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Abstract

Dickeya are plant pathogenic bacteria able to provoke disease on a wide range of plants. A

type 2 secretion system (T2SS) named Out is necessary for Dickeya virulence. Previous

studies showed that the D. dadantii T2SS secretes a wide range of plant cell wall degrading

enzymes, including pectinases and a cellulase. However, the full repertoire of exoproteins it

can secrete has probably not yet been identified. Secreted proteins possess a signal peptide

and are first addressed to the periplasm before their recruitment by Out. T2SS-specific

secretion signals remain unknown which prevents in silico identification of T2SS substrates.

To identify new Out substrates, we analyzed D. dadantii transcriptome data obtained in

plant infection condition and searched for genes strongly induced and encoding proteins

with a signal sequence. We identified four new Out-secreted proteins: the expansin YoaJ,

the putative virulence factor VirK and two proteins of the DUF 4879 family, SvfA and SvfB.

We showed that SvfA and SvfB are required for full virulence of D. dadantii and that svf

genes are present in a variable number of copies in other Pectobacteriaceae, up to three in

D. fanghzongdai. This work opens the way to the study of the role of non-pectinolytic pro-

teins secreted by the Out pathway in Pectobacteriaceae.

Introduction

Soft rot Pectobacteriaceae (SRP), Dickeya and Pectobacterium, are plant pathogenic bacteria

that can provoke disease on more than 35% of angiosperm plant orders, including both mono-

cot and dicot plants [1]. Among those, there is a wide range of plants of agronomic interest

such as potato, rice, chicory, cabbage or ornementals on which they can cause severe losses.

Symptoms are usually soft rot but these bacteria can provoke blackleg or wilting on aerial parts

of potato. Recently, diseases on woody plants caused by Dickeya have been reported [2]. There

is no efficient way to fight these bacterial diseases. There are actually twelve species of Dickeya
described, isolated either from infected plants (type strain of D. chrysanthemi isolated from

Chrysanthemummorifolium, D. dadantii subsp. dadantii from Pelargonium capitum, D.

dadantii subsp. diffenbachiae from Dieffenbachia sp., D. dianthicola from Dianthus
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caryophillus, D. zeae and D. parazeae from Zea mays, D. oryzae from Oryza sativa, D. solani
from Solanum tuberosum, D. fangzhongdai from Pyrus pyrifolia, D. poaceiphila from Sac-
charum officinarum) [3–8] or from river of lake waters (D. aquatica, D. lacustris and D. undi-
cola) [9–11]. Recently D. paradisiaca isolated from Musa paradisiaca, was renamed Musicola
paradisiaca [12]. The role of protein secretion systems on the onset of the disease provoked by

these bacteria has been recognized long ago [13]. In contrast to many plant pathogenic bacte-

ria, the type three Hrp secretion system is not the main determinant for SRP virulence [14].

The main virulence factor for these bacteria is a type 2 secretion system (T2SS) named Out. It

allows the secretion of enzymes that degrade the components of the plant cell wall, leading to

the soft rot symptom distinctive of the disease. The first Out-secreted proteins to be identified

were a set of pectinases and a cellulase which are easily detectable by simple enzymatic tests

[13,15].The pectinolytic T2SS secretome of the model strain D. dadantii 3937 has been studied

in detail by cloning the genes of these easily detectable enzymes. D. dadantii secretes by the

Out machinery nine pectate lyases, one pectin methylesterase, one pectin acetylesterase and

one rhamnogalacturonate lyase [16]. A proteomic analysis of the secreted proteins by 2D gel

electrophoresis allowed the identification of two other secreted proteins, the feruloyl esterase

FaeD and a protein with homology to a Xanthomonas campestris avirulence protein AvrL [17].

A search in D. dadantii of homologues of proteins secreted by the Out T2SS of Pectobacterium
atrosepticum [18] recently led to the characterization of the metal binding protein IbpS [19].

There is no strict host specificity for Dickeya species, however some of them show a loose asso-

ciation for some plant species. Since all the pectinolytic enzymes studied in D. dadantii are

present in most of other Dickeya species these enzymes are probably not responsible for the

host preference observed for these bacteria [20]. We hypothesized that additional T2SS-

secreted proteins specific for some species might exist and play a role in the host preference.

