β

[
−βm
c20
∂xxttU2 −

βt
c40
∂ttttU2

]
.

(12)

Several remarks may be done from the above relations:

• The microdisplacement φ is a second-order term, while the microstress r is in fact a leading-order
contribution: from (9) one has r = ∂xσ + o(1).

• The parameter J controls the choice of (mt) model: J = 1 corresponds to the “time” model (t) (with
βm = 0, βt = −β), and J = 0 corresponds to the “mixed” model (m) (with βm = −β, βt = 0) in
the wave equation (10). However J = 0 makes no sense in the original stress-gradient system (9) that
therefore cannot describe the (m) model.

Equivalent system. To pursue towards the derivation of a hyperbolic system equivalent to the wave equation
(8), the total macroscopic velocity w, incorporating the microscopic fluctuations, and the microscopic velocity
ϕ = o(`) are introduced:

w = ∂t(u+ φ), ϕ = ∂tφ. (13)
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Then, slightly reformulating the equations (9), the four fields (w, σ, ϕ, r) are found to satisfy the system:

∂tw −
a

ρ0
∂xσ = −a− 1

ρ0
r,

∂tσ − E0∂xw = 0,

∂tϕ−
a− 1

ρ0
∂xσ = −a− 1

ρ0
r,

∂tr =
E0

`2β
ϕ,

(14)

where the convenient parameter a controls the choice of (mt) model:

a =
J + 1

J
=
−βm
βt

.

Remark 4. In [36] a similar system was introduced, featuring the classical velocity v = ∂tu instead of w. The
present choice slightly simplifies the notation when introducing interfaces in Section 3.

Total fields approximations. Finally, approximations of the total fields (v`, σ`) are given by the expansions
(3) in terms of the macroscopic fields (V2, S2). From the relations (12), these macroscopic fields can be recovered
a posteriori from the stress-gradient velocity and stress (w, σ) and the auxiliary fields (ϕ, r) as:

V2 = w − ϕ and S2 = σ − `2β ∂xr. (15)

However, a simpler way to compute the total fields, without computing the fields (V2, S2), is to use the following
approximations:

v`(x, t) = w(x) + `P1

(x
`

)
∂xw(x, t) + `2P2

(x
`

)
∂xxw(x, t)− ϕ(x, t) + o(`2),

σ`(x, t) = σ(x, t) + `Q1

(x
`

)
∂xσ(x, t) + `2Q2

(x
`

)
∂xxσ(x, t)− `2β ∂xr(x, t) + o(`2).

(16)

They are formally justified by the second-order amplitude of the fluctuations V2 − w and S2 − σ.

2.4. Model properties

The system (14) above can be recast in matricial form:

∂tU + A · ∂xU = S ·U , (17)

where U := (w, σ, ϕ, r)T and:

A =


0 −a/ρ0 0 0
−E0 0 0 0

0 −(a− 1)/ρ0 0 0
0 0 0 0

 and S =


0 0 0 −(a− 1)/ρ0

0 0 0 0
0 0 0 −(a− 1)/ρ0

0 0 E0/(`
2β) 0

 .
Hyperbolicity. The matrices A and S have eigenvalues:

Sp(A) =
{

0, 0,±c0
√
a
}

and Sp(S) =
{

0, 0,±c0/
(
`
√
−βt

)}
.
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The eigenspaces of the matrix A are:

A ·U = 0 ⇒ U ∈ Vect
{

(0, 0, 1, 0)T, (0, 0, 0, 1)T
}
,

A ·U = ±c0
√
aU ⇒ U ∈ Vect

{
(a,∓ρ0c0

√
a, a− 1, 0)T

}
.

For a 6= 0, all these vectors are linearly independant and therefore they form a basis of R4. To obtain a hyperbolic
system, the eigenvalues of A need to be real. To ensure that the null solution is stable, the eigenvalues of S
need to be imaginary. These two conditions imply that the coefficients (a, βm, βt) should satisfy:

{
Hyperbolicity: a > 0

Stability: βt > 0
=⇒


βm
βt

< 0

βt > 0
=⇒

{
βm < 0,

βt > 0.
(18)

As already pointed out by [36] and omitted in previous studies [15], these conditions complement the condition
−βm − βt = β coming from the homogenization process.

For latter use, the following exponential matrix, needed in the numerical integration of (17), is introduced:

exp(St) =


1 0 cosω0t− 1 −1

ν
sinω0t

0 1 0 0

0 0 cosω0t −1

ν
sinω0t

0 0 ν sinω0t cosω0t

 , (19)

where:

ω0 =
c0
`

1√
βt

and ν =
ρ0 c0√
β(a− 1) `

.

Energy conservation. Introducing the symmetrizer matrix

M =


ρ0 0 −ρ0 0
0 1/E0 0 0
−ρ0 0 aρ0/(a− 1) 0

0 0 0 `2β/E0

 ,
one obtains:

M ·A =


0 −1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

 and M · S =


0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

 ,
i.e. M ·A is symmetric, and M · S is skew-symmetric. Multiplying the system (17) by UT ·M and making
use of these (skew)symmetries, one obtains:

1

2
∂t(U

T ·M ·U) +
1

2
∂x(UT ·M ·A ·U) = 0. (20)

Considering compactly supported initial conditions or source terms, and integrating over a space-time domain
Ω× [0, T ], where Ω is chosen large enough so that U(·, T ) = 0 on ∂Ω, one obtains the energy conservation:

Evol(T ) = Evol(0).
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The volume energy Evol is the sum of a kinetic and elastic energy given as:

Evol =
1

2

∫
Ω

UT ·M ·Udx =
1

2

∫
Ω

ρ0

(
w2 − 2wϕ+

a

a− 1
ϕ2

)
+

1

E0

(
σ2 + `2βr2

)
dx

=
1

2

∫
Ω

ρ0

(
v2 +

βt
β
ϕ2

)
+

1

E0

(
σ2 + `2βr2

)
dx.

(21)

In the second expression, the macroscopic velocity v = ∂tu is introduced and 1− a = β/βt is used to emphasize
that the energy is positive since β > 0 (Prop. 1) and βt > 0 (as required by the stability condition (18)).

Finally, the results of this part are summarized in the following proposition:

Proposition 2. If the parameters (βm, βt) satisfying the relation −βm−βt = β are chosen so that βm < 0 and
βt > 0, the system (14) is hyperbolic, the null solution is stable, and the associated positive volume energy Evol

defined by (21) is conserved.

3. First-order transmission conditions and total model

Now that an effective model is proposed for unbounded microstructured media, this section focuses on how
to use this model for bounded domains made of microstructured materials. In the same way as higher-order
correctors were introduced in the wave equation, higher-order interface correctors will be introduced. These
correctors will be defined as in the previous study [15], that focused on time-harmonic problems and in which
rigorous error estimates are proven to support this proposition, following earlier works on boundary correctors,
see [10, 11]. In the present work, an extension is made to the transient case without rigorous justification: our
purpose is to establish a well-posed and practical model rather than to prove asymptotic accuracy (that is
nevertheless observed in numerical examples).

To fix ideas, the transmission of waves from a homogeneous domain Ω− = {x < 0} to a microstuctured
domain Ω+ = {x > 0} is first addressed in detail. Then the extension to a “slab” Ω =]0, L[ surrounded at both
extremities by homogeneous media is given.

