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AN HOMOGENIZED MODEL ACCOUNTING FOR DISPERSION, INTERFACES

AND SOURCE POINTS FOR TRANSIENT WAVES IN 1D PERIODIC MEDIA.

R. Cornaggia1 and B. Lombard2

Abstract. An homogenized model is proposed for linear waves in 1D microstructured media. It
combines second-order asymptotic homogenization (to account for dispersion) and interface correctors
(for transmission from or towards homogeneous media). A new bound on a second-order effective
coefficient is proven, ensuring well-posedness of the homogenized model whatever the microstructure.
Based on an analogy with existing enriched continua, the evolution equations are reformulated as a
dispersive hyperbolic system. The efficiency of the model is illustrated via time-domain numerical
simulations. An extension to Dirac source terms is also proposed.
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1. Introduction

Understanding, modeling and controlling wave propagation in heterogeneous media is of major interest in
numerous engineering domains, e.g. seismic simulation and protection, sound and vibration attenuation, non-
destructive testing, etc. The particular case of periodically varying media, see e.g. [27] for sonic and phononic
crystals, gathered much attention. Indeed the interaction between waves and the periodic medium produces
pronounced dispersive features, including band-gaps (“forbidden” range of frequencies for which waves decay
exponentially) at higher frequencies. On the modelling side, robust methods exploit the periodicity to establish
effective models linking the salient macroscopic features of the wave propagation to the microstructure. These
effective models enable efficient numerical simulation, and they also provide a solid ground to deploy topological
optimization algorithms of architected materials [3, 14].

In this paper, the focus is on the long wavelength regime, compared to the characteristic size of the mi-
crostructure. In this regime (prior to the first band-gap), higher-order models accounting for dispersion effects
are studied since [31], notably thanks to double-scale asymptotic homogenization methods [9], see e.g. [3, 14]
for models of scalar waves in two-dimensional media. One-dimensional situations are particularly well docu-
mented: [4,5,18,19,26] among other computed the higher-order homogenized coefficients and designed well-posed
models thanks to the “Boussinesq trick” [2] that enables the partial or total permutation of space and time
derivatives without loss of the asymptotic order of approximation. This trick was generalized in [37] that es-
tablished a whole family of models. A new way to incorporate degrees of freedom into these models was also
proposed by [1].
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On the other hand, using these models in realistic bounded domains, i.e. addressing either boundary con-
ditions or transmission conditions toward another homogeneous or microstructured medium, is an issue that
is still a major research topic. In two or three dimension, oscillating boundary layers, that appear near these
boundaries of interfaces, can be accounted for using corrector functions to complement the inner expansion and
to obtain convergence estimates, see [10, 11, 20] and the references therein for wave problems, but (i) they are
complex objects whose theoretical study is quite involved [6, 22] and (ii) their direct computation is often as
costly as the one of the original problem posed on the microstructured domain.

Fewer works address the ”practical” implementation of these correctors, i.e. the design of enriched boundary
or transmission conditions suitable for numerical implementation and simulation. A notable exception is the
contribution of S. Fliss and collaborators [8, 20, 36]. These authors consider two-dimensional time-harmonic
problems in half-planes or strips and address interface neighborhoods thanks to matched asymptotic expansions
(also proposed by [30] for the scattering by a multilayered dielectric) or ”enriched” double-scale expansions
accounting explicitely for local correctors. For the simpler case of one-dimensional propagation, [15] proposes
boundary and transmission conditions for wave problems homogenized up to second order, still for time-harmonic
loads and fields. This methodology is also applied to non-uniformly oscillating media in [33].

Finally, the time-domain simulation of these homogenized wave models and associated boundary and trans-
mission conditions is almost inexistant, at the best or our knowledge, although a proposal was made recently
in [8, Chap. 5] for a half-plane with a Dirichlet boundary condition. In this context, the present paper pro-
poses a ”total” model to simulate 1D transient wave propagation through microstructured domains, combining
second-order homogenized wave models to account for dispersion, and first-order corrections to transmission
conditions. First, the enriched wave equation is reformulated as a hyperbolic system whose well-posedness is
proven. This reformulation exploits the similaries of the homogenized models with a phenomenological stress-
gradient model proposed in [21], as already studied in [32]. Interface conditions are then designed following the
proposals of [15] and ensuring the well-posedness of the whole model. An extension of the proposed tools to
Dirac source points immersed in the microstructure is also given.

In Section 2, dispersive models for one-dimensional waves obtained from second-order homogenization are
recalled, and a new result on the second-order homogenized coefficient is given (Proposition 1). Then the
proposed hyperbolic system is presented and the conditions for its well-posedness are established (Proposition
2). Section 3 gives relevant corrections for transmission conditions between homogeneous and homogenized
media, and states the stability conditions for the total model incorporating the hyperbolic system and these
conditions (Proposition 3). Section 4 presents the treatment of source points. The improvements brought by
the proposed models are illustrated by a set of time-domain simulations in Section 5, and Section 6 finally
summarizes the findings of the papers and proposes several extensions. Auxiliary definitions and proofs are
gathered in Appendix A.

2. Second-order homogenized model in unbounded space

This section focuses on free waves in an unbounded periodic elastic medium, characterized by density ρ`(x) =
ρ(x/`) and Young’s modulus E`(x) = E(x/`), in terms of 1-periodic functions (ρ,E) and the periodicity length
`. The material displacement is denoted u`(x, t), and v` = ∂tu` and σ` are the velocity and stress fields.
Combining the momentum balance equation ∂t(ρ`v`) = ∂xσ` and the elastic constitutive law σ` = E`∂xu`, the
source-free wave motion is then described equivalently by the wave equation satisfied by u`, or the first-order
system satisfied by (v`, σ`):

ρ` ∂ttu` − ∂x(E`∂xu`) = 0 ⇔

 ∂tv` −
1

ρ`
∂xσ` = 0,

∂tσ` − E` ∂xv` = 0.
(1)
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The main results obtained by second-order homogenization at low frequencies are summarized below. Since
the derivation of these results is now classical, they are not justified: the reader is referred to [15, 37] and the
references therein for more details.

2.1. Macroscopic fields, correctors and cell functions

The two-scale homogenization method leads to formal expansions of the displacement, velocity and stress
fields, that can be truncated at n-th order to obtain:

u`(x, t) = Un(x, t) +

n∑
j=1

`jPj

(x
`

)
∂jxUn(x, t) + o(`n),

v`(x, t) = Vn(x, t) +

n∑
j=1

`jPj

(x
`

)
∂jxVn(x, t) + o(`n),

σ`(x, t) = Sn(x, t) +

n∑
j=1

`jQj

(x
`

)
∂jxSn(x, t) + o(`n).

(2)

These expansions are written in terms of (i) slowly varying macroscopic fields (Un, Vn, Sn), linked by the relations
Vn = ∂tUn, S = E0∂xUn, where E0 is the effective Young’s modulus to be defined later; and (ii) 1-periodic cell
functions (Pj , Qj). Each field is thus decomposed into the sum of its macroscopic counterpart and the jth-order
oscillating correctors whose amplitude is given by the successive space derivatives of the macroscopic fields.
The cell functions depend on the material properties (E, ρ) through static cell problems posed on the scaled
periodicity cell [0, 1], as recalled in Appendix A.1. They also serve to define homogenized coefficients that will
intervene in the following.

Remark 1. The notation o(`n) used in (2) indicates the truncation of the underlying asymptotic expansion
at n-th order. In fact, this expansion is done in terms of a non-dimensional parameter ε = `/λ, where λ is a
”reference” wavelength that serves as a spatial scale. For time-harmonic problems, this wavelength can be defined,
see e.g. [15, Remark 1] and a posteriori estimates can be proven. In the present work, the focus is on modeling
rather than on asymptotic analysis, hence all the estimates are formally given in terms of ` for simplicity: o(1),
o(`) and o(`2) remainders indicate leading-, first- and second-order approximations. Discussions on the choice
of wavelength λ and the influence of ratio ε are delayed to numerical illustrations in Section 5.1. A rigorous
related mathematical analysis for long-time evolution is also provided by [26].

Remark 2. The litterature often focuses on the displacement u` and on the wave equation it satisfies (left of
(1)). The stress field σ` = E`∂xu`, particularly relevant when considering boundary or transmission conditions,
is then treated as a byproduct of the analysis, whose approximation accuracy suffers from the differentiation.
On the other hand, the system featuring the two fields (v`, σ`) in (1) emphasizes the similar roles played by these
fields, that should be reflected by equally accurate approximations. This is the main motivation for the specific
correctors Qj associated to the stress field σ`, as proposed in this 1D waves context by [15].

2.2. Homogenized wave models up to second order

Effective equations satisfied by the macroscopic fields (Un, Vn, Sn), also provided by the two-scale approach,
are now discussed at orders 0, 1 and 2.