To identify such proteins, we analyzed previously published D. dadantii transcriptome data,

looking for genes induced in plant infection conditions and encoding proteins with a signal

sequence. We identified several proteins secreted by the Out machinery and showed that two

proteins of the DUF4879 family, SvfA and SvfB are D. dadantii virulence factors.

Results

Identification of new out-secreted proteins

To have a more complete knowledge of the proteins secreted by the D. dadantiiOut T2SS that

could be involved in the pathogenicity process, we searched for candidate genes in recently

published transcriptome data [21,22]. We selected genes strongly induced during plant infec-

tion and coding for proteins possessing a signal sequence which is a prerequisite to be secreted

by a T2SS. We retained the genes Dda3937_01687, Dda3937_00585 (thereafter named SvfA

and SvfB, respectively) and Dda3937_00081 (also named yoaJ). We also retained VirK, a pro-

tein of unknown function with a signal sequence identified among the genes controlled by the

transcriptional regulator PecS of many virulence factors [23]. Each protein was tagged with a

C-terminal His-tag and its secretion was analyzed in the D. dadantii wild type strain, an outD
mutant in which the Out machinery is not functional and this strain complemented with a

outD-carrying plasmid. The proteins SvfA, SvfB, YoaJ and VirK were detected in the superna-

tant of the wild type but not of the mutant strain, demonstrating their secretion by the Out

machinery (Fig 1). Complementation of mutant strain with the outD plasmid restored secre-

tion of these proteins. Only about 50% of these proteins was secreted, probably because of

their production from a multicopy plasmid or interference of the 6-His tag with the protein

recruitment. In addition to the full-length SvfA and SvfB, a band of about 10 kDa reacting with

the anti-His antibody can be seen in the supernatant of the wild type strain expressing SvfA
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and SvfB but not in that of the protease deficient strain A350. It has been shown that the pec-

tate lyase PelI is cleaved by proteases in the supernatant of wild type strain to give a protein

with HR-inducing property [24] but that it remains intact in strain A350. SvfA and SvfB are

probably also N-terminally processed by these proteases. It is interesting to note that the pro-

cessed proteins have the size of SvfC and YolA from B. subtilis (see below).

YoaJ is a PecS-regulated gene [23] and it was found among the most induced genes during

Arabidopsis infection or culture in the presence of plant extracts [21]. It encodes a protein with

homology to expansins. These proteins are able to non-enzymatically loosen cell wall cellulose.

They are found in all plants where they have a role in cell wall extension and in many plant

pathogenic microorganisms [25]. The D. dadantii expansin YolA could play a similar role.

VirK is a protein of unknown function that has homologues in several plant pathogenic bacte-

ria such as R. solanacearum, Agrobacterium tumefaciens, Lonsdalea and Xanthomonas. No

symptom for the D. dadantii virKmutant was observed whatever the plant tested [23].

SvfA and SvfB are virulence factors

svfA and svfB are among the most induced D. dadantii genes during Arabidopsis infection or

during culture of the bacteria in the presence of plant extracts [21]. They are also strongly

Fig 1. Identification of new secreted proteins byD. dadantii. Wild-type, A6533 outDmutant complemented or not

by outD and strain A350 containing plasmid bearing the gene of the protein to test were grown overnight in LB

medium. 15 μl of supernatant (S) and cellular (C) fractions were separated by SDS-PAGE. After blotting, the proteins

were detected with anti-6His antibody. � indicates the processed form of SvfA and SvfB.

https://doi.org/10.1371/journal.pone.0265075.g001
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expressed during maceration of potato tubers by D. dianthicola and D. solani [26]. The two D.

dadantii proteins share 43% identity and 58% similarity in amino acid composition (S1 Fig).

SvfA is 187 amino acid long (165 for the mature form, 17.5 kDa) and SvfB is 198 amino acid

long (177 for the mature form, 18.9 kDa). These proteins belong to the DUF 4879 family of

proteins. Proteins of this family have no known function. YolA, a protein of the DUF 4879

family showing low homology with SvfB, is among the most highly secreted protein of Bacillus
subtilis [27]. YolA is also present in B. cereus and in the insect pathogen B. thuringiensis. B. sub-
tilis YolA is shorter than SvfA and SvfB, missing the more variable N-terminal part (S1 Fig).