For future use, let us introduce the jump JfK0 and the mean 〈f〉0 of a function f across an interface at x = 0
as:

JfK0 = f+ − f− and 〈f〉0 =
1

2

(
f+ + f−

)
, with f± = lim

x→0±
f(x),

and we give the following relations:

f± = 〈f〉0 ± JfK0/2 and JfgK0 = JfK0〈g〉0 + 〈f〉0JgK0. (22)

3.1. Microstructured transmission problem

The original problem to be approximated is defined as follows: the fields (v`, σ`) satisfy the system (1) with
constant coefficients (ρ−, E−) in Ω− = {x < 0} and with oscillating coefficients (ρ`, E`) in Ω+ = {x > 0}. A
perfect interface is considered at x = 0, i.e. the velocity and stress are continuous:

Jv`K0 = 0, Jσ`K0 = 0. (23)

To complete this problem, initial conditions are finally given:

v`(x, 0) = v?(x) and σ`(x, 0) = σ?(x), (24)

where v? and σ? are entirely supported in the homogeneous domain Ω− to simplify the analysis. Indeed, initial
conditions supported in the microstructured domain Ω+ should be addressed in the homogenization process,
which is outside the scope of the present work: again the reader is referred to [27] for insights on these issues
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in the case of an unbounded domain. In Section 4, we will study the case of a Dirac source point immersed in
the microstructured medium.

In the following parts, the focus will be on the interface conditions at x = 0 when the wave propagation in
the right domain Ω+ is described by an effective model.

3.2. The homogenized model at leading order

The model at leading order is first presented. The macroscopic fields are noted (V0, S0) and the correctors
in the approximation (3) are ignored, i.e. the approximations (v`, σ`) ≈ (V0, S0) are used. Using the effective
model at the leading order (4) in Ω+, these fields satisfy (i) the systems:

Ω− :

 ∂tV0 −
1

ρ−
∂xS0 = 0,

∂tS0 − E−∂xV0 = 0,
Ω+ :

 ∂tV0 −
1

ρ0
∂xS0 = 0,

∂tS0 − E0∂xV0 = 0,
(25)

(ii) the interface conditions at x = 0 inherited from the conditions (23) (see [10] and [32, Appendix 1.A.]):

JV0K0 = 0, and JS0K0 = 0, (26)

and (iii) the initial conditions (24) with (v`, σ`) replaced by (V0, S0).
To prepare the ensuing analysis for higher-order models, the energy associated with this problem is now

studied. Similarly to what is done in Section 2, one obtains from the systems (25):

∂tEvol
0 +Dint

0 = 0, (27)

where the volume energy Evol
0 is now:

Evol
0 = Evol−

0 + Evol+
0 with


Evol−

0 =
1

2

∫
Ω−

ρ−V
2
0 +

S2
0

E−
dx,

Evol+
0 =

1

2

∫
Ω+

ρ0V
2
0 +

S2
0

E0
dx,

(28)

and the interface term is:

Dint
0 = JV0S0K0 = JV0K0〈S0〉0 + 〈V0〉0JS0K0. (29)

Then, a sufficient condition for the stability of the problem is this term to be the time derivative of a positive
interface energy: if there exists E int

0 > 0 such that Dint
0 = ∂tE int

0 , then (i) the total energy is conserved from (27)
and (ii) the the volume term Evol

0 is bounded:

∂t(Evol
0 + E int

0 ) = 0 ⇒ 0 ≤ Evol
0 (t) =

(
Evol

0 (0) + E int
0 (0)

)
− E int

0 (t) ≤ Evol
0 (0),

because the initial conditions on (V0, S0) ensure E int
0 (0) = 0 and E int

0 ≥ 0 by assumption. This property then
ensures that the fields (V0, S0) remain bounded in time.

In the leading-order case, the interface term Dint
0 is identically canceled by the transmission conditions (26),

and therefore from (27) the energy Evol
0 is conserved.

3.3. First-order homogenized model: correcting the transmission conditions

First-order approximations from (3) are now considered:

v`(x, t) = V1(x, t) + `P1

(x
`

)
∂xV1(x, t) + o(`), σ`(x, t) = S1(x, t) + `Q1

(x
`

)
∂xS1(x, t) + o(`), (30)
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where (P1, Q1) = (0, 0) in the homogeneous domain Ω−. As seen in Section 2.2, the first-order macroscopic
fields (V1, S1) satisfy the same non-dispersive systems (25) as at leading order in each of the two half-spaces. On
the other hand, replacing the fields (v`, σ`) by their approximations (30) above in the transmission conditions
(23) and neglecting the remainders, as proposed by [15], one obtains imperfect non-symmetrical conditions on
the jump of the macroscopic fields: {

JV1K0 = −` P1(0) (∂xV1)+,

JS1K0 = −`Q1(0) (∂xS1)+,
(31)

i.e. a first-order correction compared to the conditions at the leading order (26).
A similar energy analysis than at the leading order results in

∂tEvol
1 +Dint

1 = 0, (32)

where the total volume energy Evol
1 is the same as Evol

0 given by (28) with (V0, S0) replaced by (V1, S1). The
same analogy holds for the interface term Dint

1 compared with Dint
0 in (29). Given the conditions (31), one has:

Dint
1 = JV1K0〈S1〉0 + 〈V1〉0JS1K0 = −`

[
P1(0)(∂xV1)+〈S1〉0 +Q1(0)(∂xS1)+〈V1〉0

]
. (33)

There is no guarantee that Dint
1 is the derivative of a positive interface energy. The negative case may result

in an ill-posed problem. The following paragraphs explain how to deal with this issue, through symmetrization
and stabilization of the jump conditions.

Spring-mass transmission conditions. To symmetrize the relations (31), the limit values e.g. ∂xV
+
1 need

to be written in terms of mean values across the interfaces, e.g. 〈∂tS1〉0. The process introduces additional
approximations, up to residuals that should be at least of second order (i.e. in o(`)) to preserve the overall first-
order approximation. The main tools to do so are the bulk equations that link the time and space derivatives
of (V1, S1) in Ω+:

∂xV1 = E−1
0 ∂tS1 and ∂xS1 = ρ0∂tV1 in Ω+. (34)

Then, using also the jump-mean relations (22), the following approximations are found at the leading order:

(∂xV1)+ = E−1
0 ∂tS

+
1 , (∂xS1)+ = ρ0∂tV

+
1 ,

= E−1
0 ∂t

[
〈S1〉0 +

1

2
JS1K0

]
, = ρ0∂t

[
〈V1〉0 +

1

2
JV1K0

]
,

= E−1
0 ∂t〈S1〉0 + o(1), = ρ0∂t〈V1〉0 + o(1),

(35)

where the jump conditions (31) were used to neglect the first-order jumps JS1K0 and JV1K0. Combining these
approximations with (31) and neglecting second-order terms, one finally obtains:{

JV1K0 = −`E−1
0 P1(0) ∂t〈S1〉0,

JS1K0 = −` ρ0Q1(0) ∂t〈V1〉0.
(36)

This form is better known as spring-mass transmission conditions, that may also model e.g. a thin layer of
elastic material between the considered media [30, App. 1]. A new interface term Dint

1,sm then replaces Dint
1 in

(32)-(33), conveniently written as the derivative of an interface energy E int
1,sm:

Dint
1,sm = ∂tE int

1,sm with: E int
1,sm = − `

2

[
E−1

0 P1(0)〈S1〉20 + ρ0Q1(0)〈V1〉20
]
. (37)

However, there is still no guarantee that this interface energy remains positive for all time, except in the par-
ticular cases where P1(0) ≤ 0 and Q1(0) ≤ 0. It is why a last modelling step is necessary, as addressed now.
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Stabilization introducing an enlarged interphase. To obtain centered transmission conditions that are
associated to a positive interface energy, a thick interface Id = [−d`, d`] of thickness 2d`, centered on the point
x = 0, is introduced, and the transmission conditions are written across this interface. This method has been
first used for microstructured interface homogenization [17], but also for a 2D transmission problem similar to
the present case in [20,40].