Leading-order homogenized model. This model is given similarly to (1) for a wave equation on U0 or a
system on (V0, S0):

∂ttU0 − c20∂xxU0 = 0 ⇔

 ∂tV0 −
1

ρ0
∂xS0 = 0,

∂tS0 − E0∂xV0 = 0.
(3)
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The constant leading-order homogenized coefficients ρ0 and E0 are given in 1D by the usual formula:

ρ0 =

∫ 1

0

ρ(y)dy, E0 =

(∫ 1

0

E−1(y)dy

)−1

, (4)

i.e. the arithmetic mean and the harmonic mean of their oscillating counterparts (ρ,E). The leading-order
celerity c0 is defined naturally as:

c0 =
√
E0/ρ0. (5)

First-order homogenized model. As shown by [12, Section 2.3] or [15, Lemma 1], the first-order macro-
scopic fields (U1, V1, S1) also satisfy the leading-order homogenized equations (3), i.e. there is no first-order
contribution to the wave equation.

Second-order homogenized model. The model (3) is valid in the quasistatic limit, i.e. for wavelengths
much longer than `. For shorter wavelengths, dispersive effects (i.e. frequency-dependent wave velocity) cannot
be neglected and must be accounted for in the homogenized models. This is done by incorporating second-order
terms into the wave equation, i.e. using the equations satisfied by (U2, V2, S2). In [37], it was shown that
second-order expansions lead to a family of enriched wave equations for the macroscopic displacement U2:

∂ttU2 − c20∂xxU2 − `2
(
βxc

2
0∂xxxxU2 − βm∂xxttU2 −

βt
c20
∂ttttU2

)
= 0, with βx − βm − βt = β, (6)

where the homogenization process provides the values of the leading-order homogenized velocity c0 given by
(5), and the second-order coefficient β, for which a new expression is provided here:

Proposition 1. The second-order homogenized coefficient β can be computed in terms of the material coeffi-
cients (ρ,E), the homogenized coefficients (ρ0, E0) given by (4) and the first cell functions (P1, Q1):

β =
1

2

∫ 1

0

[
P1(y)−Q1(y)

]2( E0

E(y)
+
ρ(y)

ρ0

)
dy.

As a consequence, β is non-negative.

The proof of this result is given in Appendix A.2 and relies on reciprocity identities on the cell functions
(P1, Q1, P2, Q2) entering the initial definition of β given in [37]. This important non-negativity property is
emphasized as it plays a key role in the analysis of the ensuing model (Section 2.3). It is trivially satisfied
for bilaminates (65), and it was postulated in [32, Sect. 4.3] after many numerical tests on multi-laminated
composites, but it is proven here for any periodic medium for the first time, at our knowledge.

Finally, the relation between the coefficients (βx, βm, βt) associated with fourth-order partial derivatives in (6)
provides two degrees of freedom left to the user to choose a particular model. In this work, as in [15], only the
cases where βx = 0 are considered, because (i) a fourth-order space derivative in the wave equation would come
along with additional boundary or transmission conditions that are not easy to define (although a proposal is
made by [8, Chap. 5] for a Dirichlet boundary condition), and (ii) the analysis performed in [32] showed that
this term leads to unstable models when βx < 0, involving an additional modeling constraint. The so-called
(mt) model, featuring fourth-order mixed and time derivatives, is therefore used hereinafter:

∂ttU2 − c20∂xxU2 + `2
(
βm∂xxttU2 +

βt
c20
∂ttttU2

)
= 0, with − βm − βt = β, (7)

and only one degree of freedom is left to choose the couple (βm, βt).
To investigate the properties of this wave equation, an equivalent system is now presented. Using this

formalism enables to reuse theoretical results specific to hyperbolic systems (stability, existence of solutions),
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as well as dedicated numerical methods (integration schemes, discretization of interfaces). An overview may be
found in the reference books [23,28].

2.3. Stress-gradient formalism

The upcoming system comes from a stress-gradient model introduced in [21] and studied in [32]. This
phenomenological model features four fields: the usual displacement u and stress σ, but also a microdisplacement
φ and a microstress r to account for microstructural effects. These fields satisfy the constitutive relations and
equilibrium equations: {

σ = Esg∂x(u+ φ),

r = Dφ,

{
ρsg∂ttu = ∂xσ,

ρsgJ∂ttφ = ∂xσ − r,
(8)

written in terms of density and Young’s modulus (ρsg, Esg) and two micro-stiffness and micro-inertia coefficients
(D,J). All these parameters are strictly positive.

Relationships with the second-order homogenized model. Combining the relations (8) provides a
fourth-order enriched wave equation for u:

∂ttu−
Esg

ρsg
∂xxu−

Esg

D
(1 + J)∂xxttu+

ρsgJ

D
∂ttttu = 0, (9)

which is formally the same equation than the (mt) homogenized equation given by (7). More precisely, the
equivalence is obtained by identifying the coefficients (Esg, ρsg, J,D) as:

Esg = E0, ρsg = ρ0, J =
βt
β

and D =
E0

`2β
. (10)

Moreover, identifying the terms in the two wave equations (7) and (9), and using the relations (8) and (10),
the fields of the stress-gradient model satisfy the following relations with the macroscopic displacement U2 and
stress S2 = E0∂xU2:

{
u = U2

σ = S2 + E0∂xφ = S2 + `2β ∂xr
and


∂xxφ = `2

[
−βm
c20
∂xxttU2 −

βt
c40
∂ttttU2

]
,

∂xxr =
E0

β

[
−βm
c20
∂xxttU2 −

βt
c40
∂ttttU2

]
.

(11)

Several remarks may be done from the above relations:

• The microdisplacement φ is a second-order term, while the microstress r is in fact a leading-order
contribution: from (8) one has r = ∂xσ + o(1).

• The parameter J controls the choice of (mt) model: J = 1 corresponds to the “time” model (t) (with
βm = 0, βt = −β), and J = 0 corresponds to the “mixed” model (m) (with βm = −β, βt = 0) in
the wave equation (9). However J = 0 makes no sense in the original stress-gradient system (8) that
therefore cannot describe the (m) model.

Equivalent system. To pursue towards the derivation of a hyperbolic system equivalent to the wave equation
(7), the total macroscopic velocity w, incorporating the microscopic fluctuations, and the microscopic velocity
ϕ = o(`) are introduced:

w = ∂t(u+ φ), ϕ = ∂tφ. (12)
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Then, slightly reformulating the equations (8), the four fields (w, σ, ϕ, r) are found to satisfy the system:

∂tw −
a

ρ0
∂xσ = −a− 1

ρ0
r,

∂tσ − E0∂xw = 0,

∂tϕ−
a− 1

ρ0
∂xσ = −a− 1

ρ0
r,

∂tr =
E0

`2β
ϕ,

(13)

where the convenient parameter a controls the choice of (mt) model:

a =
J + 1

J
=
−βm
βt

.

Remark 3. In [32] a similar system was introduced, featuring the classical velocity v = ∂tu instead of w. The
present choice slightly simplifies the notation when introducing interfaces in Section 3.

Total fields approximations. Finally, approximations of the total fields (v`, σ`) are given by the expansions
(2) in terms of the macroscopic fields (V2, S2). From the relations (11), these macroscopic fields can be recovered
a posteriori from the stress-gradient velocity and stress (w, σ) and the auxiliary fields (ϕ, r) as:

V2 = w − ϕ and S2 = σ − `2β ∂xr. (14)

However, a simpler way to compute the total fields, without computing the fields (V2, S2), is to use the following
approximation:

v`(x, t) = w(x) + `P1

(x
`

)
∂xw(x, t) + `2P2

(x
`

)
∂xxw(x, t)− ϕ(x, t) + o(`2),

σ`(x, t) = σ(x, t) + `Q1

(x
`

)
∂xσ(x, t) + `2Q2

(x
`

)
∂xxσ(x, t)− `2β ∂xr(x, t) + o(`2).

(15)

It is formally justified by the second-order amplitude of the fluctuations V2 − w and S2 − σ.

2.4. Model properties

The system (13) above can be recast in matricial form:

∂tU + A · ∂xU = S ·U , (16)

where U := (w, σ, ϕ, r)T and:

A =


0 −a/ρ0 0 0
−E0 0 0 0

0 −(a− 1)/ρ0 0 0
0 0 0 0

 and S =


0 0 0 −(a− 1)/ρ0

0 0 0 0
0 0 0 −(a− 1)/ρ0

0 0 E0/(`
2β) 0

 .
Hyperbolicity. The matrices A and S have eigenvalues:

Sp(A) =
{

0, 0,±c0
√
a
}

and Sp(S) =
{

0, 0,±c0/
(
`
√
−βt

)}
.
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The eigenspaces of the matrix A are:

A ·U = 0 ⇒ U ∈ Vect
{

(0, 0, 1, 0)T, (0, 0, 0, 1)T
}
,

A ·U = ±c0
√
aU ⇒ U ∈ Vect

{
(a,∓ρ0c0

√
a, a− 1, 0)T

}
.