An additional gene of the DUF 4879 family located next to svfA and probably resulting from a

duplication is found in D. fangzhongdai and D. undicola. It was named svfC and has 53%

homology with D. dadantii SvfA and 34% with D. dadantii SvfB. SvfC is shorter that SvfA and

SvfB (126 amino acid for the mature protein, 13.2 kDa) and has the same size as B. cereus YolA

(S1 Fig) It possesses a signal sequence, indicating that it could also be secreted by the Out

system.

svfA and svfBmutants have been constructed and their pathogenicity has been tested on

potato. The svfAmutant was significantly less aggressive than the wild type strain while the

svfBmutant was not significantly affected (Fig 2A). Virulence of the svfAmutant could be

restored by introduction of a plasmid bearing the wild type svfA gene (Fig 2B). Virulence of

the double svfA svfBmutant was further reduced showing that the role of SvfB is additive to

that of SvfA (Fig 2A). However, virulence of the double svfA svfBmutant was not as reduced as

in an outDmutant, confirming that D. dadantii virulence is multifactorial. Introduction in the

double mutant of a plasmid bearing svfA or svfB restored partially virulence (Fig 2A). Thus,

genes Dda3937_01687 and Dda3937_00585 were named svfA and svfB for secreted virulence

factor A and B.

All our attempts to overproduce the proteins SvfA and SvfB in order to purify them and to

study more precisely their function were unsuccessful because their production was toxic to

the bacterial cells engineered to overproduce them.

Fig 2. Virulence of svfA and svfBmutants. A. Potatoes (n = 9) were infected with the wild type strain, and the svfA, the svfB, the svfA
svfB, the outDmutant and the outD complemented strain. Rotten tissue was weighed after 48 h. Statistical tests were performed using the

Wilcoxon-Mann-Whitney test. The p-value were compared with an alpha risk of 4%. There is significant difference (p<0.04) between A,

B, C and D. B. Complementation of the svfA and the svfA svfBmutants. Potatoes (n = 9) were infected with the wild type strain, the svfA
or the svfA svfBmutants containing the empty plasmid pBBR-MCS3 or the plasmid bearing svfA or svfB. Rotten tissue was weighed after

48h. Statistical tests were performed using the Wilcoxon-Mann-Whitney test. The p-value were compared with an alpha risk of 4%. p<
0.001 = ���, p< 0.005 = ��, p< 0.01 = �.

https://doi.org/10.1371/journal.pone.0265075.g002
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Expression of svfA and svfB
In an attempt to identify the function of SvfA and SvfB, we analyzed the conditions in which

their genes are expressed. We tested the effect of galacturonate and polygalacturonate, two

compounds that are inducers of the expression of the main virulence factors, the pectate lyases,

and of glucose, which represses it. We also analyzed the effect of mutations in genes control-

ling several aspects of D. dadantii virulence. KdgR represses the pectinase, pectin catabolism

and out genes [28]. Its inducer is 2-keto-3-deoxygluconate, a polygalacturonate and galacturo-

nate catabolic derivative. PecS controls genes encoding the pectinases, diverse secreted protein,

the Out machinery and proteins involved in resistance to oxidative stress [29]. PecT is a regula-

tor of the pectate lyase, motility and exopolysaccharide synthesis genes [30]. Pir regulates

hyperinduction of pectate lyses in response to plant extracts [31]. GacA, the regulator of the

two-component regulatory system GacA-GacS, is a global regulator required for disease

expression in response to the metabolic status of the bacteria [32]. Expression of svfA was

slightly induced by polygalacturonate but not by galacturonate (Fig 3A). However, expression

of this gene was not modified in a kdgR background indicating that induction by polygalactur-

onate is not mediated by KdgR. Growth in the presence of chicory chunks strongly induced

svfA expression as expected from transcriptomic data showing induction in the presence of

plant extract. A high concentration of glucose led to a strong induction of svfA expression (Fig

3A). This regulation is mediated by the catabolite repressor protein CRP since a mutation in

the crp gene derepressed svfA expression. Thus, Crp is a repressor of svfA. Although it had not

been previously identified as a PecS-regulated gene [23], svfA expression is increased in a pecS
background. A pirmutation provoked a weak derepression of svfA expression. Neither PecT

nor GacA significantly regulate svfA expression (Fig 3A).