Using Taylor expansions of the macroscopic fields in the homogeneous and homogenized media, e.g. V1(0−) =
V1(−d`) + d` ∂xV1(−d`) + o(`) and keeping only first-order terms in `, the conditions (31) become:{

V1(−d`) + d` ∂xV1(−d`) = V1(d`) + `(P1(0)− d) ∂xV1(d`),

S1(−d`) + d` ∂xS1(−d`) = S1(d`) + `(Q1(0)− d) ∂xS1(d`).
(38)

Then, using the same first-order approximations (35) than above, one obtains equivalent (up to o(`)) spring-mass
conditions: {

JV1Kd = `A1 ∂t〈S1〉d, A1 = −P1(0)E−1
0 + d(E−1

− + E−1
0 ),

JS1Kd = `B1 ∂t〈V1〉d, B1 = −Q1(0)ρ0 + d(ρ− + ρ0),
(39)

where J·Kd and 〈·〉d are the jump and mean values of fields across the interface Id. Similarly to (37), the interface
term in the energy is then written:

Dint
1,d = ∂tE int

1,d with: E int
1,d =

`

2

[
A1〈S1〉2d +B1〈V1〉2d

]
.

A sufficient condition for the interface energy E int
1,d to be positive is that the two coefficients (A1, B1) are positive.

This is achieved by choosing the interface parameter d such that:

d ≥ dmin := max

(
E−P1(0)

E− + E0
,
ρ0Q1(0)

ρ− + ρ0
, 0

)
. (40)

As already noticed, when P1(0) ≤ 0 and Q1(0) ≤ 0, there is no need for a thick interface: one can choose
d = dmin = 0 and the conditions (36) are retrieved. In the other cases, choosing d = dmin will cancel one of the
factors (A1, B1) in the relations (39), i.e. one has either JV1Kd = 0 or JS1Kd = 0.

Remark 5. Instead of introducing a thick interface, another way to design stable interface conditions from (36)
is to slightly modify the homogenized model by choosing non-zero means to the cell functions (P1, Q1) to ensure
P1(0) ≤ 0 and Q1(0) ≤ 0. This method was introduced in [1] to design stable wave models in unbounded media,
and applied in [8] to stabilize enriched boundary conditions at the edge of a half-plane. It was implemented by
the authors of the present paper, and is indeed a good alternative to treat one interface. But since it requires a
global change of the model (in the whole microstructured domain), it cannot be easily extended of the case of a
slab treated below in Section 3.5, or any case where more than one interface needs to be addressed. The thick
interface method, that introduces a local approximation, was therefore prefered.

Remark 6. When E = E0 is constant, i.e. when ρ is the only varying parameter, one has P1 = 0 (see Appendix
A.1) and therefore there is no first-order correction on the velocity jump in the spring-mass conditions (36), but
still a correction on the stress. This was shown already in [32] for electromagnetic waves (u being the electric
field and ρ being the permittivity). However, depending on the sign of Q1(0), stabilizing the interface condition
may still be necessary, and artificial corrections on the velocity jump may appear e.g. if the “thick” interface
method is chosen, resulting in conditions (39).

3.4. Total “hybrid” model incorporating second-order dispersion

Finally, the second-order model studied in Section 2 is implemented in the microstructured domain to account
for dispersion. Using the four fields (w, σ, ϕ, r) of the stress-gradient system in Ω+, while (v`, σ`) ≈ (w, σ) in



TITLE WILL BE SET BY THE PUBLISHER 13

Ω−, these fields satisfy:

Ω− :

 ∂tw −
1

ρ−
∂xσ = 0,

∂tσ − E−∂xw = 0,
Ω+ :



∂tw −
a

ρ0
∂xσ = −a− 1

ρ0
r,

∂tσ − E0∂xw = 0,

∂tϕ−
a− 1

ρ0
∂xσ = −a− 1

ρ0
r,

∂tr =
E0

`2β
ϕ.

(41)

At this stage, an important remark is that the two auxiliary fields (ϕ, r) satisfy ordinary differential equations in
time, and therefore no boundary condition are needed for these fields (but initial conditions must be added). The
systems (41) must therefore be complemented by transmission conditions on (w, σ) only, as in the leading-order
and first-order cases, and by initial conditions for all fields. Since we choose initial conditions only supported
in the left domain Ω−, we set:

w(x, 0) = v?(x), σ(x, 0) = σ?(x), ϕ(x, 0) = 0 and r(x, 0) = 0. (42)

Then, combining the results on energies of the stress-gradient system collected in Section 2.3, and the additional
term coming from the interface as specified above, one obtains:

∂tEvol +Dint = 0,

where the total energy Evol is now:

Evol = Evol− + Evol+ with


Evol− =

1

2

∫
Ω−

ρ−w
2 +

σ2

E−
dx,

Evol+ =
1

2

∫
Ω+

ρ0

(
w2 − 2wϕ+

a

a− 1
ϕ2

)
+

1

E0

(
σ2 + `2βr2

)
dx,

(43)

and the interface term Dint is again given by:

Dint = JwσK0 = JwK0〈σ〉0 + 〈w〉0JσK0.

This term is formally identical to the ones that appear for the first-order model (33).
At this stage, it would be natural to use the second-order approximations in (3) to design transmission

conditions for (w, σ). However, for technical reasons discussed in Remark 7 below, only first-order transmission
conditions are designed to obtain a “hybrid” model, using the terminology introduced in [32].

As in the previous section, the chosen total fields approximations are:

v`(x, t) = w(x, t) + `P1

(x
`

)
∂xw(x, t) + o(`), σ`(x, t) = σ(x, t) + `Q1

(x
`

)
∂xσ(x, t) + o(`), (44)

and the same analysis can be performed. Indeed, the links between the fields derivatives given by (34) can be
replaced by:

∂xw = E−1
0 ∂tσ and ∂xσ = ρ0∂tw + o(`) in Ω+. (45)

The second relation in (45) is obtained by taking the difference between the first and third equation of (41) in
Ω+, and by using ϕ = o(`). The second-order remainder o(`) in (45) has no influence on the approximations
at the leading order (35). Consequently, the same first-order spring-mass transmission conditions (39), written
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across a thick interface, are applied to (w, σ):{
JwKd = `A1 ∂t〈σ〉d, A1 = −P1(0)E−1

0 + d(E−1
− + E−1

0 ),

JσKd = `B1 ∂t〈w〉d, B1 = −Q1(0)ρ0 + d(ρ− + ρ0).
(46)

The various asymptotic formal expansions are still valid and indicate that the transmission conditions (46)
should result in an overall first-order approximation. In this way, the overall problem including (i) the systems
(41), (ii) the initial conditions (42) and (iii) the transmission conditions (46), is proven to be stable using the
same arguments than in the previous section. It is summarized in the next proposition.

Proposition 3. We consider as ”total model” the system (41) with the symmetrized jump conditions (46) across
a thick interface, where the interface parameter d satisfies (40). Associated with this system is a constant energy
over time E = Evol + E int

d , where Evol ≥ 0 is given by (43), and E int
d is given by

E int
d =

`

2

[
A1〈σ〉2d +B1〈w〉2d

]
≥ 0.