For a 6= 0, all these vectors are linearly independant and therefore they form a basis of R4. To obtain a hyperbolic
system, the eigenvalues of A need to be real. To ensure that the null solution is stable, the eigenvalues of S
need to be imaginary. These two conditions imply that the coefficients (a, βm, βt) should satisfy:

{
Hyperbolicity: a > 0

Stability: βt > 0
=⇒


βm
βt

< 0

βt > 0
=⇒

{
βm < 0,

βt > 0.
(17)

As already pointed out by [32] and omitted in previous studies [15], these conditions complement the condition
−βm − βt = β coming from the homogenization process.

For latter use, the following exponential matrix, needed in the numerical integration of (16), is introduced:

exp(St) =


1 cosω0t− 1 −1

ν
sinω0t

0 cosω0t −1

ν
sinω0t

0 ν sinω0t cosω0t

 . (18)

where:

ω0 =
c0
`

1√
βt

and ν =
ρ0 c0√
β(a− 1) `

.

Energy conservation. Introducing the symmetrizer matrix

M =


ρ0 0 −ρ0 0
0 1/E0 0 0
−ρ0 0 aρ0/(a− 1) 0

0 0 0 `2β/E0

 ,
one obtains:

M ·A =


0 −1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

 and M · S =


0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

 ,
i.e. M ·A is symmetric, and M · S is skew-symmetric. Multiplying the system (16) by UT ·M and making
use of these (skew)symmetries, one obtains:

1

2
∂t(U

T ·M ·U) +
1

2
∂x(UT ·M ·A ·U) = 0. (19)

Considering compactly supported initial conditions or source terms, and integrating over a space-time domain
Ω× [0, T ], where Ω is chosen large enough so that U(·, T ) = 0 on ∂Ω, one obtains the energy conservation:

Evol(T ) = Evol(0).
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The volume energy Evol is the sum of a kinetic and elastic energy given as:

Evol =
1

2

∫
Ω

UT ·M ·Udx =
1

2

∫
Ω

ρ0

(
w2 − 2wϕ+

a

a− 1
ϕ2

)
+

1

E0

(
σ2 + `2βr2

)
dx

=
1

2

∫
Ω

ρ0

(
v2 +

βt
β
ϕ2

)
+

1

E0

(
σ2 + `2βr2

)
dx.

(20)

In the second expression, the macroscopic velocity v = ∂tu is introduced and 1− a = β/βt is used to emphasize
that the energy is positive since β > 0 (Prop. 1) and βt > 0 (as required by the stability condition (17)).

Finally, the results of this part are summarized in the following proposition:

Proposition 2. If the parameters (βm, βt) satisfying the relation −βm−βt = β are chosen so that βm < 0 and
βt > 0, the system (13) is hyperbolic, the null solution is stable, and the associated positive volume energy Evol

defined by (20) is conserved.

3. First-order transmission conditions and total model

Now that an effective model is proposed for unbounded microstructured media, this section focuses on how
to use this model for bounded domains made of microstructured materials. In the same way as higher-order
correctors were introduced in the wave equation, higher-order interface correctors will be introduced. To fix
ideas, the transmission of waves from an homogeneous domain Ω− = {x < 0} to a microstuctured domain
Ω+ = {x > 0} is first addressed in detail. Then the extension to a “slab” Ω =]0, L[ surrounded at both
extremities by homogeneous media is given.

For future use, let us introduce the jump JfK0 and the mean 〈f〉0 of a function f across an interface at x = 0
as:

JfK0 = f+ − f− and 〈f〉0 =
1

2

(
f+ + f−

)
, with f± = lim

x→0±
f(x),

and we give for later use the following relations:

f± = 〈f〉0 ± JfK0/2 and JfgK0 = JfK0〈g〉0 + 〈f〉0JgK0. (21)

3.1. Microstructured transmission problem

The original problem to be approximated is defined as follows: the fields (v`, σ`) satisfy the system (1) with
constant coefficients (ρ−, E−) in Ω− = {x < 0} and with oscillating coefficients (ρ`, E`) in Ω+ = {x > 0}. A
perfect interface is considered at x = 0, i.e. the velocity and stress are continuous:

Jv`K0 = 0, Jσ`K0 = 0. (22)

To complete this problem, initial conditions are finally given:

v`(x, 0) = v?(x) and σ`(x, 0) = σ?(x), (23)

where v? and σ? are entirely supported by the homogeneous domain Ω− to simplify the analysis. Indeed, initial
conditions supported by the microstructured domain Ω+ should be addressed in the homogenization process,
which is outside the scope of the present work: again the reader is referred to [26] for insight on these issues in
the case of an unbounded domain. In section 4, we will study the case of a Dirac source point immersed in the
microstructured medium.

In the following parts, the focus will be on the interface conditions at x = 0 when the wave propagation in
the right domain Ω+ is described by an effective model.
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3.2. Leading-order homogenized model

The leading-order model is first presented. The macroscopic fields are noted (V0, S0) and the correctors in
the approximation (2) are ignored, i.e. the approximations (v`, σ`) ≈ (V0, S0) are used. Using the leading-order
effective system (3) in Ω+, these fields satisfy (i) the systems:

Ω− :

 ∂tV0 −
1

ρ−
∂xS0 = 0,

∂tS0 − E−∂xV0 = 0,
Ω+ :

 ∂tV0 −
1

ρ0
∂xS0 = 0,

∂tS0 − E0∂xV0 = 0,
(24)

(ii) the perfectly bounded interface conditions at x = 0 inherited from the conditions (22):

JV0K0 = 0, and JS0K0 = 0, (25)

and (iii) the initial conditions (23) with (v`, σ`) replaced by (V0, S0).
To prepare the ensuing analysis for higher-order models, the energy associated with this problem is now

studied. Similarly to what is done in Section 2, one obtains from the systems (24):

∂tEvol
0 +Dint

0 = 0, (26)

where the volume energy Evol
0 is now:

Evol
0 = Evol−

0 + Evol+
0 with


Evol−

0 =
1

2

∫
Ω−

ρ−V
2
0 +

S2
0

E−
dx,

Evol+
0 =

1

2

∫
Ω+

ρ0V
2
0 +

S2
0

E0
dx,

(27)

and the interface term is:

Dint
0 = JV0S0K0 = JV0K0〈S0〉0 + 〈V0〉0JS0K0. (28)

Then, a sufficient condition for the stability of the problem is this term to be the time derivative of a positive
interface energy: if there exists E int

0 > 0 such that Dint
0 = ∂tE int

0 , then (i) the total energy is conserved from (26)
and (ii) the the volume term Evol

0 is bounded:

∂t(Evol
0 + E int

0 ) = 0 ⇒ 0 ≤ Evol
0 (t) =

(
Evol

0 (0) + E int
0 (0)

)
− E int

0 (t) ≤ Evol
0 (0),

because the initial conditions on (V0, S0) ensure E int
0 (0) = 0 and E int

0 ≥ 0 by assumption. This property then
ensures that the fields (V0, S0) remain bounded in time.

In the leading-order case, the interface term Dint
0 is identically canceled by the transmission conditions (25),

and therefore from (26) the energy Evol
0 is conserved.

3.3. First-order homogenized model: correcting the transmission conditions

First-order approximations from (2) are now considered:

v`(x, t) = V1(x, t) + `P1

(x
`

)
∂xV1(x, t) + o(`), σ`(x, t) = S1(x, t) + `Q1

(x
`

)
∂xS1(x, t) + o(`), (29)

where (P1, Q1) = (0, 0) in the homogeneous domain Ω−. As seen in Section 2.2, the first-order macroscopic fields
(V1, S1) satisfy the same non-dispersive systems (24) as at leading order. On the other hand, combining the
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original perfect transmission conditions (22) on (v`, σ`) to the approximations (29) above as proposed by [15],
one obtains imperfect non-symmetrical conditions on the jump of the macroscopic fields:{

JV1K0 = −` P1(0) (∂xV1)+,

JS1K0 = −`Q1(0) (∂xS1)+,
(30)

i.e. a first-order correction compared to the leading-order conditions (25).
A similar energy analysis than at the leading order results in

∂tEvol
1 +Dint

1 = 0, (31)

where the total volume energy Evol
1 is the same than Evol

0 given by (27) with (V0, S0) replaced by (V1, S1). The
same analogy holds for the interface term Dint

1 compared with Dint
0 in (28). Given the conditions (30), one has:

Dint
1 = JV1K0〈S1〉0 + 〈V1〉0JS1K0 = −`

[
P1(0)(∂xV1)+〈S1〉0 +Q1(0)(∂xS1)+〈V1〉0

]
. (32)

There is no guarantee that Dint
1 is the derivative of a positive interface energy. The negative case may result

in an ill-posed problem. The following paragraphs explain how to deal with this issue, through symmetrization
and stabilization of the jump conditions.