Regulation of svfB shows some similarity to that of svfA: it was not induced by galacturo-

nate, polygalacturonate or regulated by KdgR, it was induced by glucose and repressed by Crp,

and it was repressed by PecS (Fig 3B). However, a few differences can be noted: in contrast to

what is observed with svfA, no induction by plant pieces was observed for svfB and PecT was a

repressor of svfB expression while Pir did not seem to control it (Fig 3B).

Occurrence of the new secreted proteins in other Dickeya species and soft

rot Pectobacteriaceae

Presence of svfA, svfB, virK and yoaJ was searched in the genome of all the Dickeya type strains,

and in a few soft rot Pectobacteriaceae strains (Table 1). Presence and number of proteins of

the DUF 4879 family is variable among Dickeya species. The gene svfA is present in all strains

except D. zeae, D. chrysanthemi and D. poaceiphila. The gene svfB is present in most species

but is absent in D. chrysanthemi, D. poaceiphila, D. undicola and D. aquatica. The gene svfC is

found in D. fangzhongdai and D. undicola. Thus, the number of genes of the DUF 4879 family

in Dickeya strains varies from 0 to 3. Homologues of the svf genes can also be found in some

Pectobacterium strains (Table 1). For example, two copies are present in P. carotovorum subsp

carotovorum. However, even in a given species, the gene may be present or not (presence of a

homologue of svfB in 10 out of the 23 P. brasiliense strains present in the ASAP data bank

(https://asap.ahabs.wisc.edu/asap/home.php). svf genes are absent from M. paradisiaca. Out-

side Pectobacteriaceae, homologues of svfB can be found in a few Gammaproteobacteriaceae, i.

d. in some Photorhabdus, Luteibacter and Pseudoalteromonas strains. yoaJ is present in all

Dickeya and Pectobacterium strains except D. poaceiphila. virK is present in all Dickeya strains

except in D. aquatica and absent in all Pectobacterium strains tested.

We also examined the presence or absence of genes of other non-pectinolytic proteins

known to be secreted by a T2SS in Dickeya or Pectobacterium: ibpS, nipE, xynA, avrL/avrM
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(Table 1). IbpS is a metal binding protein that prevents ROS-induced killing of bacteria [19].

NipE is a toxin that provoke plant cell death [33]. XynA is a xylanase that was identified in a

corn strain of Dickeya zeae previously named Erwinia chrysanthemi [34]. AvrL is homologous

to the Xanthomonas campestris avirulence protein AvrL [17]. Two very similar proteins, AvrL

and AvrM, are produced by D. dadantii 3937. AvrL was named Svx in P. atrosepticum where

its role in virulence has been shown [35]. However, its function in Dickeya has not been

Fig 3. Expression of svfA and svfB in various growth conditions. A. The D. dadantii strain A6418 containing the

svfA-uidA fusion and its derivative strains containing an additional regulatory mutation were grown in M63 medium

in the presence of the indicated compounds (Y = glycerol, G = glucose, A = galacturonate, PGA = polygalacturonate,

E = chicory chunks). Strains with additional mutations were grown with glycerol as a carbon source except the crp
mutant that was grown with 0.2% glucose. ß-glucuronidase activity was measured with p-nitrophenyl-ß-D-

glucuronate. B. Similar experiment for theD. dadantii strain A6467 containing the svfB-uidA fusion and its derivative

strains containing an additional regulatory mutation. Activities are expressed in μmoles of p-nitrophenol produced per

minute and per milligram of bacterial dry weight ± standard deviation. Data are expressed as the mean (n = 6) from

six independent experiments. Statistical tests were performed using the Wilcoxon- Mann-Whitney test. The p-value

were compared with an alpha risk of 4%. p< 0.001 = ���, p< 0.005 = ��, p< 0.01 = �.

https://doi.org/10.1371/journal.pone.0265075.g003
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studied. IbpS is present in almost all the species, except M. paradisiaca. NipE is absent inM.

paradisiaca and D. poaceiphila. Presence of XynA is variable in Dickeya strains and it is absent

in Pectobacterium. A variation in the presence and number of AvrL can be observed in Dickeya
strains (Table 1). Thus, the repertoire of T2SS-secreted protein known to be important for vir-

ulence is very variable from species to species.