Remark 7. Imposing transmission conditions to the second-order approximation (16) of the total fields, as
done in the time-harmonic case in [15], would lead to

w− = w+ + `P1(0)(∂xw)+ + `2P2(0)(∂xxw)+ − ϕ+,

σ− = σ+ + `Q1(0)(∂xσ)+ + `2Q2(0)(∂xxσ)+ − `2β(∂xr)
+,

where w± = w(0±, t) and similarly for (σ, ϕ, r) and their derivatives. The same ideas than in Section 3.3 can
be applied to obtain symmetrized jump conditions on a thick interface of the form:{

JwKd = `A1∂t〈σ〉d + `2A2∂tt〈w〉d + ϕ(d`),

JσKd = `B1∂t〈w〉d + `2 (B2∂tt〈σ〉d + β(∂xr)(d`)) ,

with (A1, B1) given by (46) and new coefficients (A2, B2), generalizing (46). However, these second-order terms
feature (i) (non-classical) second-order time derivatives of (w, σ) and (ii) the traces of auxiliary fields (ϕ, ∂xr),
and our attempts to prove the stability of the resulting model were unsuccessful so far. Moreover, the “hybrid”
model described in Proposition 3 already provides a good compromise between implementation easiness (classical
spring-mass transmission conditions are used) and both qualitative and quantitative performances, as illustrated
in Section 5 below.

3.5. Microstructured slab bounded by two homogeneous domains

To end this section, one extends the previous model to the case of a microstructured medium bounded at
both extremities by homogeneous domains. It is representative of many real experiments of wave propagation.
The microstructured domain is ΩL =]0, L[, while Ω+ = {x > L} now denotes the right homogeneous domain,
characterized by coefficients (ρ+, E+). Additional transmission conditions must be designed for the second
interface at x = L. The continuity of the first-order approximations (44) is written:{

w(L−) + `P1(yL)∂xw(L−) = w(L+),

σ(L−) + `Q1(yL)∂xσ(L−) = σ(L+),

where yL = L/`. Then, a similar analysis as in Section 3.3 leads to a reformulation of these conditions involving
the jumps J·Kd′ and means 〈·〉d′ across a thick interface [L− d′`, L+ d′`] as:{

JwKd′ = `A′1 ∂t〈σ〉d′ A′1 = P1(yL)E−1
0 + d′(E−1

0 + E−1
+ ),

JσKd′ = `B′1 ∂t〈w〉d′ B′1 = Q1(yL)ρ0 + d′(ρ0 + ρ+),
(47)
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where the two coefficients (A′1, B
′
1) must be positive for these conditions to be associated with a positive interface

energy. The thickness d′ of this second interface must be chosen so that:

d′ ≥ d′min := max

(
−E+P1(yL)

E+ + E0
, −ρ0Q1(yL)

ρ+ + ρ0
, 0

)
, (48)

a condition similar to its counterpart (40) except for the signs.

4. Correctors for a Dirac source term

So far, no source term was considered in the evolution equations. The initial conditions were supported in
the homogeneous domain, thus avoiding to adapt them to the microstructure [27]. To complete the modelling
framework, the case of a single force source point immersed in the microstructured medium is now addressed,
using the tools previously developed for interfaces.

4.1. Source terms and jump conditions

A point force at point xs is modeled by a Dirac source term in the initial wave equation:

ρ`(x) ∂ttu`(x, t)− ∂x (E`(x)∂xu`(x, t)) = ρ`(x) g(t) δs(x), δs(x) := δ(x− xs), (49)

where δ is the Dirac distribution and g the time-dependent amplitude of the source. To simplify the analysis,
and having in mind the microstructures with fixed periodicity length ` considered in the numerical examples, we
furthermore assume that the point source position is fixed at ys ∈ [0, 1] inside a unit cell, and we note ρs = ρ(ys)
the density at this position, that does not depend on `.

The above equation (49) is to be understood in the weak sense, i.e. :∫
Ω

(ρ` ∂ttu` v + E` ∂xu` ∂xv) dx = [E`(∂xu`)v](x+)− [E`(∂xu`)v](x−) + ρsv(xs)g, ∀v ∈ H(Ω), (50)

with a suitable choice of domain Ω =]x−, x+[ and functional space H(Ω). As in the previous sections, space
and time dependency are omitted in (50) and below for compactness.

Such a source point has been addressed by [12], and even extended to double-couple source (modelling
ruptures of seismic faults) and to higher dimensions (for non-periodic homogenization) in [13]. However, the
provided expression, relying on energy conservation arguments, only treat first-order homogenization. The
present proposal exploits the fact that in 1D, a Dirac distribution yields a jump condition on the solution. As
a consequence, the formalism developed in the previous sections can be reused here to complete the two-scale
formal expansion.

Remark 8. This approach does not hold in higher dimensions, for which an analysis of the correction for
a source point should be incorporated into the two-scale asymptotic expansion, see [13]. However, it could be
applied to line sources in 2D or area sources in 3D, modelling e.g. a distribution of charges in electromagnetism,
arrays of microphones in acoustics etc.

Replacing the source point by a jump condition. In 1D, a Dirac source term entails a discontinuity in
the stress σ` = E` ∂xu` (accordingly with the physical interpretation of a Dirac source term as a point force).
Indeed, integrating the wave equation (49) between xs − ξ and xs + ξ, one obtains:

σ`(xs + ξ)− σ`(xs − ξ)−
∫ xs+ξ

xs−ξ
ρ` ∂ttu` dx = −ρs g,
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and then letting ξ → 0 gives the announced result. Accordingly, the wave equation (49) may be rewritten as
the system: 

∂tv` −
1

ρ`
∂xσ` = 0 x < xs and x > xs,

∂tσ` − E` ∂xv` = 0 x < xs and x > xs,

Jv`Ks = 0 x = xs,

Jσ`Ks = −ρs g x = xs,

(51)

where J·Ks denotes the jump at source location xs. This problem can be homogenized as the previously seen
transmission problem, except that the same periodic (or homogenized) medium occupies both half-spaces, and
the successive corrections will account for the discontinuity of σ`.

4.2. Families of models

Leading-order homogenization. At the leading order, as in Section 3.2, E` and ρ` are replaced by the
constant E0 and ρ0 in the bulk equations of system (51), and the source term is unchanged (still featuring the
value ρs).

First-order homogenization. At first order, as in Section 3.3, the bulk equations satisfied by the macroscopic
fields denoted (V1, S1) are the same as at leading order, and the transmission conditions are applied to the first-
order approximations of the full fields (30), leading to:

x < xs and x > xs :

 ∂tV1 −
1

ρ0
∂xS1 = 0

∂tS1 − E0∂xV1 = 0
and

{
JV1Ks + `P1(ys)J∂xV1Ks = 0,

JS1Ks + `Q1(ys)J∂xS1Ks = −ρsg,
(52)

where ys = xs/` is the source position inside the cell that contains xs. Then, the bulk equations provide
approximations at the leading order of the jumps of spatial derivatives:

J∂xV1Ks =
1

E0
∂tJS1Ks = − ρs

E0
∂tg + o(1) and J∂xS1Ks = ρ0∂tJV1Ks = o(1). (53)

Neglecting the o(`) terms in (52), one obtains first-order conditions: JV1Ks = `P1(ys)
ρs

E0
∂tg,

JS1Ks = −ρs g,
(54)

i.e. the system in (52) features an additional inhomogeneous jump condition on the macroscopic velocity. The
resulting system may finally be written in the equivalent form: ∂tV1 −

1

ρ0
∂xS1 =

ρs

ρ0
δs g,

∂tS1 − E0∂xV1 = −`ρsP1(ys) ∂tg δs.
(55)

This expression was also obtained in [12, Section 2.4] using an energy conservation argument.

Application to the stress-gradient system. Finally, the stress-gradient system (20) satisfied by the macro-
scopic fields (w, σ, ϕ, r) is considered. As in Section 3.4, only first-order corrections are applied to the source
term for simplicity. Hence, the analysis performed above for these corrections remains valid: the main difference
is that the stress-velocity relation ∂xσ = ρ0∂tw+o(`) is a first-order approximation rather than an equality, but



TITLE WILL BE SET BY THE PUBLISHER 17

it does not change the approximations at the leading order (53). Therefore jump conditions (54) are applied to
(w, σ).