Spring-mass transmission conditions. To symmetrize the relations (30), the limit values e.g. ∂xV
+
1 need

to be written in terms of mean values across the interfaces, e.g. 〈∂tS1〉0. The process introduces additional
approximations, up to residuals that should be at least of second order (i.e. in o(`)) to preserve the overall first-
order approximation. The main tools to do so are the bulk equations that link the time and space derivatives
of (V1, S1) in Ω+:

∂xV1 = E−1
0 ∂tS1 and ∂xS1 = ρ0∂tV1 in Ω+. (33)

Then, using also the jump-mean relations (21), the following leading-order approximations are found:

(∂xV1)+ = E−1
0 ∂tS

+
1 , (∂xS1)+ = ρ0∂tV

+
1 ,

= E−1
0 ∂t

[
〈S1〉0 +

1

2
JS1K0

]
, = ρ0∂t

[
〈V1〉0 +

1

2
JV1K0

]
,

= E−1
0 ∂t〈S1〉0 + o(1), = ρ0∂t〈V1〉0 + o(1),

(34)

where the jump conditions (30) were used to neglect the first-order jumps JS1K0 and JV1K0. Combining these
approximations with (30) and neglecting second-order terms, one finally obtains:{

JV1K0 = −`E−1
0 P1(0) ∂t〈S1〉0,

JS1K0 = −` ρ0Q1(0) ∂t〈V1〉0.
(35)

This form is better known as spring-mass transmission conditions, that may also model e.g. a thin layer of
elastic material between the considered media [29, App. 1]. A new interface term Dint

1,sm then replaces Dint
1 in

(31)-(32), conveniently written as the derivative of an interface energy E int
1,sm:

Dint
1,sm = ∂tE int

1,sm with: E int
1,sm = − `

2

[
E−1

0 P1(0)〈S1〉20 + ρ0Q1(0)〈V1〉20
]
. (36)

However, there is still no guarantee that this interface energy remains positive for all time, except in the par-
ticular cases where P1(0) ≤ 0 and Q1(0) ≤ 0. It is why a last modeling step is necessary, as addressed now.
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Stabilization introducing an enlarged interphase. To obtain centered transmission conditions that are
associated to a positive interface energy, a thick interface Id = [−d`, d`] of thickness 2d`, centered on the point
x = 0, is introduced, and the transmission conditions are written across this interface. This method has been
first used for microstructured interface homogenization [17], but also for a 2D transmission problem similar to
the present case in [20,36].

Using Taylor expansions of the macroscopic fields in the homogeneous and homogenized media, e.g. V1(0−) =
V1(−d`) + d` ∂xV1(−d`) + o(`) and keeping only first-order terms in `, the conditions (30) become:

{
V1(−d`) + d` ∂xV1(−d`) = V1(d`) + `(P1(0)− d) ∂xV1(d`),

S1(−d`) + d` ∂xS1(−d`) = S1(d`) + `(Q1(0)− d) ∂xS1(d`).
(37)

Then, using the same first-order approximations (34) than above, one obtains equivalent (up to o(`)) spring-mass
conditions: {

JV1Kd = `A1 ∂t〈S1〉d, A1 = −P1(0)E−1
0 + d(E−1

− + E−1
0 ),

JS1Kd = `B1 ∂t〈V1〉d, B1 = −Q1(0))ρ0 + d(ρ− + ρ0),
(38)

where J·Kd and 〈·〉d are the jump and mean values of fields across the interface Id. Similarly to (36), the interface
term in the energy is then written:

Dint
1,d = ∂tE int

1,d with: E int
1,d =

`

2

[
A1〈S1〉2d +B1〈V1〉2d

]
.

A sufficient condition for the interface energy E int
1,d to be positive is that the two coefficients (A1, B1) are positive.

This is achieved by choosing the interface parameter d as:

d ≥ dmin := max

(
E−P1(0)

E− + E0
,
ρ0Q1(0)

ρ− + ρ0
, 0

)
. (39)

As already noticed, when P1(0) ≤ 0 and Q1(0) ≤ 0, there is no need for a thick interface: one can choose
d = dmin = 0 and the conditions (35) are retrieved. In the other cases, choosing d = dmin will identically cancel
one of the factors (A1, B1) in the relations (38), i.e. one has either JV1Kd = 0 or JS1Kd = 0.

Remark 4. Instead of introducing an enlarged interface, another way to design stable interface conditions
from (35) is to slightly modify the homogenized model model by choosing non-zero means to the cell functions
(P1, Q1) to ensure P1(0) ≤ 0 and Q1(0) ≤ 0. This method was introduced in [1] to design stable wave models
in unbounded media, and applied in [8] to stabilize enriched boundary conditions at the edge of a half-plane. It
was implemented by the authors of the present paper, and is indeed a good alternative to treat one interface.
But since it requires a global change of the model (in the whole microstructured domain), it cannot be easily
extended of the case of a slab treated below in Section 3.5, or any case where more than one interface needs to
be addressed. The enlarged interface method, that introduces a local approximation, was therefore prefered.

3.4. Total model incorporating second-order dispersion

Finally, the second-order model studied in Section 2 is deployed in the microstructured domain to account
for dispersion. Using the four fields (w, σ, ϕ, r) of the stress-gradient system in Ω+, while (v`, σ`) ≈ (w, σ) in
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Ω−, these fields satisfy:

Ω− :

 ∂tw −
1

ρ−
∂xσ = 0,

∂tσ − E−∂xw = 0,
Ω+ :



∂tw −
a

ρ0
∂xσ = −a− 1

ρ0
r,

∂tσ − E0∂xw = 0,

∂tϕ−
a− 1

ρ0
∂xσ = −a− 1

ρ0
r,

∂tr =
E0

`2β
ϕ.

(40)

At this stage, an important remark is that the two auxiliary fields (ϕ, r) satisfy ordinary differential equations in
time, and therefore no boundary condition are needed for these fields (but initial conditions must be added). The
systems (40) must therefore be complemented by transmission conditions on (w, σ) only, as in the leading-order
and first-order cases, and by initial conditions for all fields. Since we choose initial conditions only supported
by the left domain Ω−, we set:

w(x, 0) = v?(x), σ(x, 0) = σ?(x), ϕ(x, 0) = 0 and r(x, 0) = 0. (41)

Then, combining the results on energies of the stress-gradient system collected in Section 2.3, and the additional
term coming from the interface as specified above, one obtains:

∂tEvol +Dint = 0,

where the total energy Evol is now:

Evol = Evol− + Evol+ with


Evol− =

1

2

∫
Ω−

ρ−w
2 +

σ2

E−
dx,

Evol+ =
1

2

∫
Ω+

ρ0

(
w2 − 2wϕ+

a

a− 1
ϕ2

)
+

1

E0

(
σ2 + `2βr2

)
dx,

(42)

and the interface term Dint is again given by:

Dint = JwσK0 = JwK0〈σ〉0 + 〈w〉0JσK0.

This term is formally identical to the ones that appear for the first-order model (32).
At this stage, it would be natural to use the second-order approximations in (2) to design transmission

conditions for (w, σ). However, for technical reasons discussed in Remark 5 below, only first-order transmission
conditions are designed. As in the previous section, the chosen total fields approximations are:

v`(x, t) = w(x, t) + `P1

(x
`

)
∂xw(x, t) + o(`), σ`(x, t) = σ(x, t) + `Q1

(x
`

)
∂xσ(x, t) + o(`), (43)

and the same analysis can be deployed. Indeed, the links between the fields derivative given by (33) can be
replaced by:

∂xw = E−1
0 ∂tσ and ∂xσ = ρ0∂tw + o(`) in Ω+. (44)

The second relation in (44) is obtained by taking the difference between the first and third equation of (40)
in Ω+, and by using ϕ = o(`). The second-order remainder o(`) in (44) has no influence on the leading-order
approximations (34). Consequently, the same first-order spring-mass transmission conditions (38), written
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across an enlarged interface, are applied to (w, σ):{
JwKd = `A1 ∂t〈σ〉d, A1 = −P1(0)E−1

0 + d(E−1
− + E−1

0 ),

JσKd = `B1 ∂t〈w〉d, B1 = −Q1(0))ρ0 + d(ρ− + ρ0).
(45)

The various asymptotic formal expansions are still valid and indicate that the transmission conditions (45)
should result in an overall first-order approximation. In this way, the overall problem including (i) the systems
(40), (ii) the initial conditions (41) and (iii) the transmission conditions (45), is proven to be stable using the
same arguments than in the previous section. It is summed up in the next proposition.

Proposition 3. We consider as ”total model” the system (40) with the symmetrized jump conditions (45) across
an enlarged interface, where the interface parameter d is given by (39). Associated with this system is a constant
energy over time E = Evol + E int

d , where Evol ≥ 0 is given by (42), and E int
d is given by

E int
d =

`

2

[
A1〈σ〉2d +B1〈w〉2d

]
≥ 0.