Discussion

The T2SS of Dickeya and Pectobacterium is a major virulence factor of these bacteria. The

knowledge of the repertoire of secreted proteins is necessary to better understand the precise

mechanisms of virulence of these bacteria. These analyses have been undertaken with the

model strain D. dadantii 3937 and partially with Pectobacterium atrosepticum [18,36]. Dickeya
and Pectobacterium are characterized by their ability to degrade pectin and they are identified

by this characteristic on the semi selective Crystal Violet Pectate medium. They all secrete

enzymes capable of degrading pectin (pectate lyases, polygalacturonases, pectin methyles-

terases). However, recent works show that other proteins are secreted by the Out T2SS [17,18].

In the present work we used published transcriptome data to identify new potential substrates

of the D. dadantii T2SS. The most highly induced genes in a transcriptome experiment of D.

dadantii infecting A. thaliana are known virulence genes (pelI, prtA, rhiE, paeY, rhaD, ibpS,

etc. . .) [21]. However, in this top list some genes have no known function. The presence of a

signal sequence in their product suggested that these proteins could be substrates of the T2SS

necessary for the infection process. We showed here that the proteins SvfA, SvfB and YoaJ pro-

duced by genes present in the top list of those induced in Arabidopsis are substrates of the Out

Table 1. Presence of Out-secreted proteins in variousDickeya,Musicola and Pectobacterium strains.

Strain svfA svfB svfC YoaJ VirK IbpS NipE XynA AvrL
D. dadantii 1 1 0 1 1 1 1 1 2

D. diffenbachiae 1 1 0 1 1 1 1 0 2

D. fangzhongdai 1 1 1 1 1 1 1 1 2

D. solani 1 1 0 1 1 1 1 1 2

D. zeae 0 1 0 1 1 1 1 1 1

D. oryzae 1 1 0 1 1 1 1 1 0

D. parazeae 0 1 0 1 1 1 1 1 1

D. dianthicola 0 1 0 1 1 1 1 0 1

D. undicola 1 0 1 1 1 1 1 0 1

D. lacustris 1 0 0 0 0 1 1 0 2

D. aquatica 1 0 0 1 0 1 1 0 2

D. chrysanthemi 0 0 0 1 1 1 1 0 1

D. poaceiphila 0 0 0 0 1 1 0 1 0

M. paradisiaca 0 0 0 0 1 0 0 0 0

P. atrosepticum 0 0 0 1 0 1 1 0 1

P. carotovorum 1 1 0 1 0 1 1 0 1

P. parmentieri 0 0 0 1 0 1 1 0 1

P. polaris 0 0 0 1 0 1 1 0 1

The strains used in this study are D. dadantii 3937, D. aquatica 174/2, D. chrysanthemi ATCC 11663, D. dadantii subsp dieffenbachiae NCPPB 2976, D. dianthicola
NCPPB 453, D. fanghzongdai DSM 101947, D. lacustris S29, D. oryzae ZYY5, D. parazeae 586, D. poaceiphila NCPPB 569, D. solani IPO 2222, D. undicola 2B12, D. zeae
NCPPB 2538, M. paradisiaca ATCC 33242P. atrosepticum ATCC 33260, P. carotovorum subsp. carotovorum ATCC 15713, P. parmentieri RNS08.42.1A and P. polaris
NIBIO 1006. The presence and number of proteins detected by search of the corresponding gene in the genome in each strain is indicated.