Coming back to Dirac notations, the stress spatial derivative ∂xσ is involved in two equations of the system,
and hence the source term must be accordingly distributed:

∂tw −
a

ρ0
∂xσ = −a− 1

ρ0
r +

aρs

ρ0
g δs,

∂tσ − E0∂xw = −` ρsP1(ys) ∂tg δs,

∂tϕ−
a− 1

ρ0
∂xσ = −a− 1

ρ0
r +

(a− 1)ρs

ρ0
g δs,

∂tr =
E0

`2β
ϕ.

(56)

As in Section 3.4, this is a hybrid model combining first-order corrections for the source term and second-order
corrections in the wave equation to account for dispersive effects. If transmission correctors were derived at the
second order, see Remark 7, applying them to the problem (51) would certainly enable to obtain a complete
second-order model.

5. Numerical experiments

The proposed models are now applied to simulate the wave propagation into an example bilaminate mate-
rial. The material properties, initial conditions and source terms are first given (Section 5.1), the numerical
implementation is briefly described (Section 5.2), and two test-cases are addressed: (i) a wave transmitted
from a homogeneous medium towards the bilaminate (Section 5.3) and (ii) a wave emitted from a source point
embedded in a slab of bilaminate, surrounded by homogeneous media (Section 5.4).

5.1. Microstructured medium, initial conditions and source modelling

The numerical illustrations are provided for bilaminate materials, for which analytical expressions of the
homogenized coefficients and cell problems are available, see Appendix A.3. Furthermore, an analytical formula
for (βm, βt) (or, here, a) was proposed in [15] to achieve a better fit of the exact dispersion curve for low
frequencies, see (68). This specific choice of (mt) model was also discussed in [36] and found to compete
reasonably with numerically optimized models that achieve an overall fit of this curve on the whole Brillouin
zone. Finally, this choice is numerically found to be compatible with the stability conditions {βm < 0, βt > 0}
established by (18).

α 1− α

EA
ρA

EB = γEEA
ρB = γρρA

Figure 1. Unit cell of a bilaminate with two phases (A,B) and phase ratio α.

The bilaminate investigated here has a periodicity length ` = 20 m, with a phase ratio α = 0.25 (figure 1).
The physical parameters are ρA = 1000 kg/m3, EA = 109 Pa, and ρB = 1500 kg/m3, EB = 6 109 Pa. The
associated homogenized parameters are ρ0 = 1375 kg/m3, E0 = 2.66 109 Pa and β = 0.01959, see Appendix
A.3. The optimized parameters of the (mt) model (68) are βm = −0.107071 and βt = 0.087481.
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Figure 2. Time evolution of the source (58) at fc = 3 Hz (a). Spectrum of the source for various
central frequencies fc, as a function of the asymptotic parameter εc (b).

In the following examples, two types of forcing are considered: (i) a Cauchy problem (24) with an initial
right-going wave (

v?
σ?

)
=

 − 1

c−
ρ−

 g

(
t+ t0 −

x

c−

)
, (57)

or (ii) null initial conditions with a time-dependent forcing at a Dirac source point (Section 4.2). Both con-
figurations involve the source function g(t), chosen as the following combination of sinusoids with bounded
support:

g(t) =

 G

4∑
m=1

am sin(bmωct) if 0 < t <
1

fc
,

0 otherwise,

(58)

where bm = 2m−1, the coefficients am are a1 = 1, a2 = −21/32, a3 = 63/768, a4 = −1/512, and the amplitude
factor is G ≡ 1, unless otherwise stated. It entails that g is a smooth function (g ∈ C6([0,+∞[)), see the display
in Figure 2(a).

Moreover, g(t) is a wide-band signal with a central frequency fc = ωc/2π. As announced in Remark 1, this
frequency is used to define a dimensionless parameter characteristic of the “low-frequency” regime underlying
the formal asymptotic expansions used throughout the paper:

εc = ` fc/c0.

We denote ĝ(ω) the Fourier transform in time of g(t), where ω = 2πf and f is the frequency. Figure 2(b)
displays the normalized modulus |ĝ|(ω) in terms of ε = ` f/c0 = ` ω/(2πc0), for fours values of fc. Note that
even for the smallest central frequencies, non-negligible values of ε are reached by the signal.

5.2. Numerical set-up

In the following experiments, comparisons are made between full-field simulations in the microstructured
configurations and simulations involving their homogenized counterparts at different orders. All the numerical
simulations are done on a uniform grid, with space and time discretization parameters ∆x and ∆t. The
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discretization is fine enough to guarantee that the numerical artifacts are negligible. A much coarser grid can
be used for simulations in homogenised media than for simulations in microstructured media (this is one of the
great interests of homogenisation!). Nevertheless, as this is not the object of the present work, we use here the
same grid ∆x = 1 m (to be compared with cell size ` = 20 m) for both types of configurations.

The reference simulations in the microstructured configurations are done using a fourth-order ADER scheme
[29]. This explicit two-step finite-volume scheme has a stencil of width 2. In the homogenized configurations,
we prefer to use the standard Lax-Wendroff scheme, of width 1. Doing so ensures that the stencil does not cross
the whole enlarged interphase, and only one ghost value is required in the interphase [39]. Both ADER and
Lax-Wendroff schemes are stable under the usual CFL condition ζ = max(c)∆t/∆x ≤ 1; in practice, ζ = 0.95
is chosen.

In the case of second-order homogenization, the stress-gradient formulation yields a non-homogeneous first-
order system (17). A splitting strategy is then followed, where one solves alternatively the homogeneous part
by the Lax-Wendroff scheme, and the relaxation part exactly thanks to the exponential (19). The reader is
referred to [7] for details.

The discretization of the transmission conditions relies on the Explicit Simplified Interface Method. Roughly
speaking, the numerical scheme is modified at grid points surrounding the interfaces, based on the jump condi-
tions (31) or (46). Once again, the reader is referred to [30] for details. Lastly, the numerical approximations
of the fields are denoted as follows:

• vh for the microstructured velocity v` (1);
• v0 for the zeroth-order homogenized velocity (25) with the transmission conditions (26);
• v1 for the first-order homogenized velocity (31) without o(`), endowed with the conditions (31);
• v2 for the “total” homogenized velocity (44) without o(`), endowed with the conditions (46).

5.3. Transmission towards a microstructured half-space

A bounded domain [−400, 1100] is considered. An interface at x0 = 350 m separates the domain into two
areas: (i) on the left, a homogeneous medium; (ii) on the right, the bilaminate described above. A right-going
wave is initially supported in the homogeneous medium, with a time shift t0 = 0.18 s in (57).

To highlight the importance of correctors for the transmission conditions, the physical parameters of the
homogeneous medium are chosen as E− = E0 and ρ− = ρ0, to ensure impedance matching (E−ρ− = E0ρ0)
between the left and right media. At leading order and first order, the whole domain has thus homogeneous
physical parameters, and the (first-order) transmission condition is the only signature of the microstructure.

Choosing d = dmin in (40), one finds d = 0.017, yielding an enlarged interphase width 2d` = 0.68 m. In
homogenized configurations, two interfaces are thus located at x0 ± d`, thus at 349.66 m and at 350.34 m. The
interface parameters deduced from (38) are then A1 = 9.09 10−11 Pa−1 and B1 = 0 Pa m−2 s2.