Remark 5. Imposing transmission conditions to the second-order approximation (15) of the total fields, as
done in the time-harmonic case in [15], would impose

w− = w+ + `P1(0)(∂xw)+ + `2P2(0)(∂xxw)+ − ϕ+,

σ− = σ+ + `Q1(0)(∂xσ)+ + `2Q2(0)(∂xxσ)+ − `2β(∂xr)
+,

where w± = w(0±, t) and similarly for (σ, ϕ, r) and their derivatives. The same ideas than in section (3.3) can
be applied to these conditions, to obtain symmetrized jump conditions on an enlarged interface of the form:{

JwKd = `A1∂t〈σ〉d + `2A2∂tt〈w〉d + ϕ(d`),

JσKd = `B1∂t〈w〉d + `2 (B2∂tt〈σ〉d + β(∂xr)(d`)) ,

with (A1, B1) given by (45) and new coefficients (A2, B2), generalizing (45). However, these second-order terms
feature (i) (non-classical) second-order time derivatives of (w, σ) and (ii) the traces of auxiliary fields (ϕ, ∂xr),
and our attempts to prove the stability of the resulting model were unsuccessful so far. Moreover, the model
described in Proposition 3 provides a good compromise already between implementation easiness (classical spring-
mass transmission conditions are used) and both qualitative and quantitative performances, as illustrated in
Section 5 below.

3.5. Microstructured slab bounded by two homogeneous domains

To end this section, one extends the previous model to the case of a microstructured medium bounded at
both extremities by homogeneous domains. It is representative of many real experiments of wave propagation.
The microstructured domain is ΩL =]0, L[, while Ω+ = {x > L} now denotes the right homogeneous domain,
characterized by coefficients (ρ+, E+). Additional transmission conditions must be designed for the second
interface at x = L. The continuity of the first-order approximations (43) is written:{

w(L−) + `P1(yL)∂xw(L−) = w(L+),

σ(L−) + `Q1(yL)∂xσ(L−) = σ(L+),

where yL = L/`. Then, a similar analysis as in Section 3.3 leads to a reformulation of these conditions involving
the jumps J·Kd′ and means 〈·〉d′ across an enlarged interface [L− d′`, L+ d′`] as:{

JwKd′ = `A′1 ∂t〈σ〉d′ A′1 = P1(yL)E−1
0 + d′(E−1

0 + E−1
+ ),

JσKd′ = `B′1 ∂t〈w〉d′ B′1 = Q1(yL)ρ0 + d′(ρ0 + ρ+),
(46)
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where the two coefficients (A′1, B
′
1) must be positive for these conditions to be associated with a positive interface

energy. The thickness d′ of this second interface must be chosen so that:

d′ ≥ d′min := max

(
−E+P1(yL)

E+ + E0
, −ρ0Q1(yL)

ρ+ + ρ0
, 0

)
, (47)

a condition similar to its counterpart (39) except for the signs.

4. Correctors for a Dirac source term

So far, no source term was considered in the evolution equations. The initial conditions were supported in
the homogeneous domain, thus avoiding to adapt them to the microstructure [26]. To complete the modeling
framework, the case of a single force source point immersed in the microstructured medium is now addressed,
using the tools previously developed for interfaces.

4.1. Source terms and jump conditions

A point force at point xs is modeled by a Dirac source term in the initial wave equation:

ρ`(x) ∂ttu`(x, t)− ∂x (E`(x)∂xu`(x, t)) = ρ`(x) g(t) δs(x), δs(x) := δ(x− xs), (48)

where δ is the Dirac distribution and g the time-dependent amplitude of the source. The above equation is to
be understood in the weak sense, i.e. :∫

Ω

(ρ` ∂ttu` v + E` ∂xu` ∂xv) dx = [E`(∂xu`)v](x+)− [E`(∂xu`)v](x−) + ρsv(xs)g, ∀v ∈ H(Ω), (49)

with a suitable choice of domain Ω =]x−, x+[ and functional space H(Ω), and having set ρs = ρ`(xs). As in the
previous sections, space and time dependency are omitted in (49) and below for compactness.

Such a source point has been addressed by [12], and even extended to double-couple source and to higher
dimensions (for non-periodic homogenization) in [13]. However, the provided expression, relying on energy con-
servation arguments, only treat first-order homogenization. The present proposal exploits the fact that in 1D, a
Dirac distribution amounts to a jump condition on the solution. As a consequence, the formalism developed in
the previous sections can be reused here to complete the two-scale formal expansion. Note that this approach
does not stand in higher dimensions, for which an analysis of the correction should be incorporated into the
two-scale asymptotic expansion, see [13].

Replacing the source point by a jump condition. In 1D, a Dirac source term entails a discontinuity in
the stress σ` = E` ∂xu` (accordingly with the physical interpretation of a Dirac source term as a point force).
Indeed, integrating the wave equation (48) between xs − ξ and xs + ξ, one obtains:

σ`(xs + ξ)− σ`(xs − ξ)−
∫ xs+ξ

xs−ξ
ρ` ∂ttu` dx = −ρs g,

and then letting ξ → 0 gives the announced result. Accordingly, the wave equation (48) may be rewritten as
the system: 

∂tv` −
1

ρ`
∂xσ` = 0 x < xs and x > xs,

∂tσ` − E` ∂xv` = 0 x < xs and x > xs,

Jv`Ks = 0 x = xs,

Jσ`Ks = −ρs g x = xs,

(50)
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where J·Ks denotes the jump at source location xs. This problem can be homogenized as the previously seen
transmission problem, except that the same periodic (or homogenized) medium occupies both half-spaces, and
the successive corrections will account for the discontinuity of σ`.

4.2. Families of models

Leading-order homogenization. At the leading order, as in Section 3.2, E` and ρ` are replaced by the
constant E0 and ρ0 in the bulk equations of system (50), and the source term is unchanged (still featuring the
value ρs).

First-order homogenization. At first order, as in Section 3.3, the bulk equations satisfied by the macroscopic
fields denoted (V1, S1) are the same than at leading order, and the transmission conditions are applied to the
first-order approximations of the full fields (29), leading to:

x < xs and x > xs :

 ∂tV1 −
1

ρ0
∂xS1 = 0

∂tS1 − E0∂xV1 = 0
and

{
JV1Ks + `P1(ys)J∂xV1Ks = 0,

JS1Ks + `Q1(ys)J∂xS1Ks = −ρsg,
(51)

where ys = xs/` is the source position inside the cell that contains xs. Then, the bulk equations provide
leading-order approximations of the jumps of spatial derivatives:

J∂xV1Ks =
1

E0
∂tJS1Ks = − ρs

E0
∂tg + o(1) and J∂xS1Ks = ρ0∂tJV1Ks = o(1). (52)

Neglecting the o(`) terms in (51), one obtains first-order conditions:

 JV1Ks = `P1(ys)
ρs

E0
∂tg,

JS1Ks = −ρs g,
(53)

i.e. the system in (51) features an additional inhomogeneous jump condition on the macroscopic velocity. The
resulting system may finally be written in the equivalent form:

 ∂tV1 −
1

ρ0
∂xS1 =

ρs

ρ0
δs g,

∂tS1 − E0∂xV1 = −`ρsP1(ys) ∂tg δs.
(54)

This expression was also obtained in [12, Section 2.4] using an energy conservation argument.

Application to the stress-gradient system. Finally, the stress-gradient system (19) satisfied by the macro-
scopic fields (w, σ, ϕ, r) is considered. As in Section 3.4, only first-order corrections are applied to the source
term for simplicity. Hence, the analysis performed above for these corrections remains valid: the main difference
is that the stress-velocity relation ∂xσ = ρ0∂tw + o(`) is a first-order approximation rather than an equality,
but it does not change the leading-order approximations (52). Therefore jump conditions (53) are applied to
(w, σ).
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Coming back to Dirac notations, the stress spatial derivative ∂xσ intervenes in two equations of the system,
and hence the source term must be accordingly distributed:

∂tw −
a

ρ0
∂xσ = −a− 1

ρ0
r +

aρs

ρ0
g δs,

∂tσ − E0∂xw = −` ρsP1(ys) ∂tg δs,

∂tϕ−
a− 1

ρ0
∂xσ = −a− 1

ρ0
r +

(a− 1)ρs

ρ0
g δs,

∂tr =
E0

`2β
ϕ.

(55)

As in Section 3.4, this is an hybrid model combining first-order corrections for the source term and second-order
corrections in the wave equation to account for dispersive effects.

5. Numerical experiments

The proposed models are now applied to simulate the wave propagation into an example bilaminate mate-
rial. The material properties, initial conditions and source terms are first given (Section 5.1), the numerical
implementation is briefly described (Section 5.2), and two test-cases are addressed: (i) a wave transmitted from
an homogeneous medium towards the bilaminate (Section 5.3) and (ii) a wave emitted from a source point
embedded in a slab of bilaminate, surrounded by homogeneous media (Section 5.4).