https://doi.org/10.1371/journal.pone.0265075.t001
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T2SS. YoaJ belongs to the family of expansins, proteins that loosen cellulose fibers. Their role

as a virulence factor has been shown in P. brasiliense and P. atrosepticum [37] and it probably

has the same function in D. dadantii and other Dickeya species. No function could be pre-

dicted for SvfA and SvfB which belong to the DUF 4879 family of proteins. However, a reduc-

tion of virulence of a svfAmutant and a svfA svfB double mutant observed on potato tubers

proves a role of these proteins in the bacterial pathogenicity. Although an additive effect of the

mutations was observed, they could not have exactly the same function. The mutants should

be tested on various hosts to detect potential differences. It can be supposed that each protein

would be more active on one type or one family of plant. Presence of three DUF 4879 proteins

in D. fanghzongdai could explain its wide host range, from orchid to pear trees. Presence of

homologues of SvfA and SvfB in Photorhabdus and in B. thuringiensis strains, two insect path-

ogens, indicates that the role of these proteins is not restricted to plant virulence but may par-

ticipate to a common process of bacterial pathogenicity. We also showed here that the PecS-

regulated protein VirK is secreted by Out. No role on virulence had been observed for this pro-

tein with the chicory leaf model of infection [23]. Other models should be tested to find the

role of this protein.

Regulation of expression of the svfA and svfB genes is atypical for a D. dadantii gene

involved in pathogeny. While expression of most of the virulence factors is induced in the

presence of pectin or its derivatives through the repressor KdgR and repressed by glucose, that

of svfA and svfB is opposite: it is activated by glucose and not controlled by KdgR. Expression

of svfA is induced in the presence of plant tissue. This pattern of regulation has been described

for ibpS, which is also strongly induced in A. thaliana [19]. This could correspond to condi-

tions encountered during the early phases of infection: pectin has not yet been degraded and

glucose and sucrose are plentiful in plant tissues. svfA and ibpS could be among the earliest

gene to be induced at the onset of infection, before the genes involved in pectin degradation.

However, regulation of these genes by PecS and PecT shows that svfA and svfB are fully inte-

grated in the network of regulators that controls D. dadantii virulence.

This work has extended our knowledge of the Out-dependent secretome of D. dadantii,
showing that besides pectinases several other proteins are secreted. If the number of pectinoly-

tic enzymes secreted is almost identical in the various Dickeya species, the number of addi-

tional non-pectinolytic secreted proteins varies markedly. Among the proteins analyzed

(Table 1),M. paradisiaca has only one (VirK) while D. fanghzongdai has ten. All the intermedi-

ate combinations can be found in the various species. There seems to be less variations in the

Pectobacterium strains surveyed. It is tempting to speculate that the presence/absence of these

proteins could influence the host preference of some Dickeya species, providing additional vir-

ulence factors favorable to infect certain hosts. Works that compare Dickeya strains to under-

stand what makes difference in their host range or aggressivity often focus only on the

presence of the six known types of secretion systems without analyzing what proteins could be

secreted [20,38,39]. An exhaustive analysis of the secreted proteins would be more

informative.

Are there other T2SS-secreted proteins to be identified inDickeya strains? No specific signal

is present on T2SS-secreted proteins that would allow their identification. 2D gels which were

used in previous studies performed on D. dadantii and P. atrosepticum to identify their secre-

tome have a limited sensitivity [17,35]. More sensitive methods such as liquid chromatogra-

phy-tandem mass spectrometry (LC-MS/MS) can now be used [40]. However, they give many

false positive results since periplasmic and cytoplasmic proteins are often found in the culture

supernatant. The approach we used here allowed the identification of four new secreted pro-

teins. However, all these methods have a drawback. They can only detect proteins in condi-

tions where they are produced. For instance, the rhamnogalacturonate lyase RhiE could only
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be detected when the bacteria were cultivated in the presence of rhamnose [41]. The genes

encoding YoaJ and VirK were not induced in D. dianthicola grown on potato [26]. Another

problem is that a protein may not exist in the strain tested. An analysis of the secretome of sev-

eral Dickeya strains grown in several conditions will be necessary to have a global view of all

the additional virulence factors that can be secreted by Dickeya species and evaluate their

potential role in pathogenicity.

Material and methods

Bacterial strains and growth conditions

Bacterial strains, plasmids and oligonucleotides used in this study are described in S1 Table. D.

dadantii and E. coli cells were grown at 30 and 37˚C respectively in LB medium or M63 mini-

mal medium supplemented with a carbon source (0.2%, w/v unless otherwise indicated).

When required antibiotics were added at the following concentrations: ampicillin, 100 mg/l,

kanamycin, tetracycline, 10 mg/l and chloramphenicol, 25 mg/l. Media were solidified with

1.5% (w/v) agar. Transduction with phage FEC2 was performed according to Résibois et al.
[42].