Figure 3 illustrates the low-frequency configuration: fc = 3 Hz (εc = 0.043). The wave is shown at the initial
time (a) and at t = 0.5 (b), where a reflected wave is observed in the Cauchy medium. For the model at leading
order (Section 3.2), the medium appears as homogeneous: no reflected wave is generated (c), which clearly
shows the inability of this naive approach to handle the boundary effects of a homogenized medium. Moreover,
the small-scale gradients of the solution in the microstructured medium are not captured. The first-order model
(Section 3.3) fixes these deficiencies: the reflected wave is captured, and the correctors handle the cell evolution
of the transmitted wave (d) (note that at the scale of the figure, the two interfaces cannot be distinguished from
each other). The same observations can be done for the total model (Section 3.4): at low frequency, the latter
captures equally well the wave phenomena (e). A close-up on the wave in the transmitted medium shows that
the mean field w (13) captures the slow variations of the solution, whereas the correctors in (15) describe finely
the gradients of the solution (f).

A higher value of the central frequency is considered in Figure 4: fc = 9 Hz (εc = 0.123). Compared with
the low-frequency case, the microstructured field vh exhibits a dispersive behavior. The model at leading order
does not capture any phenomena: no reflected wave, no dispersion, no small-scale gradient (a). The first-order
model captures two of the phenomena (reflected wave and gradients), but the dispersion in the right domain
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(a) Microstructured field vh at t = 0 (b) Microstructured field vh at t = 0.5
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(c) Superposition of v0 (Section 3.2) and vh (d) Superposition of v1 (Section 3.3) and vh
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(e) Superposition of v2 (Section 3.4) and vh (f) Close-up on w and v2 (Section 3.4) and vh
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Figure 3. Wave in a homogeneous half-space (a-b, left) impacting a microstructured half-space (a-b,
right) with impedance matching (E−ρ− = E0ρ0). The central frequency is fc = 3 Hz (εc = 0.043).
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cannot be handled (b): this model is intrinsically non-dispersive. On the contrary, the total model captures all
these features (c). A close-up in the right subdomain illustrates the quality of the correctors of the transmitted
wave (d). The agreement is slightly worse on the main front of the reflected wave. We do not know how to
explain this difference in behaviour, which is also observed in other simulations not presented here. A loss of
accuracy is also observed behind the main front of the reflected and transmitted waves. These oscillations are
associated with high-frequency components that are not captured by the dispersive model.

(a) Superposition of v0 (Section 3.2) and vh (b) Superposition of v1 (Section 3.3) and vh
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(c) Superposition of v2 (Section 3.4) and vh (d) Close-up on w and v2 (Section 3.4) and vh
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Figure 4. Interface between a homogeneous half-space and a microstructured half-space. The central
frequency is fc = 9 Hz (εc = 0.123), and time is t = 0.5.

Lastly, Figure 5 illustrates the high central frequency fc = 12 Hz (εc = 0.172), where dispersion becomes the
predominant feature. The limitations of models at the leading order and first order are examplified (a,b). Even
for this large εc, the total model captures finely the main fronts of the transmitted dispersive wave (c,d). The
amplitude errors are larger on the reflected wave.



22 TITLE WILL BE SET BY THE PUBLISHER

(a) Superposition of v0 (Section 3.2) and vh (b) Superposition of v1 (Section 3.3) and vh
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(c) Superposition of v2 (Section 3.4) and vh (d) Close-up on w and v2 (Section 3.4) and vh
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Figure 5. Interface between a homogeneous half-space and a microstructured half-space. The central
frequency is fc = 12 Hz (εc = 0.172), and time is t = 0.5.

Other simulations have been done in cases without impedance matching (not shown here). Similar conclusions
are obtained: (i) the model at leading order yields a large error in the reflected wave; (ii) the first-order
model captures well the reflected wave and the small-scale variations of the solution, but it is restricted to low
frequencies; (iii) the total model captures all the features, and maintains accuracy even for large values of εc.

The accuracy of the effective models is then examined quantitatively. A source point and a receiver are
respectively located at xs < x0 and xr > x0. We impose that these positions correspond to nodes of the grid to
avoid discretization effects. Moreover, the relative position of the receiver with respect to the microstructure
is kept constant. Finally, the distances L, the measurement time T and the forcing amplitude G must be kept
constant in scaled variables (denoted by bars) L = k L, T = ω T , and G = G/ω2, with k = ω/c. To satisfy
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Figure 6. Interface between a homogeneous half-space and a microstructured half-space. Error mea-
surements for the velocity (a) and stress (b) fields. Dashed lines indicate expected asymptotic slopes.
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Figure 7. Interfaces between a homogeneous half-space and a microstructured half-space. (a) Error
measurements on velocity fields v1 and v2 for variable interface thickness and two frequencies for
the configuration of the previous figures. The minimum thickness 2dmin` = 0.68m is indicated by the
dashed vertical line. (b) Example of instability occurring for a left-going wave impacting a flat interface
(dashed vertical line). In this example the homogeneous and homogenized media occupy the right and
left half-spaces, respectively.

these criteria, the indices m and n are introduced and one defines

xs(m) = x0 −
(
m+

1

2

)
D, xr(m) = x0 +

(
m+

1

2

)
`,

fc(m) =
n+ 1

2

m+ 1
2

fc(n), T (m) =
m+ 1

2

n+ 1
2

T (n), G(m) =

(
n+ 1

2

m+ 1
2

)2

G(n).

The spatial scales are D = 4 m and ` = 20 m. The index n = 30 is chosen, with fc(30) = 1 Hz, T (30) = 3 s and
G(30) = 1, which defines the measurement parameters according to the index m alone. The following values of
m are considered: 1, 2, 3, 4, 5, 8, 10, 15 and 30. The relative error in norm L2(0, T ) is measured at receiver



24 TITLE WILL BE SET BY THE PUBLISHER

position xr by comparing simulations in microstructured and effective media, i.e. :

Err(vn) =
‖vn(xr, ·)− vh(xr, ·)‖L2(0,T )

‖vh(xr, ·)‖L2(0,T )
.

Figure 6-(a) represents the error on velocity fields {vn}n=0,1,2 as a function of the asymptotic parameter εc.
The expected orders of convergence are asymptotically retrieved, in particular the “total” model remains of first
order due to the choice of total field and associated transmission conditions. However, accounting for dispersion
using the stress-gradient model brings a clear improvement: additionally to the qualitative gains observed in
Figures 4 and 5, the prefactor in front of the error on v2 is divided by approximately 5 compared to that of the
error on v1. With reference to Remark 2, the error on stress fields is also plotted in Figure 6-(b), and the same
observations can be made, highlighting the identical treatment given to the velocity and stress fields.

We also examine the influence of larger values of the interface thickness on the accuracy for two central
frequencies (in previous experiments, the minimal value 2d` = 2dmin` ≈ 0.68 m was chosen). To do so, we
consider integer values of d`, from which are deduced the interface parameters A1 et A2 (39). Figure 7(a) shows
the relative error as a function of the interphase thickness for v1 and v2. In both cases, the error grows strictly
with d`. However, this growth is moderate, which allows to enlarge the interphase while keeping an almost
constant accuracy. One can therefore choose a given thickness from numerical requirements (e.g. mesh size or
needed “ghost” nodes inside the interface) without deteriorating the solution too much. Since we do not have
such requirements with the chosen numerical methods, the minimum value d = dmin is kept in the following
numerical experiments.

Finally, to illustrate what may happen when the sufficient conditions of stability on the transmission condition
coefficients are not satisfied, Figure 7(b) represents a left-going wave impacting a flat interface between a homo-
geneous and a homogenized media occupying the right and left half-spaces, respectively, i.e. the configuration de-
scribed in Section 3.5. The interface is not thickened, i.e. d′ = 0 in (47), which results in A′1 = −7.81×10−11 < 0
and B′1 = 46.875. When the wave crosses the interface, an instability appears and quickly grows: here it reaches
the same amplitude than the incident wave in a few milliseconds (while the characteristic times of propagation
are in seconds in these numerical experiments).