5.1. Microstructured medium, initial conditions and source modeling

The numerical illustrations are provided for bilaminate materials, for which analytical expressions of the
homogenized coefficients and cell problems are available, see Appendix A.3. Furthermore, an analytical formula
for (βm, βt) (or, here, a) was proposed in [15] to achieve a better fit of the exact dispersion curve for low
frequencies, see (66). This specific choice of (mt) model was also discussed in [32] and found to compete
reasonably with numerically optimized models that achieve an overall fit of this curve on the whole Brillouin
zone. Finally, this choice is numerically found to be compatible with the stability conditions {βm < 0, βt > 0}
established by (17).

α 1− α

EA
ρA

EB = γEEA
ρB = γρρA

Figure 1. Unit cell of a bilaminate with two phases (A,B) and phase ratio α.

The bilaminate investigated here has a periodicity length ` = 20 m, with a phase ratio α = 0.25 (figure 1).
The physical parameters are ρA = 1000 kg/m3, EA = 109 Pa, and ρB = 1500 kg/m3, EB = 6 109 Pa. The
associated homogenized parameters are ρ0 = 1375 kg/m3, E0 = 2.66 109 Pa and β = 0.01959, see Appendix
A.3. The optimized parameters of the (mt) model (66) are βm = −0.107071 and βt = 0.087481.

In the following examples, two types of forcing are considered: (i) a Cauchy problem (23) with an initial
right-going wave (

v?
σ?

)
=

 − 1

c−
ρ−

 g

(
t+ t0 −

x

c−

)
, (56)
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Figure 2. Time evolution of the source (57) at fc = 3 Hz (a). Spectrum of the source for various
central frequencies fc, as a function of the asymptotic parameter εc (b).

or (ii) null initial conditions with a time-dependent forcing at a Dirac source point (section 4.2). Both con-
figurations involve the source function g(t), chosen as the following combination of sinusoids with bounded
support:

g(t) =

 G

4∑
m=1

am sin(bmωct) if 0 < t <
1

fc
,

0 otherwise,

(57)

where bm = 2m−1, the coefficients am are a1 = 1, a2 = −21/32, a3 = 63/768, a4 = −1/512 and the amplitude
factor is G ≡ 1, unless otherwise stated. It entails that g is a smooth function (g ∈ C6([0,+∞[)), see the display
in Figure 2(a).

Moreover, g(t) is a wide-band signal with a central frequency fc = ωc/2π. As announced in Remark 1, this
frequency is used to define a dimensionless parameter characteristic of the “low-frequency” regime underlying
the formal asymptotic expansions used throughout the paper:

εc = ` fc/c0.

In the following, several frequencies are used. Four of them and the (wide-band) associated spectra are displayed
in Figure 2(a) as a function of εc. Note that even for the smallest central frequencies, non-negligible values of
εc are reached by the signal.

5.2. Numerical set-up

In the following experiments, comparisons are made between full-field simulations in the microstructured
configurations and simulations involving their homogenized counterparts at different orders. All the numerical
simulations are done on a uniform grid, with space and time discretization parameters ∆x and ∆t. The
discretization is fine enough to guarantee that the numerical artifacts are negligible. A much coarser grid can
be used for simulations in homogenised media than for simulations in microstructured media (this is one of the
great interests of homogenisation!). Nevertheless, as this is not the object of the present work, we use here the
same grid ∆x = 1 m (to be compared with cell size ` = 20 m) for both types of configurations.



18 TITLE WILL BE SET BY THE PUBLISHER

The reference simulations in the microstructured configurations are done using a fourth-order ADER scheme
[28]. This explicit two-step finite-volume scheme has a stencil of width 2. In the homogenized configurations,
we prefer to use the standard Lax-Wendroff scheme, of width 1. Doing so ensures that the stencil does not cross
the whole enlarged interphase, and only one ghost value is required in the interphase [35]. Both ADER and
Lax-Wendroff schemes are stable under the usual CFL condition ζ = max(c)∆t/∆x ≤ 1; in practice, ζ = 0.95
is chosen.

In the case of second-order homogenization, the stress-gradient formulation yields a non-homogeneous first-
order system (16). A splitting strategy is then followed, where one solves alternatively the homogeneous part
by the Lax-Wendroff scheme, and the relaxation part exactly thanks to the exponential (18). The reader is
referred to [7] for details.

The discretization of the transmission conditions relies on the Explicit Simplified Interface Method. Roughly
speaking, the numerical scheme is modified at grid points surrounding the interfaces, based on the jump condi-
tions (30) or (45). Once again, the reader is referred to [29] for details. Lastly, the numerical approximations
of the fields are denoted as follows:

• vh for the microstructured velocity v` (1);
• v0 for the zeroth-order homogenized velocity (24) with the transmission conditions (25);
• v1 for the first-order homogenized velocity (30) without o(`), endowed with the conditions (30);
• v2 for the “total” homogenized velocity (43) without o(`), endowed with the conditions (45).

5.3. Transmission towards a microstructured half-space

A bounded domain [−400, 1100] is considered. An interface at x0 = 350 m separates the domain into two
areas: (i) on the left, a homogeneous medium; (ii) on the right, the bilaminate described above. A right-going
wave is initially supported in the homogeneous medium, with a time shift t0 = 0.18 s in (56).

To highlight the importance of correctors for the transmission conditions, the physical parameters of the
homogeneous medium are chosen as E− = E0 and ρ− = ρ0, to ensure impedance matching (E−ρ− = E0ρ0)
between the left and right media. At leading order and first order, the whole domain has thus homogeneous
physical parameters, and the (first-order) transmission condition is the only signature of the microstructure.

Choosing d = dmin in (39), one finds d = 0.017, yielding an enlarged interphase width 2d` = 0.68 m. In
homogenized configurations, two interfaces are thus located at x0 ± d`, thus at 349.66 m and at 350.34 m. The
interface parameters deduced from (37) are then A1 = 9.09 10−11 Pa−1 and B1 = 0 Pa m−2 s2.

Figure 3 illustrates the low-frequency configuration: fc = 3 Hz (εc = 0.043). The wave is shown at the initial
time (a) and at t = 0.5 (b), where a reflected wave is observed in the Cauchy medium. For the leading-order
model (Section 3.2), the medium appears as homogeneous: no reflected wave is generated (c), which clearly
shows the inability of this naive approach to handle the boundary effects of an homogenized medium. Moreover,
the small-scale gradients of the solution in the microstructured medium are not captured. The first-order model
(Section 3.3) fixes these deficiencies: the reflected wave is captured, and the correctors handle the cell evolution
of the transmitted wave (d) (note that at the scale of the figure, the two interfaces cannot be distinguished from
each other). The same observations can be done for the total model (Section 3.4): at low frequency, the latter
gives captures equally well the wave phenomena (e). A close-up on the wave in the transmitted medium shows
that the mean field w (12) captures the slow variations of the solution, whereas the correctors in (14) describe
finely the gradients of the solution (e).

A higher value of the central frequency is considered in Figure 4: fc = 9 Hz (εc = 0.123). Compared with
the low-frequency case, the microstructured field vh exhibits a dispersive behavior. The leading-order model
does not capture any phenomena: no reflected wave, no dispersion, no small-scale gradient (a). The first-order
model captures two of the phenomena (reflected wave and gradients), but the dispersion in the right domain
cannot be handled (b): this model is intrinsically non-dispersive. On the contrary, the total model captures all
these features (c). A close-up in the right subdomain illustrates the quality of the correctors (d).
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(a) Microstructured field vh at t = 0 (b) Microstructured field vh at t = 0.5
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(c) Superposition of v0 (section 3.2) and vh (d) Superposition of v1 (section 3.3) and vh
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(e) Superposition of v2 (section 3.4) and vh (f) Close-up on w and v2 (section 3.4) and vh
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Figure 3. Wave in a homogeneous half-space (a-b, left) impacting a microstructured half-space (a-b,
right) with impedance matching (E−ρ− = E0ρ0). The central frequency is fc = 3 Hz (εc = 0.043).
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(a) Superposition of v0 (section 3.2) and vh (b) Superposition of v1 (section 3.3) and vh
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(c) Superposition of v2 (section 3.4) and vh (d) Close-up on w and v2 (section 3.4) and vh
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Figure 4. Interface between a homogeneous half-space and a microstructured half-space. The central
frequency is fc = 9 Hz (εc = 0.123).

Lastly, Figure 5 illustrates the high central frequency fc = 12 Hz (εc = 0.286), where dispersion becomes the
predominant feature. The limitations of leading-order and first-order models are examplified (a,b). Even for
this large εc, the total model captures finely the dispersive wave (c,d).

Other simulations have been done in cases without impedance matching (not shown here). Similar conclu-
sions are obtained: (i) the leading-order model yields a large error in the reflected wave; (ii) the first-order
model captures well the reflected wave and the small-scale variations of the solution, but it is restricted to low
frequencies; (iii) the total model captures all the features, and maintains accuracy even for large values of εc.