Mutant construction

To construct strain A6418 that contains a svfA-uidA fusion a 1.3 kb DNA fragment containing

svfA was amplified with primers 17176H+ and 17176A. The resulting fragment was inserted

into the pGEM-T plasmid (Promega). A XbaI site was created by site directed mutagenesis

with the primers 17176XbaF and 17176XbaR into the svfA coding sequence and a uidA-kanR

cassette was inserted into this XbaI site. To construct strain A6467 that contains a svfB-uidA-

kanR fusion a 2000 bp DNA fragment containing svfB was amplified with the primers 15544L2

+ and 15544L2. The resulting fragment was inserted into the pGEM-T plasmid. A XmaI site

was created by site directed mutagenesis into svfB coding sequence with the primers

15544XmaF and 15544XmaR and a uidA-kanR cassette was inserted into this created unique

XmaI site. To create strain A6417, a CmR cassette was introduced into the XmaI site. All the

constructs were recombined into the D. dadantii chromosome according to Roeder and Col-

lmer [41]. Recombinations were checked by PCR. His-tagged versions of the proteins SvfA,

SvfB, YoaJ and VirK were constructed by amplifying the corresponding genes with the primers

17176H+ and 17176H-, 15544H+ and 15544H-, 14642H+ and 14642H-, VirKH+ and VirKH-,

respectively. The resulting DNA fragments were cloned into plasmid pGEMT. For comple-

mentation experiments, the DNA fragment containing svfA was cut from plasmid pGEMT-

svfA by PstI and SacII and introduced into the same site of plasmid pBBR-MCS3 and the DNA

fragment containing svfB was cut from plasmid pGEMT-svfB by PstI and SacI and introduced

into the same sites of plasmid pBBR-MCS3. To construct the plasmid complementing the

outDmutation, the outD gene was cut from plasmid pTdB-OD (Shevchik 1997) byHindIII

and SmaI and introduced into the same sites of plasmid pBAD33.

Secretion assays and western blots

D. dadantii strains containing the plasmid to test were grown overnight in LB medium in the

presence of the appropriate antibiotic. 2 ml of culture were centrifuged at 10,000 g for 3 min,

the supernatant was filtered at 0.45 μm, the pellet was resuspended in 2 ml of water and 15 μL

and both fractions were loaded onto 12% polyacrylamide gel electrophoresis (SDS-PAGE).

The proteins were next transferred onto Immobilon P membrane (Millipore) and probed with

anti 6-His antibody (Covalab, Villeurbanne).
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Pathogenicity tests

Bacteria were grown overnight in LB medium, centrifuged and resuspended at OD600 1 in

M63 medium. Potatoes (var. Jazzy) were surface sterilized with 70% ethanol and dried. A hole

was made with a pipette tip and 10 μl of bacteria were deposited in the hole which was covered

with mineral oil. Potatoes were placed over a wet paper in a tray contained in a plastic bag to

maintain moisture. After 48 h at 30˚C, the weight of rotten tissue was measured.

Enzymatic assays

β-glucuronidase assays were performed on toluenized extracts of cells grown to exponential

phase using the method of Bardonnet et al [43] with p-nitrophenyl-β-D-glucuronate as the

substrate.

Statistical analysis

For all statistical analyses, a non-parametric Wilcoxon-Mann-Whitney test was conducted

with a significance level of p<0.04. Statistical analysis was performed using R (v4.1.2) with

RStudio (RStudio Team (2022). RStudio: Integrated Development Environment for R. RStu-

dio, PBC, Boston, MA URL; http://www.rstudio.com/)

Supporting information

S1 Fig. Alignment of Svf proteins. The sequences of D. dadantii SvfA (Dda3937_01687) and

SvfB (Dda3937_00585), D. fanghzongdai SvfC (CVE23_15565), B. cereusWP-193674364.1 and

Photorhabdus asymbiotica CAQ86327.1, without their signal sequence, were aligned with

Clustal omega. Identical residues are indicated by a star and chemically equivalent residues by

a double dot.

(DOC)

S1 Table. Strains, plasmids and oligonucleotides used in this study.

(DOCX)

S1 Raw images. Complete blots.

(PDF)
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