5.4. Source point in a slab

This second example illustrates both the modelling of a Dirac source term and of a bounded laminated
medium. A domain [−300, 1700] is divided into three parts: a heterogeneous slab of bilaminate [350, 1090]
is surrounded by two homogeneous Cauchy media with properties ρ± = 1000 kg/m3 and E± = 2.25 109 Pa.
Contrary to the previous example, there is no impedance matching between the homogeneous and homogenized
media. A Dirac source point is located at the middle of the slab at xs = 720 m. It is handled through the
systems (55) for first-order homogenization, or (56) for second-order homogenization.

Taking again d = dmin in (40) and d′ = d′min in (48), the interface thicknesses are 2d` = 0.788 m (left interface)
and 2d′` = 3.8 m (right interface). The interface parameters deduced from (38) and (47) are: A1 = 9.42 10−11

Pa−1 and B1 = 0 Pa m−2 s2 (left interface) and A′1 = 0 Pa−1 and B′1 = 273.3 Pa m−2 s2 (right interface).
Figure 8 shows snapshots of the microstructured solution vh at several times, for various central frequencies.

For the sake of clarity, the internal interfaces of the bilaminate are not shown. As time increases, one observes
the waves emitted by the source point and scattered by the external interfaces, leading to transmitted waves
(in the homogeneous external medial) and reflected waves (in the internal microstructured medium). At low
frequency fc = 3 Hz (Figure 8-(a)), the dispersion is negligeable. The only small scale variations are due
to the internal microstructure. As the central frequency increases (b,c,d), the dispersive effects are becoming
increasingly important. A slight asymmetry between left and right parts of the figures may be observed. This
is due to the grid-induced assymmetry of the Dirac source point.

Figure 9 compare the microstructured velocity vh with the velocity v2 of the total model (Section 3.4). Once
again, the internal interfaces are not shown. The velocities of the models at the leading order and first order
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(a) vh at fc = 3 Hz (εc = 0.043) (b) vh at fc = 6 Hz (εc = 0.085)
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(c) vh at fc = 9 Hz (εc = 0.123) (d) vh at fc = 12 Hz (εc = 0.172)
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Figure 8. Waves emitted in a microstructured slab surrounded by two homogeneous half-spaces:
microtructured velocity vh for several source frequency and times. For the clarity of the figure, the
internal interfaces are not shown.

are discarded, since they are insufficient to capture accurately dispersion. Figure 9-(a,b) illustrates the low-
frequency forcing fc = 3 Hz. The fields are shown at t = 0.25 s (a), where the emitted waves are still in the
slab, and t = 0.6 s (b), where waves have been transmitted in the surrounding media. As in Figure 5, dispersive
effects are not visible at this frequency. Figures 9-(c-d) illustrate the case of a higher frequency fc = 9 Hz,
where the dispersive effects become more visible in the microstructured model. The total model captures the
first wavefronts and their transmission to the surrounding media. Figures 9-(e-f) display the high-frequency case
fc = 12 Hz. Some inaccuracies of the total model can be observed, especially inside the slab, but the qualitative
agreement with the microstructured solution remains good, even for this large value of the parameter εc = 0.172.

For completeness, the stress fields are also displayed in Figure 10 for fc = 9 Hz corresponding to the
intermediate configuration of Figure 9-(c,d), and for thickened interfaces: d = d′ = 4 m, so that A1 = 2.28×10−10
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(a) fc = 3 Hz (εc = 0.043), t = 0.25 s (b) fc = 3 Hz (εc = 0.043), t = 0.6 s
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(c) fc = 9 Hz (εc = 0.123), t = 0.25 s (d) fc = 9 Hz (εc = 0.123), t = 0.6 s
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(e) fc = 12 Hz (εc = 0.172), t = 0.25 s (f) fc = 12 Hz (εc = 0.172), t = 0.6 s
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Figure 9. Wave emitted by a source point in a heterogeneous slab: comparisons between “total”
velocity v2 (Section 3.4) and the microstructured field vh at three central frequencies (rows), represented
at t = 0.25 (left column) and t = 0.6 (right column).
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(a) fc = 9 Hz (εc = 0.123), t = 0.25 s (b) fc = 9 Hz (εc = 0.123), t = 0.6 s
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Figure 10. Wave emitted by a source point in a heterogeneous slab: comparisons between “total”
stress σ2 (Section 3.4) and the microstructured field σh at central frequency fc = 9 Hz (central row of
Figure 9), represented at t = 0.25 (a) and t = 0.6 (b).

Pa−1, B1 = 503.12 Pa (left interface), A′1 = 8.57×10−11 Pa−1 and B′1 = 521.87 Pa (right interface). Once again,
and despite these non-optimal values of d and d′, excellent agreement is observed between the microstructured
and “total” fields, especially for the first wavefronts of the fields transmitted into the left and right homogeneous
domains.

Finally, to provide another representation of these approximations, a receiver put at xr = 340 m records
the field transmitted to the left homogeneous domain. Figure 11 shows the time history of the absolute errors
|vh(xr, t)− vn(xr, t)|. The signal is null up to t ≈ 0.3 s, which corresponds of the travel time from the source
point to the receiver. A low frequency (a), the error of the model at leading order is much bigger than that
of the first-order model and total model. It emphasizes the role of the first-order transmission conditions. At
higher frequencies (b-c-d), the models at leading order and first order are unable to capture the dispersive
effects, which yields similar errors. On the contrary, the benefit induced by the total model is clearly observed.
Lastly, the maximal amplitude of the error for each model increases with the frequency.

6. Conclusion and perspectives

In this paper, a consistant “hybrid” model was proposed for transient waves in periodic media, combining
second-order correctors of the wave equation to account for dispersion and first-order correctors for transmission
conditions from or toward homogeneous domains. Based on a reformulation as a hyperbolic system, its well-
posedness was proven, and its efficiency was established through numerical simulations.

Many follows-up come in mind. First, designing effective jump conditions of order 2 as discussed in Remark
7 would lead to a fully consistant model at second order. This could perhaps correct the observed discrepancy
between errors on reflected waves and transmitted ones, whose reason is unkown. Moreover, a rigorous asymp-
totic error analysis of these “total” models, either hybrid or second-order, is still missing and is necessary to
completely validate the proposed methodology.

Then, higher frequencies could be addressed with a similar formalism using the extension of double-scale
approaches established by [16] and developed afterwards e.g. [24, 25]. For time-harmonic boundary problems
in 1D, a similar approach relying on Bloch waves is found in [38], but a time-domain counterpart is yet to be
proposed.
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(a) fc = 3 Hz (εc = 0.043) (b) fc = 6 Hz (εc = 0.085)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

0 

2E−4 

4E−4 

6E−4 

Time t (s)

E
rr

o
r

v0

v1

v2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

0 

2E−4 

4E−4 

6E−4 

Time t (s)

E
rr

o
r

v0

v1

v2

(c) fc = 9 Hz (εc = 0.123) (d) fc = 12 Hz (εc = 0.172)
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Figure 11. Waves emitted in a microstructured slab sourrounded by two homogeneous half-spaces.
Time evolution of the errors |vh(xr, t)− vn(xr, t)| at receiver xr, with the orders n = 0, 1, 2.

Finally, going to higher dimensions to tackle many more real-life configurations is an important research
direction. Relying on the work [8,20] for boundary conditions, a hyperbolic reformulation of the wave equation
could for instance enable effective simulations in homogenized media.