The accuracy of the effective models is then examined quantitatively. A source point and a receiver are
respectively positioned at xs < x0 and xr > x0. We impose that these positions correspond to nodes of the grid
to avoid discretization effects. Moreover, the relative position of the receiver with respect to the microstructure
is kept constant. Finally, the distances L, the measurement time T and the forcing amplitude G must be kept
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(a) Superposition of v0 (Section 3.2) and vh (b) Superposition of v1 (Section 3.3) and vh
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(c) Superposition of v2 (Section 3.4) and vh (d) Close-up on w and v2 (Section 3.4) and vh
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Figure 5. Interface between a homogeneous half-space and a microstructured half-space. The central
frequency is fc = 12 Hz (εc = 0.286).

constant in scaled variables (denoted by bars) L = k L, T = ω T , and G = G/ω2, with k = ω/c. To satisfy
these criteria, the indices m and n are introduced and one defines

xs(m) = x0 −
(
m+

1

2

)
D, xr(m) = x0 +

(
m+

1

2

)
`,

fc(m) =
n+ 1

2

m+ 1
2

fc(n), T (m) =
m+ 1

2

n+ 1
2

T (n), G(m) =

(
n+ 1

2

m+ 1
2

)2

G(n).

The spatial scales are D = 4 m and ` = 20 m. The index n = 30 is chosen, with fc(30) = 1 Hz, T (30) = 3 s
and G(30) = 1, which defines the measurement parameters according to the index m alone. The relative error
in norm L2(0, T ) is measured at receiver position xr by comparing simulations in microstructured and effective
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Figure 6. Interface between a homogeneous half-space and a microstructured half-space. Error mea-
surements for the velocity (a) and stress (b) fields. Dashed lines indicate expected asymptotic slopes.
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Figure 7. Interface between a homogeneous half-space and a microstructured half-space. Error
measurements on velocity fields v1 and v2 for variable interface thickness and two frequencies. The
minimum thickness 2dmin` = 0.68m is indicated by the dashed vertical line.

media, i.e. :

Err(vn) =
‖vn(xr, ·)− vh(xr, ·)‖L2(0,T )

‖vh(xr, ·)‖L2(0,T )

Figure 6-(a) represents the error on velocity fields {vn}n=0,1,2 as a function of asymptotic parameter εc. The
expected orders or convergence are asymptotically retrieved. While the “total” model remains of first-order due
to the choice of total field and associated transmission conditions, accounting for dispersion using the stress-
gradient model brings a clear improvement: 1/2 order of magnitude separates the error of v1 and v2. With
reference to Remark 2, the error on stress fields is also plotted in Figure 6-(b), and the same observations can
be made, highlighting the identical treatment given to the velocity and stress fields.

We finally examine the influence of larger values of the interface thickness on the accuracy for two central
frequencies (in previous experiments, the minimal value 2d` = 2dmin` ≈ 0.68 m was chosen). To do so, we
consider integer values of d`, from which are deduced the interface parameters A1 et A2 (38). Figure 7 shows
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the relative error as a function of the interphase thickness for v1 and v2. In both cases, the error grows strictly
with d`. However, this growth is moderate, which allows to enlarge the interphase while keeping an almost
constant accuracy. One can therefore choose a given thickness from numerical requirements (e.g. mesh size or
needed “ghost” nodes inside the interface) without deteriorating the solution too much. Since we do not have
such requirements whith the chosen numerical methods, the minimum value d = dmin is kept in the following
numerical experiments.

5.4. Source point in a slab

(a) vh at fc = 3 Hz (εc = 0.043) (b) vh at fc = 6 Hz (εc = 0.085)
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(c) vh at fc = 9 Hz (εc = 0.123) (d) vh at fc = 12 Hz (εc = 0.286)
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Figure 8. Waves emitted in a microstructured slab surrounded by two homogeneous half-spaces:
microtructured velocity vh for several source frequency and times. For the clarity of the figure, the
internal interfaces are not shown.

This second example illustrates both the modeling of a Dirac source term and of a bounded laminated
medium. A domain [−300, 1700] is divided into three parts: a heterogeneous slab of bilaminate [350, 1090]
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(a) fc = 3 Hz (εc = 0.043), t = 0.25 s (b) fc = 3 Hz (εc = 0.043), t = 0.6 s
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(c) fc = 9 Hz (εc = 0.123), t = 0.25 s (d) fc = 9 Hz (εc = 0.123), t = 0.6 s
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(a) fc = 12 Hz (εc = 0.286), t = 0.25 s (b) fc = 12 Hz (εc = 0.286), t = 0.6 s
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Figure 9. Wave emitted by a source point in a heterogeneous slab: comparisons between “total”
velocity v2 (Section 3.4) and the microstructured field vh at three central frequencies (rows), represented
at t = 0.25 (left column) and t = 0.6 (right column).
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is surrounded by two homogeneous Cauchy media with properties ρ± = 1000 kg/m3 and E± = 2.25 109 Pa.
Contrary to the previous example, there is no impedance matching between the homogeneous and homogenized
media. A Dirac source point is located at the middle of the slab at xs = 720 m. It is handled through the
systems (54) for first-order homogenization, or (55) for second-order homogenization.

Taking again d = dmin in (39) and d′ = d′min in (47), the interface thicknesses are 2d` = 0.788 m (left interface)
and 2d′` = 3.8 m (right interface). The interface parameters deduced from (37) and (46) are: A1 = 9.42 10−11

Pa−1 and B1 = 0 Pa m−2 s2 (left interface) and A′1 = 0 Pa−1 and B′1 = 273.3 Pa m−2 s2 (right interface).

(a) fc = 9 Hz (εc = 0.123), t = 0.25 s (b) fc = 9 Hz (εc = 0.123), t = 0.6 s
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Figure 10. Wave emitted by a source point in a heterogeneous slab: comparisons between “total”
stress σ2 (Section 3.4) and the microstructured field σh at central frequency fc = 9 Hz (central row of
Figure 9), represented at t = 0.25 (a) and t = 0.6 (b).

Figure 8 shows snapshots of the microstructured solution vh at several times, for various central frequencies.
This type of representation evocates seismograms. For the sake of clarity, the internal interfaces of the bilaminate
are not shown. As time increases, one observes the waves emitted by the source point and scattered by the
external interfaces, leading to transmitted waves (in the homogeneous external medial) and reflected waves (in
the internal microstructured medium). At low frequency fc = 3 Hz (Figure 8-(a)), the dispersion is neglectable.
The only small scale variations are due to the internal microstructure. As the central frequency increases (b,c,d),
the dispersive effects are becoming increasingly important. A slight asymmetry between left and right parts of
the figures may be observed. This is due to the grid-induced assymmetry of the Dirac source point.

Figure 9 compare the microstructured velocity vh with the velocity v2 of the total model (Section 3.4). Once
again, the internal interfaces are not shown. The velocities of the leading-order model and first-order model
are discarded, since they are insufficient to capture accurately dispersion. Figure 9-(a,b) illustrates the low-
frequency forcing fc = 3 Hz. The fields are shown at t = 0.25 s (a), where the emitted waves are still in the
slab, and t = 0.6 s (b), where waves have been transmitted in the surrounding media. As in Figure 5, dispersive
effects are not visible at this frequency. Figures 9-(c-d) illustrate the case of a higher frequency fc = 9 Hz, where
the dispersive effects become more visible in the microstructured model. The total model describes finely the
dispersion, both inside or outside the slab. Figures 9-(e-f) display the high-frequency case fc = 12 Hz. Some
inaccuracies of the total model can be observed but the qualitative agreement with the microstructured solution
remains good, even for this large value of the parameter εc = 0.286.

For completeness, the stress fields are also displayed in Figure 10 for fc = 9 Hz corresponding to the
intermediate configuration of Figure 9-(c,d), and for enlarged interfaces: d = d′ = 4 m, so that A1 = 2.28×10−10

Pa−1, B1 = 503.12 Pa (left interface), A′1 = 8.57×10−11 Pa−1 and B′1 = 521.87 Pa (right interface). Once again,
and despite these non-optimal values of d and d′, excellent agreement is observed between the microstructured
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(a) fc = 3 Hz (εc = 0.043) (b) fc = 6 Hz (εc = 0.085)
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Figure 11. Waves emitted in a microstructured slab sourrounded by two homogeneous half-spaces.
Time evolution of the errors |vh(xr, t)− vn(xr, t)| at receiver xr, with n = 0, 1, 2.

and “total” fields, especially for the first wavefronts of the fields transmitted into the left and right homogeneous
domains.

Finally, to provide another representation of these approximations, a receiver put at xr = 340 m records
the field transmitted to the left homogeneous domain. Figure 11 shows the time history of the absolute errors
|vh(xr, t)− vn(xr, t)|. The signal is null up to t ≈ 0.3 s, which corresponds of the travel flight from the source
point to the receiver. A low frequency (a), the error of the leading-order model is much bigger than that of the
first-order model and total model. It emphasizes the role of the first-order transmission conditions. At higher
frequencies (b-c-d), the leading-order and first-order models are unable to capture the dispersive effects, which
yields similar errors. On the contrary, the benefit induced by the total model is clearly observed. Lastly, the
maximal amplitude of the error for each model increases with the frequency.
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6. Conclusion and perspectives

In this paper, a consistant model was proposed for transient waves in periodic media, combining second-order
correctors of the wave equation to account for dispersion and first-order correctors for transmission conditions
from or toward homogeneous domains. Based on a reformulation as a hyperbolic system, its well-posedness was
proven, and its efficiency was established through numerical simulations.