Appendix A. Cell functions and homogenized coefficients

This appendix gathers existing results on the cell functions, effective coefficients and particular closed-form
solutions for bilaminates, and Section A.2 additionally provides the proof of Proposition 1. The notation 〈f〉Y
is used for the mean value of a function f on the periodicity cell Y =]0, 1[:

〈f〉Y =

∫ 1

0

f(y)dy
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A.1. Definitions of cell functions and homogenized coefficients

Cell functions Pj and Qj , associated respectively with displacement/velocity and stress correctors, see (3),
satisfy the following static problems on Y :

∂yQj = fj , Qj =
E

E0
(Pj + ∂yPj+1), Pj is 1-periodic, 〈Pj〉Y = 0, j ∈ {0, 1, 2},

where P0 = 1 and the source-terms fj are defined recursively as:

f0 = 0, f1 =
ρ

ρ0
−Q0 and f2 =

ρ

ρ0
P1 −Q1,

Homogenized coefficients (ρj , Ej) are then defined as weighted means of their periodic counterparts, involving
the cell functions:

ρj = 〈ρPj〉Y and Ej = 〈E(Pj + ∂yPj+1)〉Y = E0〈Qj〉Y ,
and one can verify that these definitions lead to the expressions (5) for (ρ0, E0).

Remark 9. With the definitions above, one has P0 = Q0 = 1 and therefore:

∂yQ1 =
ρ

ρ0
− 1 and ∂yP1 =

E0

E
− 1. (59)

Finally, the coefficient β which is involved in the second-order models (7) aggregates the second-order contri-
butions:

β =
E2

E0
− ρ2

ρ0
. (60)

A.2. Reciprocity identities and properties of the coefficients

Additional relations between the effective coeffcients can be obtained by using the weak form of the cell
problems:

Find Pj ∈ H1
] ,

∫ 1

0

E(∂yPj)(∂yw)dy = Fj(w) ∀w ∈ H1
] , j ∈ {1, 2, 3}, (61)

with H1
] = {w ∈ H1(]0, 1[), 〈w〉 = 0, w is 1-periodic}, and where:

F1(w) =

∫ 1

0

−E∂yw dy,

F2(w) =

∫ 1

0

(
−EP1 ∂yw + E (1 + ∂yP1)w − E0

ρ

ρ0
w

)
dy,

F3(w) =

∫ 1

0

(
−EP2 ∂yw + E (P1 + ∂yP2)w − E0

ρ

ρ0
P1w

)
dy.

Then reciprocity identities are obtained by ”testing” a problem with another cell solution, and exploiting the
symmetry of the left-hand-side of (61).

Relations between leading- and first-order coefficients. Setting w = P2 in (61) for j = 1, and w = P1

for j = 2, one obtains F1(P2) = F2(P1), which leads to E1 = E0ρ1/ρ0 as in [15, Lemma 1].

Alternative expressions for the second-order coefficient β. Similarly, one can consider the following
combination:

F2(P2)− F1(P3) + F3(P1) = E2 − E0
ρ2

ρ0
+

∫ 1

0

(
E − E0

ρ

ρ0

)
P 2

1 dy.
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Starting from (60), and since F2(P2) =
∫ 1

0
E(∂yP2)2dy and F1(P3) = F3(P1), one obtains:

β =
E2

E0
− ρ2

ρ0
=

∫ 1

0

E

E0
(∂yP2)2 +

(
ρ

ρ0
− E

E0

)
P 2

1 dy =

∫ 1

0

E0

E
Q2

1 − 2Q1P1 +
ρ

ρ0
P 2

1 dy. (62)

Finally the Proposition 1 is proven by working a bit more on the expression (62). In particular, using the
relations (59),

β =

∫ 1

0

(1 + ∂yP1)Q2
1 − 2Q1P1 + (1 + ∂yQ1)P 2

1 dy

=

∫ 1

0

(P1 −Q1)2 dy + I,
(63)

where the integral I can be expressed on the one hand using integration by part as:

I =

∫ 1

0

∂yP1Q
2
1 + ∂yQ1P

2
1 dy = −2

∫ 1

0

(∂yP1 + ∂yQ1)P1Q1 dy, (64)

and, on the other hand, introducing the term (P1 −Q1)2 and using (64):

I =

∫ 1

0

(∂yP1 + ∂yQ1)
[
(P1 −Q1)2 + 2P1Q1

]
+ ∂yP1P

2
1 + ∂yQ1Q

2
1 dy,

=

∫ 1

0

(∂yP1 + ∂yQ1)(P1 −Q1)2 dy − I,
(65)

because 〈∂yP1P
2
1 〉Y = 〈∂yP 3

1 )〉Y /3 = 0, and similarly 〈∂yQ1Q
2
1〉Y = 0. Finally, from (63), (65), and (59), a

third expression of β, clearly positive, is obtained:

β =
1

2

∫ 1

0

(P1 −Q1)2 (2 + ∂yP1 + ∂yQ1) dy,

=
1

2

∫ 1

0

(P1 −Q1)2

(
E0

E
+

ρ

ρ0

)
dy ≥ 0,

A.3. Closed-form formula for bilaminates

This section provides closed-form expressions, in our notation, for the effective coefficients, the parameters
of an optimal (mt) model, and the cell functions (P1, Q1, P2, Q2) assuming periodic bilaminate with the unit
cell Y =]0, 1[ as depicted in figure 1. Additional detail and justifications are provided in [15] and the references
therein, and the multi-laminate generalization is performed in [36].

Effective coefficients. The homogenization indexes at leading order are first defined as:

nE =
γE

(1− α) + αγE
and nρ = α+ (1− α)γρ, (66)

in terms of the contrasts γE = EB/EA and γρ = ρB/ρA, so that the effective Young’s modulus and density are:

E0 = nEEA, and ρ0 = nρρA.

The effective wavespeed c0 is such that c20 = c2A/n0 with n0 = nρ/nE and cA =
√
EA/ρA. Finally, the

second-order coefficient β is:

β =
1

12

[
α(1− α)(1− γEγρ)

n0γE

]2

. (67)
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Optimized (mt) model. The optimal two-parameter (mt) model from [15, Sect. 4.1.1] is given by:

βm =
−1− 4β + 4β

10
and βt =

1− 6β − 4β

10
(68)

where

β =
1

12

[
α2γE − (1− α)2γρ

n0γE

]2

.

First cell problem. As already seen, Q0 = 1 and the first cell function P1 is given by:

P1(y) =


(nE − 1)

(
y − α

2

)
, y ∈ [0, α],

−(nE − 1)
α

1− α
(
y − 1 + α

2

)
, y ∈ [α, 1],

in terms of the index nE given by (66).

Second cell problem. The cell function Q1 is:

Q1(y) =


( 1

nρ
− 1
)(
y − α

2

)
, y ∈ [0, α],

−
( 1

nρ
− 1
) α

1− α
(
y − 1 + α

2

)
, y ∈ [α, 1],

in terms of the index nρ given by (66). The affiliated “displacement” cell function P2 is:

P2(y) =

{
P2(0) + pAy(y − α), y ∈ [0, α],

P2(0) + pB [y(y − (1 + α)) + α] , y ∈ [α, 1],
,

where

P2(0) =
α2

12

[nE
nρ

+
1− 3α

α
nE −

1− α
αnρ

+ 1
]

and

pA =
1

2

[nE
nρ
− 2nE + 1

]
, pB =

1

2

( α

1− α
)2[nE

nρ
+

1− 2α

α
nE −

1

αnρ
+ 1
]
.

Third cell problem. Finally, the “stress” cell function Q2 is:

Q2(y) =

{
Q2(0) + qAy(y − α), y ∈ [0, α],

Q2(0) + qB [y(y − (1 + α)) + α] , y ∈ [α, 1],

where

Q2(0) =
nE
6

[
α3qA +

(1− α)3

γE
qB

]
.

and:

qA =
1

2

[nE
nρ
− 2

nρ
+ 1
]
, qB =

1

2

( α

1− α
)2[nE

nρ
+

1− 2α

αnρ
− nE

α
+ 1
]
.
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