Many follows-up come in mind. First, higher frequencies could be adressed with a similar formalism using
the extension of double-scale approaches established by [16] and developed afterwards e.g. [24, 25]. For time-
harmonic boundary problems in 1D, a similar approach relying on Bloch waves is found in [34], but a time-domain
counterpart is yet to be proposed.

Of course, going to higher dimensions to tackle many more real-life configurations is an important research
direction. Relying on the work [8,20] for boundary conditions, an hyperbolic reformulation of the wave equation
could for instance enable effective simulations in homogenized media.

Appendix A. Cell functions and homogenized coefficients

This appendix gathers existing results on the cell functions, effective coefficients and particular closed-form
solutions for bilaminates, and Section A.2 additionally provides the proof of Proposition 1. The notation 〈f〉Y
is used for the mean value of a function f on the periodicity cell Y =]0, 1[:

〈f〉Y =

∫ 1

0

f(y)dy

A.1. Definitions of cell functions and homogenized coefficients

Cell functions Pj and Qj , associated respectively with displacement/velocity and stress correctors, see (2),
satisfy the following static problems on Y :

∂yQj = fj , Qj =
E

E0
(Pj + ∂yPj+1), Pj is 1-periodic, 〈Pj〉Y = 0, j ∈ {0, 1, 2},

where P0 = 1 and the source-terms fj are defined recursively as:

f0 = 0, f1 =
ρ

ρ0
−Q0 and f2 =

ρ

ρ0
P1 −Q1,

Homogenized coefficients (ρj , Ej) are then defined as weighted means of their periodic counterparts, involving
the cell functions:

ρj = 〈ρPj〉Y and Ej = 〈E(Pj + ∂yPj+1)〉Y = E0〈Qj〉Y ,
and one can verify that these definitions lead to the expressions (4) for (ρ0, E0).

Remark 6. With the definitions above, one has P0 = Q0 = 1 and therefore:

∂yQ1 =
ρ

ρ0
− 1 and ∂yP1 =

E0

E
− 1. (58)

Finally, the coefficient β that intervenes in the second-order models (6) aggregates the second-order contribu-
tions:

β =
E2

E0
− ρ2

ρ0
.
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A.2. Reciprocity identities and properties of the coefficients

Additional relations can be given between the effective coefficients, using the weak form of the cell problems:

Find Pj ∈ H1
] ,

∫ 1

0

E(∂yPj)(∂yw)dy = Fj(w) ∀w ∈ H1
] , j ∈ {1, 2, 3}, (59)

with H1
] = {w ∈ H1(]0, 1[), 〈w〉 = 0, w is 1-periodic}, and where:

F1(w) =

∫ 1

0

−E∂yw dy,

F2(w) =

∫ 1

0

(
−EP1 ∂yw + E (1 + ∂yP1)w − E0

ρ

ρ0
w

)
dy,

F3(w) =

∫ 1

0

(
−EP2 ∂yw + E (P1 + ∂yP2)w − E0

ρ

ρ0
P1w

)
dy.

Then reciprocity identities are obtained by “testing” a problem with another cell solution, and exploiting the
symmetry of the left-hand-side of (59).

Relations between leading- and first-order coefficients. Setting w = P2 in (59) for j = 1, and w = P1

for j = 2, one obtains F1(P2) = F2(P1), which leads to E1 = E0ρ1/ρ0 as given by [15, Lemma 1].

Alternative expressions for the second-order coefficient β. Similarly, one can consider the following
combination:

F2(P2)− F1(P3) + F3(P1) = E2 − E0
ρ2

ρ0
+

∫ 1

0

(
E − E0

ρ

ρ0

)
P 2

1 dy.

Since F2(P2) =
∫ 1

0
E(∂yP2)2dy and F1(P3) = F3(P1), one obtains:

β =
E2

E0
− ρ2

ρ0
=

∫ 1

0

E

E0
(∂yP2)2 +

(
ρ

ρ0
− E

E0

)
P 2

1 dy =

∫ 1

0

E0

E
Q2

1 − 2Q1P1 +
ρ

ρ0
P 2

1 dy. (60)

Finally the Proposition 1 is proven by working a bit more on the expression (60). In particular, using the
relations (58),

β =

∫ 1

0

(1 + ∂yP1)Q2
1 − 2Q1P1 + (1 + ∂yQ1)P 2

1 dy

=

∫ 1

0

(P1 −Q1)2 dy + I,
(61)

where the integral I can be expressed on the one hand using integration by part as:

I =

∫ 1

0

∂yP1Q
2
1 + ∂yQ1P

2
1 dy = −2

∫ 1

0

(∂yP1 + ∂yQ1)P1Q1 dy, (62)

and, on the other hand, introducing the term (P1 −Q1)2 and using (62):

I =

∫ 1

0

(∂yP1 + ∂yQ1)
[
(P1 −Q1)2 + 2P1Q1

]
+ ∂yP1P

2
1 + ∂yQ1Q

2
1 dy,

=

∫ 1

0

(∂yP1 + ∂yQ1)(P1 −Q1)2 dy − I,
(63)
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because 〈∂yP1P
2
1 〉Y = 〈∂yP 3

1 )〉Y /3 = 0, and similarly 〈∂yQ1Q
2
1〉Y = 0. Finally, from (61), (63), and (58), a

third expression of β, clearly positive, is obtained:

β =
1

2

∫ 1

0

(P1 −Q1)2 (2 + ∂yP1 + ∂yQ1) dy,

=
1

2

∫ 1

0

(P1 −Q1)2

(
E0

E
+

ρ

ρ0

)
dy ≥ 0,

A.3. Closed-form formula for bilaminates

This section provides closed-form expressions, in our notation, for the effective coefficients, the parameters
of an optimal (mt) model, and the cell functions (P1, Q1, P2, Q2) assuming periodic bilaminate with the unit
cell Y =]0, 1[ as depicted in figure 1. Additional detail and justifications are provided in [15] and the references
therein, and the multi-laminate generalization is performed in [32].

Effective coefficients. The leading-order homogenization indexes are first defined as:

nE =
γE

(1− α) + αγE
and nρ = α+ (1− α)γρ, (64)

in terms of the contrasts γE = EB/EA and γρ = ρB/ρA, so that the effective Young’s modulus and density are:

E0 = nEEA, and ρ0 = nρρA.

The effective wavespeed c0 is such that c20 = c2A/n0 with n0 = nρ/nE and cA =
√
EA/ρA. Finally, the

second-order coefficient β is:

β =
1

12

[
α(1− α)(1− γEγρ)

n0γE

]2

. (65)

Optimized (mt) model. The optimal two-parameter (mt) model from [15, Sect. 4.1.1] is given by:

βm =
−1− 4β + 4β

10
and βt =

1− 6β − 4β

10
(66)

where

β =
1

12

[
α2γE − (1− α)2γE

n0γE

]2

.

First cell problem. As already seen, Q0 = 1 and the first cell function P1 is given by:

P1(y) =


(nE − 1)

(
y − α

2

)
, y ∈ [0, α],

−(nE − 1)
α

1− α
(
y − 1 + α

2

)
, y ∈ [α, 1],

in terms of the index nE given by (64).

Second cell problem. The cell function Q1 is:

Q1(y) =


( 1

nρ
− 1
)(
y − α

2

)
, y ∈ [0, α],

−
( 1

nρ
− 1
) α

1− α
(
y − 1 + α

2

)
, y ∈ [α, 1],
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in terms of the index nρ given by (64). The affiliated “displacement” cell function P2 is:

P2(y) =

{
P2(0) + pAy(y − α), y ∈ [0, α],

P2(0) + pB [y(y − (1 + α)) + α] , y ∈ [α, 1],
,

where

P2(0) =
α2

12

[nE
nρ

+
1− 3α

α
nE −

1− α
αnρ

+ 1
]

and

pA =
1

2

[nE
nρ
− 2nE + 1

]
, pB =

1

2

( α

1− α
)2[nE

nρ
+

1− 2α

α
nE −

1

αnρ
+ 1
]
.

Third cell problem. Finally, the “stress” cell function Q2 is:

Q2(y) =

{
Q2(0) + qAy(y − α), y ∈ [0, α],

Q2(0) + qB [y(y − (1 + α)) + α] , y ∈ [α, 1],

where

Q2(0) =
nE
6

[
α3qA +

(1− α)3

γE
qB

]
.

and:

qA =
1

2

[nE
nρ
− 2

nρ
+ 1
]
, qB =

1

2

( α

1− α
)2[nE

nρ
+

1− 2α

αnρ
− nE

α
+ 1
]
.
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